Резистор 0 Ом — 0.01 Ом. Зачем нужен нулевой резистор в цепи на печатной плате?

Причина, по которой прибегают к использованию снабберов

В ходе разработки силового импульсного преобразователя (особенно это касается мощных устройств топологий push-pull и forward, где переключение происходит в жестких режимах), необходимо как следует позаботиться о защите силовых ключей от пробоя по напряжению.

Несмотря на то, что в документации на полевик указано предельное напряжение между стоком и истоком в 450, 600 или даже в 1200 вольт, одного случайного высоковольтного импульса на стоке может оказаться достаточно для выхода дорогостоящего (даже и высоковольтного) ключа из строя. Да еще и соседние элементы схемы, включая дефицитный драйвер, могут попасть под удар.

Такое событие сразу приведет к куче проблем: где достать аналогичный транзистор? Есть ли он сейчас в продаже? Если нет, то когда появится? Насколько качественным окажется новый полевик? Кто, когда и за какие деньги возьмется все это перепаивать? Как долго продержится новый ключ и не повторит ли он судьбу своего предшественника? и т. д. и т. п.

В любом случае лучше сразу перестраховаться, и еще на этапе проектирования устройства принять меры для предотвращения подобных неприятностей на корню. Благо, известно надежное, недорогое и простое в своей реализации решение на пассивных компонентах, давно ставшее популярным как у любителей высоковольтной силовой техники, так и у профессионалов. Речь о простейшем RCD-снаббере.

Традиционно для импульсных преобразователей, в цепь стока транзистора включена индуктивность первичной обмотки трансформатора или дросселя. И при резком запирании транзистора в условиях, когда коммутируемый ток еще не понизился до безопасной величины, согласно закону электромагнитной индукции на обмотке возникнет высокое напряжение, пропорциональное индуктивности обмотки и скорости перехода транзистора из проводящего состояния в запертое.

Если фронт при этом достаточно крут, а общая индуктивность обмотки в цепи стока транзистора существенна, то высокая скорость нарастания напряжения между стоком и истоком мгновенно приведет к катастрофе. Чтобы эту скорость роста напряжения понизить и облегчить тепловой режим запирания транзистора — между стоком и истоком защищаемого ключа ставят RCD-снаббер.

Как работает RCD-снаббер

RCD-cнаббер работает следующим образом. В момент запирания транзистора ток первичной обмотки, в силу наличия у нее индуктивности, не может мгновенно снизиться до нуля. И вместо того чтобы жечь транзистор, заряд, под действием высокой ЭДС, устремляется через диод D в конденсатор C снабберной цепи, заряжая его, а транзистор при этом закрывается в мягком режиме незначительного тока через его переход.

Когда транзистор вновь начнет открываться (резко переходя в проводящее состояние для отработки очередного периода коммутации), конденсатор снаббера станет разряжаться, но уже не через голый транзистор, а через снабберный резистор R. А так как сопротивление снабберного резистора в несколько раз больше сопротивления перехода сток-исток, то основная часть запасенной в конденсаторе энергии выделится именно на резисторе, а не на транзисторе. Таким образом RCD-снаббер поглощает и рассеивает энергию паразитного высоковольтного выброса c индуктивности.

Расчет снабберной цепи

P – мощность, рассеиваемая на резисторе снаббера C – емкость конденсатора снаббера t – время запирания транзистора, за которое конденсатор снаббера заряжается U – максимальное напряжение, до которого зарядится конденсатор снаббера I – ток через транзистор до его закрытия f- сколько раз в секунду будет срабатывать снаббер (частота переключения транзистора)

Чтобы рассчитать номиналы элементов защитного снаббера, для начала задаются временем, за которое транзистор в данной схеме переходит из проводящего состояния в запертое. За это время конденсатор снаббера должен успеть зарядиться через диод. Здесь в расчет принимается средний ток силовой обмотки, от которого предстоит защищаться. А напряжение питания обмотки преобразователя позволит выбрать конденсатор с подходящим максимальным напряжением.

Самый простой вариант — Реле

Электромагнитное реле — самый простой вариант управления микроконтроллером нагрузкой 220В. По сути это обычный электромагнит. При подаче постоянного тока на катушку возникает магнитное поле, сердечник втягивается и замыкает выводы. Для управления самим реле применимы те же методы, описанные в статье «Как управлять мотором постоянного тока». Важно обращать внимание на ток удержания реле и максимальный ток и коммутируемое напряжение. Как правило, ток удержания довольно высокий, около 100 мА, а напряжение 5 или 12В. Поэтому управлять напрямую от микроконтроллера не получится. Нужен будет транзистор.

Примерная схема подключения реле с использованием MOSFET транзистора. Как видно на схеме, обязательно наличие диода. Дополнительно можно ограничить потребляемый ток самим реле, включив его последовательно через резистор. Обычно ток удержания сильно меньше стартового тока при включении реле. Также можно добавить конденсатор, чтобы он давал стартовый ток. Примерно так можно будет выглядеть полная схема:

Основным минусом схемы с реле является наличие механической части в реле. Именно эта часть ограничивает частоту переключений реле и позволяет использовать реле с частотой 0.5 Гц или меньше. Таким образом управлять реле нагрузкой можно только в режиме включил-выключил, без возможности регулирования мощности подаваемой на нагрузку.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

Управляем нагрузкой 220В с регулировкой мощности

Хотелось бы иметь возможность регулировать мощность, подаваемую на управляемый прибор в диапазоне от 0 до 100%. Вот эту задачу и будем решать.

Как известно бытовая электросеть имеет переменное напряжение 220В с частотой 50 Гц. На осциллограмме это выглядит так:

Напряжение меняется по синусоиде, меняя полярность каждые 10 мс. Ограничить полную мощность синусоиды можно двумя методами:

  • фазовый метод
  • метод полных полупериодов

В фазовом методе нагрузка отключается от сети на часть времени каждого полупериода, отключение производится обычно после перехода через 0. Напряжение подаваемое на нагрузку в этом случае выглядит так:


Во втором методе, полных периодов или полупериодов, нагрузка отключается на целое количество периодов:


Например это может выглядеть так, в случае с полупериодами. При таком управлении важно следить за тем, чтобы средний ток был равен нулю.

Рассмотрим подробнее как управлять нагрузкой методом полных периодов. Он обеспечивает меньшие помехи на сеть 220В, так как ток и напряжение в нагрузке нарастают синхронно и дают меньшие выбросы в сеть.

Групповое соединение полупроводниковых приборов

Последовательноеи параллельное соединение приборов,применяемое для увеличения допустимыхзначений тока и напряжения в одной ветвимощного преобразователя или аппарата,называется групповым соединением.Групповое соединение иногда применяетсятакже для повышения надежностипреобразователей, в которых выход изстроя отдельного прибора не долженнарушать работы всей установки.

Из-затехнологического разброса вольт-амперныххарактеристик при параллельном соединенииотдельные приборы перегружаются потоку, а при последовательном – понапряжению. При парал­лельномсоединении, например, двух диодов (рис.8.

1, а)черездиод VD1,имеющийболее крутую прямую ветвь ВАХ (меньшеединамическое сопротивление rТ),при общем прямом напряжении uFпротекаетток i1,больший, чем ток i2диодаVD2спологой прямой ветвью ВАХ. В случаепоследовательного соединения ди­одовVD1иVD2(рис.8.1, б), имеющих разброс обратных ветвейВАХ, при приложении обратного напряженияuRпоцепи диодов протекает общий обратныйток iR.

К диоду VD1сболее пологой обратной характеристикойприложена большая доля общего об­ратногонапряжения uR,равнаяuR1.Увеличениеразброса харак­теристик ухудшаетработу диодов при групповом соединении.

Условияработы еще более ухудшаются при групповомсоединении тиристоров, В динамическихрежимах приложения прямого напряже­нияиз-за разброса времени восстановлениязапирающей способности к тиристору сменьшим временем может прикладыватьсяполное на­пряжение всей цепи, и тиристорможет самопроизвольно включаться. Припараллельном соединении тиристор,имеющий меньшее время включения,воспринимает весь ток главной цепи иможет выйти из строя из-за тепловогопробоя.

Дляобеспечения надежной работыполупроводниковых приборов при групповомсоединении, как правило, должны применятьсямеры для равномерного распределениятока при параллельном и напряже­нияпри последовательном соединениях.

а б

Рис 8.1. Схемыпараллельного (а) и последовательного(б) соединений диодов

и соответствующиеим графики неравномерности распределения

прямого тока иобрат­ного напряжения

8.2. Параллельное соединение полупроводниковых приборов

Припараллельном соединении необхо­димообеспечивать равномерное распределениепрямого тока в стати­ческом и переходныхрежимах. Эта задача достаточно простореша­ется в диодных схемах, посколькухарактеристики приборов имеют не слишкомбольшой разброс. Значительно сложнеерешить ее при ис­пользовании транзисторови тиристоров.

Используютсядва пути выравнивания тока при параллельномсо­единении: подбор приборов одноготипа с одинаковыми характерис­тикамии принудительное деление тока с помощьюдополнительных электротехническихустройств.

Процентноевыражение недоиспользования нагрузочнойспособ­ности силовых полупроводниковыхприборов (СПП) при параллельном соединениииз-за неравномерности деления токаопределяется по формуле

, (8.1)

гдеI–результирующий прямой ток параллельногосоединения;

a– число параллель­ных приборов;

–максимальнодопустимый ток одного прибора.

Извыражения (8.1) можно получить максимальнодопустимый ток прибора при заданнойнеравномерности деления тока:

. (8.2)

Обычнодопускается недоиспользование нагрузочнойспособности не более 101%.При этом в тяговых преобразователяхприменяют способ подбора приборов сразбросом напряжения не более 0,02 В.

Чемменьше допустимый процент снижениянагрузочной способ­ности, тем дорожеустановка, так как подбор приборов сидентичны­ми характеристиками оченьтрудоемок. Увеличение допустимойне­равномерности приводит к чрезмерномузавышению установленной мощностиприборов в групповом соединении. Поэтомучасто вместо подбора приборов прибегаютк принудительному делению тока.

Еслиразброс значений тока не долженпревосходить 10 %, то следует использоватьвнешние делители тока. Могут использоватьсяактивные и индуктивные делители.

Симистор — мощный ключ для сети 220 В

Самый простой способ управления нагрузкой 220В — использовать реле. Оно позволяет с помощью постоянного напряжения управлять мощной нагрузкой. В этой статье не будет рассматривать этот метод, он достаточно простой. Достаточно подать напряжение на магнит реле и он замкнёт контакты. К сожалению, реле не позволяет управлять нагрузкой достаточно быстро. При большом количестве включений\выключений оно быстро выходит из строя. Также, в момент переключения возникают большие импульсные помехи. Использовать реле лучше при частоте управления не больше одного раза в 2-3 секунды.

Как мы уже знаем по статье «Как управлять мотором постоянного тока» в цепях постоянного тока транзистор является электронным ключом, устройством, которое позволяет малым напряжением или током управлять более мощной нагрузкой.

Для переменного тока тоже существуют такие электронные ключи — мисто.

Симистор проводит ток в обоих направлениях, поэтому используется в сетях переменного тока. Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой.

Для удержания симистора в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзистора). Он остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки в цепи переменного тока происходит вблизи моментов времени, когда ток через основные электроды симистора меняет направление (обычно это совпадает по времени со сменой полярности напряжения в сети переменного тока). Эта точка на синусоиде называется переходом через ноль.

Симистором можно управлять напрямую от микроконтроллера, но для этого нужен довольно большой ток — 10-20 мА. Существуют также логические симисторы. У них ток управления составляет около 5 мА. В схемах лучше использовать обычные симисторы, они более защищены от самопроизвольного открытия. Что это такое и как можно управлять обычными симисторами? Читаем дальше.

Для начала посмотрим насколько мощной нагрузкой может управлять типичный симистор. Возьмём для примера симистор BT139-800.

В datasheet обычно приводят графики выделяемой мощности на симисторе при управлении нагрузкой. Вот пример такого графика.


Зная выделяемую мощность, используем параметры рассеивания тепла корпусом, чтобы получить температуру нагрева симистора и оценить его работоспособность.

Из всех этих параметров следует, что без радиатора данный симистор может рассеять около 2Вт тепла. При управлении полными полупериодами нужно брать график тока для a=180 градусам. График в этой области практически линейный, поэтому можно сказать, что средний ток будет около 2А.

То есть без радиатора этот симистор сможет управлять нагрузкой в 2А * 220В = 440 Вт. В остальных случаях нужен будет радиатор.

Теперь разберёмся как микроконтроллер может управлять мощным симистором?

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .


Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.


Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.


ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.

  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Оптосимистор — удобный метод управления мощным симистором микроконтроллером

Так как симистор проводит ток в обоих направлениях, то по отношению к его основным терминалам, управляющий ток может находится в четырёх квадратах.

Можно это также представить в виде таблицы:

В datasheet приводят, в каких квадрантах управляется конкретный симистор и какой для этого нужен ток. Например, выбранный симистор управляется во всех 4-х квадрантах. Но при этом различается управляющий ток и защитные свойства от ложных срабатываний.

Видно, что 4-ый квадрант самый невыгодный. Управляющий ток резко возрастает. Также и защитные свойства при таком управлении падают.

Отсюда следует вывод, что при управлении микроконтроллером лучше управлять в 1-3 квадранте.

Если управление прямое, то МК необходимо уметь менять полярность вывода, что сложно, или иметь общее с терминалом A1 плюсовое питание (управление будет во втором и третьем квадранте). Второй вариант не сложно реализовать при конденсаторном источнике питания. В этом appnote AN2986 подробно рассматривается этот случай.

Второй вариант — управлять через оптосимистор. Таких устройств довольно много и они стоят недорого. Например — MOC3041. Есть оптосимисторы со встроенной схемой контроля перехода через ноль, они могут выключаться только около нуля. Такой нам и нужен для схемы управления полными периодами. А есть без этой схемы. С их помощью можно управлять фазовым методом.

Схема управления с использование оптосимистора получается такая:

само устройство внутри выглядит так:

Управление в этом случае получается одной полярности с терминалом A2, то есть в первом и третьем квадранте.

Дополнительно оптосимистор изолирует схему работы микроконтроллера от сети, что уменьшает помехи, и повышает надёжность прибора. Если нет требований к компактности прибора, то рекомендуем использовать оптосимисторы для управления другими более мощными симисторами.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.


Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.


RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Цепь защиты симистора от помех в сети

В случае слишком быстрого изменения напряжения на основных выводах симистора или тока он может самопроизвольно открыться и начать проводить ток. Это очень неприятно. В основном это может произойти при управлении индуктивной нагрузкой (индуктивность сопротивляется изменению тока). Но также это может происходить и при работе прибора с индуктивностью рядом в сети (например, когда через одну розетку работает мотор и управляемый микроконтроллером паяльный фен). В этом случае независимо от микроконтроллера управляемая нагрузка не будет отключаться от сети и ток будет продолжать идти. Например, при управлении паяльным феном эта ситуация может привести даже к пожару.

Простой защитой от этого случая является снабберная цепь (резистор плюс конденсатор):


Но она не гарантирует работу во всех случаях. Параметры рассчитываются под конкретную индуктивность. Appnote AN-3004 подробно рассматривает расчет снаббера.

Второй вариант — использование симисторов работающих в 1-3 квадранте. Например, T405. Производитель указывает, что они могут использоваться для управления даже индуктивной нагрузкой без снаббера.

Предназначение снаббера

Устройство предназначено для подавления индуктивных выбросов, для понижения значения перенапряжений в переходных процессах, которые появляются при коммутационных действиях с силовыми полупроводниками. Они практически незаменимы для снижения влияния паразитной генерации, которая способствует снижению величины нагрева обмоток трансформатора и для предохранения от температурного перегрева диодов и мощных транзисторов.

Достигается это с помощью облегчения теплообмена при работе ключа. При этом емкость служит для понижения скорости нарастания напряжения, а индуктивность снижает нарастание величины тока. При снижении значения динамических потерь в силовом ключе происходит формирование траектории переключения: при этом параллельно подключенные емкостные конденсаторы понизят скорость нарастания напряжения. Индуктивность в коммутационных цепях ограничивает скорость увеличения тока.

Снаббер выполняет задачу по предотвращению ошибочного включения семистора, которое может произойти в результате сетевых помех. Полезно применение снаббера в качестве ограничителя перенапряжений для ключевого транзистора, которые появляются во время коммутации. В этом случае модель может применяться в устройствах импульсных источников питания.

Фазовый метод

Для решения задачи фазового управления нагрузкой микроконтроллеру необходимо знать когда был совершён переход через ноль. Тогда можно будет рассчитать время задержки включения нагрузки.

Самый простой метод получения события перехода через ноль в сети переменного тока подробно описан в appnote AN521 от компании Microchip. Практически каждый микроконтроллер имеет высоковольтные защитные диоды на каждом цифровом входе. Это можно использовать, чтобы получить информацию о переходе через ноль. Достаточно на входе поставить высокоомный резистор, ограничивающий ток на выводе МК, до значений указанных в datasheet на МК. В этом случае вывод в обычном цифровом режиме будет принимать значение 0 в момент перехода через ноль. Временная задержка от реального состояния до реального будет минимальна и составляет около 50 мкс.

Минусом такой схемы является отсутствие гальванической развязки схемы управления от сети 220В. Если это необходимо, то можно использовать оптопару.

Ну а далее, уже можно управлять мощным симистором как было описано ранее, только если делать это через оптосимистр, то без схемы перехода через ноль.

В этой статье разобраны основные методы управления мощной нагрузкой сети переменного тока 220В с помощью симисторов. После прочтения теоретической части перейдём к практике. Паяльная станция — прибор, в котором микроконтроллер управляет мощным паяльным феном работающим от сети 220В.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.


Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.


Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Как проверить симистор?

Поговорив о положительных и отрицательных моментах симистора, мы плавно подвели наше с вами изучение симисторов к очень важному аспекту, а именно – к проверке. Вы можете сказать? Что это еще за проверка. Наверняка это что-то бесполезное. А мы вам ответим, что проверять симисторы – это очень важно, ведь на нем по сути держится весь электроприбор, и выявив брак или неисправность хотя бы в одном симисторе из партии, у вас есть шанс спасти целые электроприборы от серьезных поломок. Но и здесь новички задают вопрос.

А на фабриках, где изготавливают эти симисторы разве их не проверяют. Вопрос этот очень интересен, но ответ тоже довольно прост. На заводах нет времени на проверку каждого отдельного симистора, поэтому от силы проверке может подвергаться один прибор из партии. Поэтому давайте теперь уже поговорим о том, как же все-таки можно проверить на исправность этот замечательный прибор.

Существует сразу несколько эффективных способов проверки симистора. Давайте подробно разберемся с каждым из них. Для начала сразу скажем, что проверять симистор внутри схемы – это совершенно неверное действие. Вам сначала обязательно нужно извлечь его из платы, а потом уже работать с ним. Почему?

Тут все очень просто. Если вы будете проверять свой симистор и при этом он будет внутри схемы, то вы можете проверить его и он будет неисправен, но на самом деле будет неисправен соседний элемент, подключенный к нему параллельно. Поэтому нужно исключить все факторы, отключив симистор от схемы, выпаяв его. Отметим, что проверять нужно будет каждый отдельный элемент, иначе вы не сможете найти причину поломки. Сначала, как правило, проверяют силовые цепи, потом уже переходят к ключам, сделанным из полупроводниковых материалов. Как же можно проверить полупроводниковые ключи:

    проверка мультиметром (например прозвонкой или омметром). Это работает по следующему принципу: используем мультиметр в режиме измерения сопротивления Контактами присоединяем к нашему симистору, а затем смотрим полученные измерения. Дело в том, что у исправного симистора значение на омметре должно быть большим или очень большим.


Вот так выглядит мультиметр

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.


Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.


Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Симистор? Впервые слышу

Симистор – это один из подвидов тиристоров, который обычно состоит из множества тиристоров. По-другому его также называют симметричный симистор.

Из чего состоит этот симистор?

Симистор очень часто физики представляют в виде пятислойного полупроводника. Также бывают и изображения в виде 2 тиристоров. При этом, управление сильно отличается от того, как управляется включенные триодные тиристоры потому их и выделили в отдельную группу. Давайте теперь узнаем, как работает управление.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]