Датчики измерения температуры: типы, принцип работы

Контроль температуры повсеместно задействуется в технологических процессах, позволяя выбирать подходящий режим работы или отслеживать изменения состояния материала. Температурный режим одинаково важен как при включении духовки на кухне, так и в доменных печах при плавлении стали, а отклонение от нормальной работы может привести к аварии и травмированию людей. Чтобы избежать неприятных последствий и обеспечить возможность регулирования степени нагрева используется датчик температуры.

Термоэлектрические датчики температуры (термопары)

Принцип работы этой группы датчиков основан на том, что в замкнутых контурах проводников или полупроводников возникает электрический ток, если места спайки различаются по температуре. Для измерения температуры, один конец термопары помещают в среду измерения, а другой служит для снятия значений. Единственным, но существенным недостатком этого вида измерителей является их довольно большая погрешность, что недопустимо для многих технологических процессов.

Примером такого датчика может служить датчик ТСП Метран-246, который предназначен для измерения температуры твердых тел.

Он применяется в металлообработке, и служит для контроля температуры подшипников. Диапазон измерения от -50 до +120 градусов по Цельсию, выходной сигнал для считывания – аналоговый.

Видео о датчиках температуры смотрите ниже:

Примение

Сфера применения датчиков температуры охватывает как бытовые приборы, так и оборудование общепромышленного назначения, сельскохозяйственную отрасль, военную промышленность, аэрокосмический сектор. Каждый из вас может встретить их у себя дома в нагревательных приборах – бойлерах, духовках, мультиварках или хлебопечках.

В тяжелой промышленности тепловые сенсоры позволяют контролировать степень нагрева печей, воздуха в рабочей области, состояние трущихся поверхностей. В медицине их используют для контроля температуры в труднодоступных местах или для упрощения различных процедур.

Многие автолюбители часто сталкиваются с анализаторами температуры, контролирующими состояние масла или другой охлаждающей жидкости. На сети железных дорог они позволяют отслеживать нагрев букс и колесных пар. В энергетике с их помощью обследуются контактные соединения и качество прилегания поверхностей.

Терморезистивные датчики

Как следует из названия, этот тип датчиков работает по принципу изменения сопротивления проводника при изменении его температуры. Благодаря простой и надежной конструкции, датчики этого типа широко применяются в электронике и машиностроении. Неоспоримым плюсом этих измерителей является высокая точность, чувствительность и простые устройства считывания.

Примером терморезистивного датчика может служить модель 700-101BAA-B00, которая имеет начальное сопротивление в 100 Ом, и диапазон измерений от -70 С° до +500 С°.

Выполнен он с применением платиновой пластинки и никелевых контактов. Широко используется в электронике и промышленных автоматах.

Как подобрать?

При выборе датчика температуры необходимо руководствоваться такими критериями:

  • если датчик будет соприкасаться или располагаться внутри измеряемой среды, то берется контактная модель, если находиться вне объекта, то бесконтактная;
  • условия и состояние среды, в которой он будет функционировать (влажность, агрессивные вещества и т.д.) должны соответствовать возможностям датчика;
  • шаг и градуировка измерений должны обеспечивать удобную эксплуатацию и датчика, и оборудования;
  • если датчик подлежит замене в ходе эксплуатации, то устанавливаются сменные варианты;
  • при выборе датчика температуры для замены неисправного, лучше воспользоваться его VIN кодом;
  • предел рабочих температур должен охватывать все возможные значения нагрева, некоторые из них приведены в таблице ниже.

Таблица: температурные пределы датчиков термоэлектрического типа

ТипСоставДиапазон температур
Tмедь / константанот -250 °C до 400 °C
Jжелезо / константанот -180 °C до 750 °C
Eхромель / константанот -40 °C до 900 °C
Kхромель / алюмельот -180 °C до 1 200 °C
Sплатина-родий (10 %) / платинаот 0 °C до 1 700 °C
Rплатина-родий (13 %) / платинаот 0 °C до 1 700 °C
Bплатина-родий (30 %) / платина-родий (6 %)от 0 °C до 1 800 °C
Nнихросил / нисилот -270 °C до 1 280 °C
Gвольфрам / рений (26 %)от 0 °C до 2 600 °C
Cвольфрам-рений (5 %) / вольфрам-рений (26 %)от 20 °C до 2 300 °C
Dвольфрам-рений (3 %) / вольфрам-рений (25 %)от 0 °C до 2 600 °C

Полупроводниковые термодатчики

Этот тип датчиков работает на принципе изменения характеристик p-n перехода под воздействием температуры. Так как зависимость напряжения на транзисторе от температуры всегда пропорциональна, можно сделать датчик с высокой точностью измерения. Несомненными плюсами такого решения является дешевизна, высокая точность данных, и линейность характеристик на всем диапазоне измерения. Кроме того, их можно монтировать прямо на полупроводниковой подложке, что делает этот тип датчиков незаменимым для микроэлектронной промышленности.

Примером такого устройства может стать датчик LM75A. Температурный диапазон — от -55 С° до +150 С°, погрешность измерений – ±2 С°. Шаг измерения – всего 0,125 С°. напряжение питания – от 2.5 до 5.5 В, а время преобразования сигнала – до 0.1 секунды.

Схемы подключения

Основные отличия в подключении датчика температур обуславливаются сферой его применения и конструктивными особенностями. Так, в рамках статьи, мы рассмотрим несколько наиболее распространенных и интересных вариантов. Таковыми является подключение с помощью двухпроводной и трехпроводной схемы.


Рис. 5. Двухпроводная схема подключения

На рисунке 5 приведен вариант двухпроводного присоединения измерительного устройства. Этот принцип рекомендуется для всех датчиков температуры с небольшим расстоянием до контролируемого объекта. Так как сопротивление самого чувствительного элемента Rt мало измениться от сопротивления соединительных проводников R1 и R2, соответственно, поправка на измерения будет минимальной.


Рис. 6. Трехпроводная схема подключения

При больших расстояниях, от 150 м и более, подключение датчика следует выполнять по трехпроводной схеме, в которой существенно снижается погрешность на сопротивление в проводах R1, R2, R3.


Рис. 7. Схема подключения датчика температуры двигателя

Практически в каждом современном авто осуществляется постоянный контроль температурных параметров мотора. Поэтому использование датчика является обязательным требованием безопасности. Согласно двухпроводной схемы (рисунок 7) датчик подключается одним выводом на отдельно стоящий концевик капота, который не имеет каких-либо подключений к цепи. А второй вывод, подсоединяется к блоку сигнализации установленным порядком, в соответствии с моделью.


Рис. 8. Схема подключения цифрового датчика температуры

На рисунке 8 приведен пример включения цифрового датчика Dallas. Это модель с тремя выводами, первый из которых, согласно распиновки GND подключается к заземляющему выводу микроконтроллера, второй DATA к выводу PIN 2, а третий к клемме питания +5 В. Между третей и второй ножкой включается резистор на 4,7кОм.

Пирометры (тепловизоры)

Бесконтактный тип термодатчиков, считывающих излучение, которое исходит от нагретых тел. Этот тип устройств позволяет измерять температуру дистанционно, без приближения к среде, в которой производятся замеры. Это позволяет работать с большими температурами и сильно разогретыми объектами без опасного сближения.

Все пирометры по принципу работы подразделяют на интерферометрические, флуоресцентные и датчики на основе растворов, меняющих цвет в зависимости от температуры.

Разновидности, устройство и принцип работы

В ходе развития и совершенствования технологий датчик температуры, как измерительное приспособление, претерпел множественные изменения и модернизации. Благодаря чему сегодня они представлены в большом разнообразии, которые можно разделить по нескольким критериям. Так, в зависимости от способа передачи и отображения данных об измерениях температуры они подразделяются на цифровые и аналоговые. Цифровые устройства являются более современным решением, так как информация в них отображается на дисплее и передается по электронным каналам коммуникации, аналоговые имеют циферблатное отображение данных, электрический или механический способ передачи измерений.

В зависимости от принципа действия все датчики можно подразделить на:

  • термоэлектрические;
  • полупроводниковые;
  • пирометрические;
  • терморезистивные;
  • акустические;
  • пьезоэлектрические.

Термоэлектрические

В основе работы термоэлектрического датчика лежит принцип термопары (см. рисунок 1) – у всех металлов существует определенная валентность (количество свободных электронов на внешних атомарных орбитах, не задействованных в жестких связях). При воздействии внешних факторов, сообщающих свободным электронам дополнительную энергию, они могут покинуть атом, создавая движение заряженных частиц. В случае совмещения двух металлов с различным потенциалом выхода электронов и последующим нагреванием места соединения возникнет разность потенциалов, получившая название эффекта Зеебека.


Рис. 1. Устройство термопары

На практике применяется несколько разновидностей термоэлектрических датчиков температуры, так, согласно п.1.1 ГОСТ Р 50342-92 они подразделяются на:

  • вольфрамрений-вольфрамрениевые (ТВР) – применяется в средах с большой рабочей температурой порядка 2000°С;
  • платинородий-платинородиевые (ТПР) – отличаются высокой себестоимостью и высокой точностью измерений, применяются я в лабораторных измерениях;
  • платинородий-платиновые (ТПП) – оснащаются защитной трубкой из металла и керамической изоляцией, обладают высоким температурным пределом;
  • хромель-алюмелевые (ТХА) — широко применяются в промышленности, способны охватывать диапазон температуры до 1200°С, используются в кислых средах;
  • хромель-копелевые (ТХК) – характеризуются средним температурным показателем, монтируются только в неагрессивных средах;
  • хромель-константановые (ТХК) — актуальны для газовых смесей и разжиженных аэрозолей нейтрального или слабокислого состава;
  • никросил-нисиловые (ТНН) – применяются для устройств среднего температурного диапазона, но обладают длительным сроком эксплуатации;
  • медь-константановые (ТМК) – характеризуется наименьшим пределом измерений до 400°С, но отличается устойчивостью к влаге и некоторым категориям агрессивных сред;
  • железо-константановые (ТЖК) – применяются в среде с разжиженной атмосферой или вакуумного пространства.

Такое разнообразие температурных датчиков на основе термопары позволяет охватывать любые сферы человеческой деятельности.

Полупроводниковые

Изготавливаются на основе кристаллов с заданной вольтамперной характеристикой. Такие датчики температуры работают в режиме полупроводникового ключа, аналогично классическому биполярному транзистору, где степень нагревания сравнима с подачей потенциала на базу. При повышении температуры полупроводниковый датчик начнет выдавать большее значение тока. Как правило, самостоятельно полупроводник не используется для измерения нагрева, а подключается через цепь усилителя (см. рисунок 2).


Рис. 2. Подключение полупроводникового датчика через усилитель

Отличаются широким диапазоном производимых измерений и возможностью подстройки датчика в соответствии с рабочими параметрами оборудования. Являются высокоточным типом, мало зависящим от продолжительности эксплуатации. Обладают небольшими габаритами, за счет чего легко устанавливаются в схемах, радиоэлементах и т.д.

Пирометрические

Работают за счет специальных датчиков – пирометров, которые позволяют улавливать малейшие температурные колебания рабочей поверхности любого предмета. Непосредственно сам чувствительный элемент представляет собой матрицу, реагирующую на определенную частоту температурного диапазона. Этот принцип положен в основу измерений бесконтактным термометром, который получил широкое распространение в период борьбы с коронавирусом. Помимо этого их применение активно используется для тепловизионного контроля конструктивных элементов, оборудования, зданий и сооружений.


Рис. 3. Принцип действия пирометрического датчика

Терморезистивные

Такие датчики температуры выполняются на основе терморезисторов – устройств с определенной зависимостью сопротивления от степени нагрева основного материала. С повышением температуры, изменяется и проводимость резистора, благодаря чему вы можете следить за состоянием нужного объекта.

Основным недостатком терморезистивного датчика является малый диапазон измеряемой температуры, но он способен обеспечивать хороший шаг измерений и высокую точность в десятых и сотых долях градусов Цельсия. Из-за чего их нередко включают в цепь с применением усилителя, расширяющего рабочие пределы.

Акустические

Акустические датчики температуры функционируют по принципу определения скорости прохождения звуковых колебаний в зависимости от температуры материала или поверхности . Непосредственно сам сенсор производит сравнение скорости звука, генерируемого источником, которая будет отличаться, в зависимости от степени нагрева (см. рисунок 4). Такой тип является бесконтактным и позволяет производить замеры в труднодоступных местах или на объектах повышенной опасности.


Рис. 4. Звуковой датчик температуры

Пьезоэлектрические

Работа датчика основана на эффекте распространения колебаний кварцевого кристалла при прохождении электрического тока. Но, в зависимости от температуры окружающей среды, будет меняться и частота колебаний кристалла. Принцип фиксации температурных изменений заключается в измерении частоты колебаний и последующем сравнении с установленной градуировкой номиналов для разных температур.

Пьезоэлектрические датчики температуры

Все датчики этого типа работают при помощи кварцевого пьезорезонатора. Вся суть работы – прямой пьезоэффект, то есть изменение линейных размеров пьезоэлемента под воздействием электрического тока. При попеременной подаче разнофазного тока с определенной частотой, пьезорезонатор колеблется, при этом частота его колебаний зависит от температуры. Зная эту зависимость, можно легко преобразовать данные о частоте колебаний резонатора в температуру.

Ещё одно видео о разновидностях термодатчиков:

Благодаря широкому диапазону измерений и высокой точности, такие датчики применяют в основном при проведении исследований и опытов, где нужна высокая надежность и долговечность.

Основные виды датчиков влажности

Емкостные — использует эффект изменения емкости в зависимости от влажности окружающей среды. Такие датчики, представляющие собой конденсаторы с воздухом как диэлектриком.

Резистивные — данные датчики основаны на изменении сопротивления в зависимости от влажности. По сути это обычные резисторы с переменным сопротивлением. Резистивные датчики измеряют величину протекающего тока и стоят недорого.

Оптические — самый точный тип устройств, основанный на таком физическом понятии как «точка росы». Основной принцип действия основан на измерении силы света при помощи фоторезистора. В качестве источника света используется светодиод.

Биметаллические термореле

В таких реле срабатывание происходит из-за изгиба платины или диска, выполненных из биметалла (то есть из двух металлов), из-за разного объёмного расширения разнородных металлов. Они достаточно простые безотказные

Есть две разновидности этих типов реле — терморегуляторы и термоограничители. Первый тип регулирует температуру в определённых пределах, автоматически включая и выключая нагрузку, а вторые используются для защиты и требуют после срабатывания сброса специальной кнопкой.

Промышленные термодатчики и сенсоры

Кроме стандартных бытовых термодатчиков бывают промышленные, которые используются исключительно на специальных объектах. Их распространение направлено на определенную группу лиц из-за избыточных возможностей, которые требуются только на производстве. Некоторые из них способны работать в различных нетрадиционных средах и суровых условиях. Выбор подходящих типов осуществляется тем же образом, что и для подбора бытовых датчиков.

Виды устройств для снятия температуры

Термоприборы могут классифицироваться по ряду важных критериев, среди которых способ передачи информации, место и условия монтажа, а также алгоритм снятия показаний.

По способу передачи информации

Согласно используемому методу трансляции сведений датчики разделяются на две большие категории:

  • проводные приборы;
  • беспроводные датчики.

Первоначально все подобные приспособления оснащались проводами, через которые термодатчики связывались с блоком управления, передавая на него информацию. Хотя сейчас такие устройства потеснили беспроводные аналоги, они все же часто используются при простых схемах.

Кроме того, проводные датчики отличаются большей точностью показаний и надежностью в работе.


Для обеспечения согласованной работы проводного датчика, используемого в составном устройстве, желательно совмещать его с оборудованием, которое выполнено тем же изготовителем

В настоящее время распространение получили беспроводные устройства, которые чаще всего передают сведения при помощи передатчика и приемника радиоволн. Подобные приборы можно монтировать практически всюду, включая отдельное помещение или открытый воздух.

Важными характеристиками подобных термодатчиков являются:

  • наличие аккумулятора;
  • погрешность проведенных измерений;
  • дальность передачи сигнала.

Беспроводные/проводные устройства могут полностью заменить друг друга, однако в их функционировании есть некоторые особенности.

По месту и способу размещения

По месту крепления подобные приборы делятся на следующие разновидности:

  • накладные, крепящиеся к отопительному контуру;
  • погружные, контактирующие с теплоносителем;
  • комнатные, находящиеся внутри жилого либо служебного помещения;
  • внешние, которые располагаются снаружи.

В некоторых агрегатах могут применяться одновременно несколько видов датчиков для контроля температуры.

По механизму снятия показаний

По способу демонстрации сведений приборы могут быть:

  • биметаллическими;
  • спиртовыми.

В первом варианте предполагается использование двух пластин, сделанных из различных металлов, а также стрелочного индикатора. При повышении температуры один из элементов деформируется, создавая давление на стрелку. Показания подобных приборов отличаются хорошей точностью, однако их большим минусом является инертность.


Биметаллические и спиртовые термостаты часто устанавливаются на отопительной аппаратуре, например, котлах. Они позволяют отслеживать нагрев, превышение которого может привести к фатальным последствиям

Этого недостатка почти полностью лишены датчики, работа которых основана на использовании спирта. В этом случае в герметично запаянную колбу заливается спиртосодержащий раствор, расширяющийся при нагреве. Конструкция достаточно элементарна, надежна, но не очень удобна для наблюдений.

Где купить

Различные датчики всегда можно купить в близлежащем специализированном магазине. Но существует другой вариант, который недавно получил ещё и значительные улучшения. Долго ждать посылку из Китая больше не требуется: в интернет-магазине АлиЭкспресс появилась возможность отгрузки с перевалочных складов, расположенных в различных странах. Например, при заказе вы можете указать опцию «Доставка из Российской Федерации».

Переходите по ссылкам и выбирайте:

Датчик температуры и влажности Camason, TuyaБеспроводная Метеостанция GeevonДатчик температуры и влажности Aqara Zigbee
Автомобильный датчик температура выхлопаЦифровой инфракрасный термометр — 50~600CДатчик температуры DS18B20 для Arduino

Рекомендации по монтажу своими руками

Подобные приборы широко используются в разных целях: ими оснащаются радиаторы, котлы нагревания и другие бытовые приборы.

Перед началом монтажа следует внимательно прочитать инструкцию: в ней указываются не только особенности установки (например, размеры для подсоединения к патрубку), но и правила эксплуатации, а также границы температур, для которых годится измерительный прибор.

Необходимо также учесть размер гильзы, который может варьироваться в пределах 120-160 мм.

Рассмотрим два наиболее часто встречающихся случая монтажа термодатчика.

Подключение прибора на радиатор

Не стоит оснащать термостатом все отопительные приборы. Согласно регламенту, датчики устанавливаются на батарею, если ее суммарная мощность превышает 50% от выработки тепла аналогичными системами. Если в помещении имеется два нагревателя, то термостат устанавливается лишь на одном, имеющем больший показатель мощности.


Термодатчик является обязательной составной частью регуляторов температуры, позволяющих снижать или увеличивать нагрев радиаторов, теплого пола и других отопительных приборов

Клапан прибора устанавливается на подающий трубопровод в месте подключения радиатора к сети отопления. При невозможности его врезки в уже имеющуюся цепь следует демонтировать подводку подачи, что может вызвать некоторые сложности.

Для проведения этой манипуляции необходимо воспользоваться инструментом для резки труб, тогда как монтаж термоголовки легко производится без спецоборудования. Как только датчик будем смонтирован, достаточно совместить сделанные метки на корпусе и приборе, после чего головка фиксируется плавным нажатием руки.

Монтаж термодатчика воздуха

Подобный прибор устанавливается в наиболее холодном жилом помещении без сквозняков (в холле, кухне или котельной его монтаж нежелателен, так как может вызвать нарушения в работе системы).

При выборе места нужно следить, чтобы на устройство не падали солнечные лучи, рядом не должно быть отопительных приборов (обогревателей, радиаторов, труб).


Для обычной системы отопления достаточно одного термостата, тогда как при коллекторной схеме желательно применять несколько датчиков, число которых совпадает с количеством комнат. Это позволит индивидуально регулировать температуру в обособленных пространствах

Подключение прибора осуществляется согласно инструкциям, которые находятся в техническом паспорте, при этом используются клеммы или кабель, которые входят в комплект.

При необходимости отслеживания температуры термодатчик в «теплом полу» может располагаться в глубине бетонной стяжки. В этом случае для защиты можно применить гофрированную трубу, имеющую один закрытый торец и покатый изгиб

Последняя особенность позволяет при необходимости извлечь сломанный прибор и заменить его на новый.

Монтаж устройства осуществляется следующим образом:

  1. В стене устраивается углубление для крепежа навесного прибора.
  2. С термодатчика снимается передняя деталь, после чего приспособление устанавливается на подготовленном участке.
  3. Далее к контактам подсоединяется греющий кабель, тогда как к датчикам – клеммы.

Заключительный этап — подсоединение питающего кабеля и установка передней панели на свое место.

Схема подключения термостата для котла отопления подробно описана в этой статье.

Если устройство, для функциональности которого необходимо внутреннее подключение датчиков, имеет сложную конструкцию, лучше обратиться к специалистам.

Зачем измерять температуру

О необходимости проведения измерений люди задумались очень давно. И чем дальше уходила наука, тем более точные измерения требовались ученым. Так постепенно возникали и усовершенствовались приборы для измерения температуры, влажности, давления, движения, скорости и многие другие.

Температура — один из основных параметров, который необходимо было научиться измерять и держать под контролем. Если не брать во внимание привычные домашние термометры, то гораздо более сложные и высокоточные измерители температуры можно встретить на любом промышленном предприятии.

Практически невозможно назвать технологический процесс, который люди не стремились бы автоматизировать. Но любая автоматизация требует контроля, который осуществляется путем измерения различных физических величин, будь то давление, скорость, влажность или температура. Кстати, на температурные измерения приходится добрая половина подобных измерений. Так, на средней атомной станции наберется около полутора тысяч контрольных точек, а на опасном химическом производстве таких измерителей температуры еще больше.

Безопасность превыше всего.

Пример с использованием текстового экрана


код
/* The circuit: * LCD RS pin to digital pin 12 * LCD Enable pin to digital pin 11 * LCD D4 pin to digital pin 5 * LCD D5 pin to digital pin 4 * LCD D6 pin to digital pin 3 * LCD D7 pin to digital pin 2 * LCD R/W pin to ground * LCD VSS pin to ground * LCD VCC pin to 5V * 10K resistor: * ends to +5V and ground * wiper to LCD VO pin (pin 3) Library originally added 18 Apr 2008 by David A. Mellis library modified 5 Jul 2009 by Limor Fried (https://www.ladyada.net) example added 9 Jul 2009 by Tom Igoe modified 22 Nov 2010 by Tom Igoe This example code is in the public domain. https://www.arduino.cc/en/Tutorial/LiquidCrystal */ // include the library code: #include <LiquidCrystal

.h> // initialize the library with the numbers of the interface pins
LiquidCrystal
lcd(12, 11, 5, 4, 3, 2); float tempC; int reading; void setup() { analogReference(INTERNAL); // включаем внутрений источник опорного 1,1 вольт // set up the LCD’s number of columns and rows: lcd.begin(16, 2); // Print a message to the LCD. } void loop() { reading = analogRead(A0); // получаем значение с аналогового входа A0 tempC = reading / 9.31; // переводим в цельсии lcd.setCursor(0, 0); // устанавливаем курсор lcd.print(tempC); // отправляем данные на жк lcd.print(» C «); delay(100); }

Кварцевые преобразователи температуры

При необходимости расширения диапазона измеряемой температуры, применяют кварцевые преобразователи. Они позволяют производить измерения в интервале от -80 до +250 градусов Цельсия. Принцип их действия основан на частотной зависимости кварца от температуры. Функция преобразователя меняется от расположения среза по осям кристалла. Кварцевые датчики обеспечивают высокие чувствительность и разрешение замеров, вкупе со стабильностью работы. Благодаря этим свойствам, кварцевые датчики широко распространены в цифровых термометрах.

Корпус

Датчики серии TSic выпускаются в корпусах SOP-8 и TO92, распиновка доступна в документации.
Кроме того, существует возможность поставки датчиков TSic в нестандартных корпусах, с разного рода кабелями, коннекторами, контактными площадками и так далее. Тут всё обсуждается индивидуально, но сразу скажу, что для использования этой возможности совершенно не обязательно иметь проект на сотни датчиков в год.

Назначение

Необходимость в использовании датчиков, контролирующих температурные параметры, может возникнуть в различных ситуациях. Это универсальные приборы используются повсеместно на предприятиях, где стабильность температурных параметров способно нанести вред качеству выпускаемой продукции либо повлиять на технические характеристики эксплуатируемого оборудования.

Их активно подключают на предприятиях нефтегазового и энергетического комплекса, обеспечивается реализация технологических процессов на литейном, машиностроительном, прокатном производстве, при изготовлении металлоконструкций и выполнении механической обработки. Они незаменимы в транспортной индустрии, на предприятиях пищевой промышленности, в фармацевтики, сельском хозяйстве.

И их помощью:

  • контролирует протекание химических реакций;
  • проводятся научные исследования;
  • обеспечивается поддержание степени нагрева обрабатываемого изделия в заданном диапазоне;
  • поддерживаются оптимальные температурные параметры в различных узлах автомобильного и железнодорожного транспорта;
  • создаются нужные условия для обработки зерна и при производстве комбикорма;
  • измеряется температура конкретного объекта с заданной точностью;
  • реализуется обратная связь, благодаря которой удается избежать преждевременного выхода оборудования из строя.

Внимание! Термопары могут не только использоваться для контроля температуры, но и выступать в качестве источника энергии.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]