Для безопасной работы с различными электрическими установками требуется использовать заземление. Естественное заземление является одной из распространенных мер. В качестве него можно использовать стальную арматуру, являющуюся частью бетонной конструкции. Кроме того, применимы другие металлические устройства, расположенные в грунте. Подходят водопроводные коммуникации, кабели, реже для заземлителя могут быть использованы надземные конструкции, такие, как металлические трубы или рельсы.
Типы систем заземления
Для частного дома и квартиры подходят следующие типы заземления:
- TN;
- IT;
- TT.
У первой и самой распространенной системы TN есть подтипы — S и C S. Вообще, для расшифровки аббревиатур нужно понять несколько моментов.
- По умолчанию, первая буква t говорит о принципе функционирования питающего источника.
- Вторая буква — N, T или I — указывает на принцип заземления и защиту открытых элементов отводов. T прописывают, если контур заземлен, N — если зануление осуществляется подключением к нейтрали, а I — когда электрическое оборудование не имеет электрических контактов, то есть отвод изолирован. На картинке ниже вы увидите обозначение заземления и соответствующую схему.
- В нынешних Госстандартах есть понятие нулевого заземляющего проводника. Он актуален для систем с напряжение до 1 кВ. Выделяют землю (PE), нулевой заземляющий проводник (N) и объединение земли с нулем (PEN).
Зачем нужно объединение контуров заземления?
При попадании молнии в молниеотвод в последнем возникает короткий электрический импульс напряжением до сотен киловольт. При столь высоком напряжении может произойти пробой промежутка между молниеотводом и металлическими конструкциями дома, в том числе и электрическими кабелями. Последствием этого станет возникновение неконтролируемых токов, которые могут привести к пожару, выходу электроники из строя и даже разрушению элементов инфраструктуры (например, пластиковых водопроводных труб). Опытные электрики говорят: «Дайте молнии дорогу, иначе она найдёт её сама». Вот почему электрическое объединение заземлений обязательно.
По этой же причине ПУЭ рекомендует электрически объединять не только заземления, находящиеся в одном здании, но и заземления территориально сближенных объектов. Под данным понятием подразумеваются объекты, заземления которых настолько сближены, что между ними нет зоны нулевого потенциала. Объединение нескольких заземлений в одно осуществляется, согласно нормам ПУЭ-7, п. 1.7.55, путём соединения заземлителей электрическими проводниками в количестве не менее двух штук. Причем проводники могут быть как естественными (например, металлические элементы конструкции здания), так и искусственными (провода, жёсткие шины и т.п.).
Что такое электролитическое заземление?
Электролитическое заземление – это готовое приспособление, которое используется в каменистых, песчаных и вечномерзлых грунтах. В конструкцию комплекта входит стальной электрод, колодец для обслуживания, заполнитель, зажим и гидроизоляционная лента. Где применяется электролитическое заземление? Область применения устройства различная. Как правило, его применяют в тех местах, где нет возможности установить заземляющий электрод на глубину от одного метра. А также на грунтах, которые обладают большим удельным сопротивлением.
Из чего состоит система?
Главным элементом в устройстве считается полый электрод, который имеет форму трубы в форме L (на рисунке он помечен цифрой 1).
Ее устанавливают в грунт на глубину до одного метра (зона протайки грунта) и заполняют специальной смесью, которая включает в себя минеральные соли. 2 – это специальный колодец, который облегчает работу. 3 – зажим, с помощью которого соединяются электрод и заземляющий проводник. 4 – гидроизоляционная лента, которая защищает от попадания влажности на заземление и препятствует возникновению коррозии.
На фото наглядно показано, как выглядит заземлитель:
Электрическое соединение заземлений
Схема с несколькими заземлениями, соединёнными электрически, обеспечивает выполнение разных, подчас противоречивых, требований к заземляющим устройствам. Согласно ПУЭ, заземления, как и многие другие металлические элементы здания, а также аппаратуры, установленной в нем, должны быть соединены системой уравнивания потенциалов. Под уравниванием потенциалов подразумевается электрическое соединение проводящих частей для достижения равенства потенциалов. Различают основную и дополнительную системы уравнивания потенциалов. Заземления подключаются к основной системе уравнивания потенциалов, то есть соединяются между собой через главную заземляющую шину. Провода, соединяющие заземления с этой шиной, должны подключаться по радиальному принципу, то есть одно ответвление от указанной шины идет только к одному заземлению.
Для того, чтобы обеспечивалась безопасная работа всей системы, очень важно использовать максимально надежное соединение между заземлениями и главной заземляющей шиной, которое не разрушится под действием молнии. Для этого нужно соблюдать нормы ПУЭ и ГОСТ Р 50571.5.54-2013 “Электроустановки низковольтные. Часть 5-54. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов” относительно сечения проводов системы уравнивания потенциалов и их соединения между собой.
Тем не менее, даже очень качественная система уравнивания потенциалов не может гарантировать отсутствие всплесков напряжения в сети при ударе молнии в здание. Поэтому, наряду с грамотно спроектированными контурами заземлений, от проблем спасут устройства защиты от импульсных помех (УЗИП). Такая защита является многоступенчатой и носит селективный характер. То есть на объект должен быть установлен комплект УЗИП, подборка элементов которого — непростая задача даже для опытного специалиста. К счастью, выпускаются готовые комплекты УЗИП для типовых случаев применения.
Что такое заземлитель и что можно использовать в качестве заземлителя ?
Что такое заземлитель ?
ЗАЗЕМЛИТЕЛЬ — проводящая часть (или совокупность соединенных между собой проводящих частей), находящаяся в контакте с землей непосредственно или через промежуточную проводящую среду.
Из чего можно сделать заземлитель ?
1.7.109. В качестве естественных заземлителей могут быть использованы: 1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах; 2) металлические трубы водопровода, проложенные в земле; 3) обсадные трубы буровых скважин; 4) металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т.п.; 5) рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами; 6) другие находящиеся в земле металлические конструкции и сооружения; 7) металлические оболочки бронированных кабелей, проложенных в земле. Оболочки кабелей могут служить единственными заземлителями при количестве кабелей не менее двух. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.
Что нельзя использовать в качестве заземлителя ?
1.7.110. Не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих или взрывоопасных газов и смесей и трубопроводов канализации и центрального отопления. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов в соответствии с 1.7.82. Не следует использовать в качестве заземлителей железобетонные конструкции зданий и сооружений с предварительно напряженной арматурой, однако это ограничение не распространяется на опоры ВЛ и опорные конструкции ОРУ. Возможность использования естественных заземлителей по условию плотности протекающих по ним токов, необходимость сварки арматурных стержней железобетонных фундаментов и конструкций, приварки анкерных болтов стальных колонн к арматурным стержням железобетонных фундаментов, а также возможность использования фундаментов в сильноагрессивных средах должны быть определены расчетом.
Требования к искуственным заземлителям ?
1.7.111. Искусственные заземлители могут быть из черной или оцинкованной стали или медными. Искусственные заземлители не должны иметь окраски. 1.7.112. Сечение горизонтальных заземлителей для электроустановок напряжением выше 1 кВ следует выбирать по условию термической стойкости при допустимой температуре нагрева 400 °С (кратковременный нагрев, соответствующий времени действия защиты и отключения выключателя). В случае опасности коррозии заземляющих устройств следует выполнить одно из следующих мероприятий: увеличить сечения заземлителей и заземляющих проводников с учетом расчетного срока их службы; применить заземлители и заземляющие проводники с гальваническим покрытием или медные. При этом следует учитывать возможное увеличение сопротивления заземляющих устройств, обусловленное коррозией. Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора. Не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п.
Зачем нужно объединение контуров заземления?
При попадании молнии в молниеотвод в последнем возникает короткий электрический импульс напряжением до сотен киловольт. При столь высоком напряжении может произойти пробой промежутка между молниеотводом и металлическими конструкциями дома, в том числе и электрическими кабелями. Последствием этого станет возникновение неконтролируемых токов, которые могут привести к пожару, выходу электроники из строя и даже разрушению элементов инфраструктуры (например, пластиковых водопроводных труб). Опытные электрики говорят: «Дайте молнии дорогу, иначе она найдёт её сама». Вот почему электрическое объединение заземлений обязательно.
По этой же причине ПУЭ рекомендует электрически объединять не только заземления, находящиеся в одном здании, но и заземления территориально сближенных объектов. Под данным понятием подразумеваются объекты, заземления которых настолько сближены, что между ними нет зоны нулевого потенциала. Объединение нескольких заземлений в одно осуществляется, согласно нормам ПУЭ-7, п. 1.7.55, путём соединения заземлителей электрическими проводниками в количестве не менее двух штук. Причем проводники могут быть как естественными (например, металлические элементы конструкции здания), так и искусственными (провода, жёсткие шины и т.п.).
Виды заземления
В классификации видов заземления присутствует два основных его вида:
Есть и несколько подгрупп: радиозаземление, измерительное, инструментальное, контрольное.
Существует определенная категория электрических установок, которые не будут работать, если их не заземлить. То есть, основанная цель сооружения заземляющей системы – это необеспечение безопасности эксплуатации, это обеспечение самой эксплуатации. Поэтому в этой статье данный вид нас интересовать не будет.
А вот этот вид специально устраивается с целью обеспечить безопасность работы электроустановок. Он делится на три категории в зависимости от назначения:
- Молниезащита.
- Защита от импульсного перенапряжения (перегруз линии потребления тока или короткое замыкание).
- Защита электросети от электромагнитных помех (чаще всего данный вид помех образуется от рядом работающего электрического оборудования).
Нас интересует именно импульсное перенапряжение. Назначение заземления данного типа – это безопасность обслуживающего персонала и самой установки в процессе аварии или поломки оборудования. Обычно такая поломка внутри электрического агрегата – это замыкание провода электрической схемы на корпус прибора. Замыкание может происходить непосредственно или через любой другой проводник, например, через воду. Человек, коснувшийся корпус установки, подвергается воздействия электрического тока, потому что становится его проводником в землю. По сути, он сам становится частью заземляющего контура.
Схема заземления в частном доме
Вот почему, чтобы устранить такие ситуации и устанавливается заземление корпуса на контур, расположенный в земле. При этом срабатывание заземляющей схемы – это толчок для системы автоматов, которые тут же отключают подачу электроэнергии к оборудованию. Все это располагается в специальных силовых и распределительных щитах.
Сопротивление заземлению
Есть такой термин, как сопротивление растеканию тока. Для простых обывателей легче будет воспринимать, как сопротивление заземлению. Вся суть этого термина заключается в том, что схема заземления должна работать корректно с определенными параметрами. Так вот сопротивление является основным из них.
Оптимальный вариант этого значения – ноль. То есть, лучше всего использовать материалы для сборки контура, у которых электропроводность самая высокая. Конечно, добиться идеала никак не получится, поэтому старайтесь выбирать именно те, у которых сопротивление самое низкое. К ним относятся все металлы.
Есть специальные коэффициенты, с помощью которых производится определение показателя сопротивления заземляющего контура, эксплуатируемого в разных условиях. К примеру:
в частном домостроение, где используются сети на 220 и 380 вольт (6 и 10 кВ), необходимо устанавливать контур с сопротивлением 30 Ом.
Внимание! Если используется заземляющий контур через нейтраль трансформатора, то сопротивление заземляющей цепи должно быть не больше 4 Ом
- монтируемая газопроводная система, входящая в дом, должна заземляться схемой в 10 Ом.
- молниезащита должна иметь сопротивление не более 10 Ом.
- Телекоммуникационное оборудование заземляется контуром 2 или 4 Ом.
- Подстанции от 10 кВ до 110 кВ – 0,5 Ом.
То есть, получается так, что чем больше мощность силы тока внутри оборудования или приборов, тем ниже должно быть сопротивление.
Электрическое соединение заземлений
Схема с несколькими заземлениями, соединёнными электрически, обеспечивает выполнение разных, подчас противоречивых, требований к заземляющим устройствам. Согласно ПУЭ, заземления, как и многие другие металлические элементы здания, а также аппаратуры, установленной в нем, должны быть соединены системой уравнивания потенциалов. Под уравниванием потенциалов подразумевается электрическое соединение проводящих частей для достижения равенства потенциалов. Различают основную и дополнительную системы уравнивания потенциалов. Заземления подключаются к основной системе уравнивания потенциалов, то есть соединяются между собой через главную заземляющую шину. Провода, соединяющие заземления с этой шиной, должны подключаться по радиальному принципу, то есть одно ответвление от указанной шины идет только к одному заземлению.
Для того, чтобы обеспечивалась безопасная работа всей системы, очень важно использовать максимально надежное соединение между заземлениями и главной заземляющей шиной, которое не разрушится под действием молнии. Для этого нужно соблюдать нормы ПУЭ и ГОСТ Р 50571.5.54-2013 “Электроустановки низковольтные. Часть 5-54. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов” относительно сечения проводов системы уравнивания потенциалов и их соединения между собой.
Тем не менее, даже очень качественная система уравнивания потенциалов не может гарантировать отсутствие всплесков напряжения в сети при ударе молнии в здание. Поэтому, наряду с грамотно спроектированными контурами заземлений, от проблем спасут устройства защиты от импульсных помех (УЗИП). Такая защита является многоступенчатой и носит селективный характер. То есть на объект должен быть установлен комплект УЗИП, подборка элементов которого — непростая задача даже для опытного специалиста. К счастью, выпускаются готовые комплекты УЗИП для типовых случаев применения.
Условия эксплуатации заземлителей
Заземлители должны эксплуатироваться в условиях, для которых они предназначены, в зависимости от используемого типа. Обслуживание и ремонт должны выполняться, согласно требованиям руководства по эксплуатации от изготовителя и нормативных документов.
Указанные работы необходимо выполнять с привлечением обученного и аттестованного персонала, соблюдением предусмотренной допускной системы.
Перед подключением оборудования к сети, необходимо выполнить следующие проверки:
- чистоты и целостности изоляторов;
- плотности затяжки резьбовых соединений;
- наличия смазки в соответствующих узлах;
- достаточности контактного давления.
Предварительно проверяется исправность работы устройства путём выполнения нескольких контрольных включений и отключений.
Техническое обслуживание предусматривает проведение регулярных осмотров его узлов, смазку трущихся деталей, контроль состояния контактов, очистку контактов и остальных элементов. Периодичность обслуживания определяется условиями и интенсивностью эксплуатации, но должна проводиться не реже одного раза в год.
Чем естественные заземлители лучше искусственных
Естественные заземлители допустимо использовать в случае, если они способны обеспечить выполнение всех требований, которые предъявляют к заземляющим конструкциям.
Искусственные заземлители нужно применять, когда нужно в значительной степени уменьшить токи, которые через естественные заземлители будут уходить в землю.
Это значит, что в большинстве случаев, вы можете использовать только естественные заземлители, не прибегая к искусственным. С помощью данного шага можно в значительной степени уменьшить количество материалов, необходимых для сооружения заземления. Кроме того, будут снижены финансовые и трудовые затраты, а также эксплуатация заземляющего устройства будет намного проще, нежели при применении искусственного заземления.
Выполнение расчетов
На этапе проектирования заземлителя нужно так подобрать его параметры, чтобы сопротивление устройства оказалось в допустимых пределах. Для этого выполняют серию расчетов.
Сопротивление грунта
Сопротивление растеканию заряда для одиночного стержня рассчитывают по формуле:
Ro = (Pэкв/2π*L) *{ln(2L/d) + 0.5 ln((4T + L)/(4T – L)}
Если электрод помещен в разнородный грунт (2-слойный), сопротивление вычисляют по формуле:
Pэкв = (Ψ*P1*P2*L)/( P1(L – H + tг) + P2(H – tг)), где
- Ψ – коэффициент, учитывающий сезонность;
- P1 и P2– удельная резистивность первого и второго слоев грунта, Ом/м;
- Н – толщина верхнего слоя, м;
- Т – глубина погружения стержней;
- Tг – заглубление вертикального штыря (расстояние от верха заземлителя до поверхности земли).
Размеры и расстояния для заземляющих электродов
Минимальная длина стержня составляет 2,5 м. При соблюдении этого условия основание электрода с гарантией 100% окажется ниже отметки промерзания грунта, где круглый год сохраняется приемлемое сопротивление растеканию заряда.
Методика расчета количества стержней зависит от того, из чего состоит заземлитель.
Если только из вертикальных электродов – применяют формулу:
No = Ro *Ψ/Rн, где
Rн – рекомендуемое нормами сопротивление растеканию.
Если в конструкции есть горизонтальные элементы, число стержней равно:
N = Ro/( Rв*ηв), где
ηв – коэффициент использования заземлителя, учитывающий взаимное влияние электродов друг на друга.
В линейной конструкции оно выше, поэтому результат вычислений округляют в большую сторону.
В каком случае можно применять железобетонный фундамент строения для заземления
Данный технологический шаг разрешается использовать лишь в том случае, если грунт, на котором установлено строение, имеет влажность 3% или больше. Бетон при меньшем показателе влажности способен оказывать достаточно сильное электрическое сопротивление, следовательно, он не будет представлять собой заземляющую конструкцию.
Железобетонный фундамент можно использовать в качестве естественного заземлителя еще в том случае, если на него будет оказывать воздействие какая-нибудь не слишком агрессивная среда, например, грунтовые воды с небольшим показателем жесткости. Кроме того, допустимо применение фундамента в качестве заземлителя при отсутствии гидроизоляции или в случае, если поверхность фундамента будет дополнительно защищена с помощью битумного покрытия, как этого требует СНиП.
Медная проволока
Практика показывает, что наиболее популярным методом, с помощью которого проводится заземление трубопроводов, является применение медной проволоки. Рекомендуется пользоваться проволокой диаметром от 1…1,5 мм.
Ее проводят как с внутренней, так и с наружной стороны, скрепляя между собой в местах соединений посредством проволочной перемычки. Для присоединения используется метод холодной пайки. Наружная проволока, установленная в конечной точке, нуждается в тщательном заземлении.
Заземление трубопровода является самым простым, но при этом обязательным методом отвода скопившихся статических зарядов электричества. В качестве основной меры, которая предотвращает появление разрядов, сопровождаемых искрой, является заземление с полноценным шунтированием кранов и муфт.
Операция выполняется с применением медного провода.
Стоит отметить, что использование технологии заземления в водопроводных трубах позволяет значительно уменьшить потенциал между стенками и самой жидкостью, которая передается по нему. Тем не менее, ни одна система заземления не может полностью ликвидировать электризацию жидких веществ.
Система TT
Принципиальная схема системы TT
В системе TT
трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически независимый от заземлителя нейтрали трансформаторной подстанции.
- Достоинства: высокая устойчивость к разрушению N
по пути от ТП к потребителю. Это разрушение никак не влияет на
PE
. - Недостатки: требования более сложной молниезащиты (возможность появления пика между N
и
PE
), а также невозможность для обычного автоматического выключателя отследить КЗ фазы на корпус прибора (и далее на
PE
). Это происходит из-за довольно заметного (30-40 Ом) сопротивления местного заземления.
В силу вышеперечисленного ПУЭ рекомендуют ТТ
только как «дополнительную» систему (при условии, что подводящая линия не удовлетворяет требования
TN-C-S
по повторному заземлению и механической защите
PEN
), а также в установках на открытом воздухе, где есть риск одновременного соприкосновения с установкой и с физической землей (или же физически заземлёнными металлическими элементами).
Тем не менее, ввиду низкого качества большинства воздушных линий в сельской местности России, система TT
там крайне популярна.
ТТ
требует обязательного применения УЗО. Обычно устанавливают вводное УЗО уставкой 300—100 мА, которое отслеживает КЗ между фазой и
PE
, а за ним — персональные УЗО для конкретных цепей на 30-10 мА для защиты людей от поражения током.
Молниезащитные устройства, такие, как ABB OVR
, различаются по конструкции для систем
TN-C-
S и
TT
, в последних установлен газовый разрядник между
N
и
PE
и варисторы между
N
и фазами.
Системы с изолированной нейтралью
Искусственный и естественный заземлитель: преимущества
Искусственный контур специально выполняется для реализации заземления. Производятся соответствующие расчеты, определяется, какое оптимальное количество стержней необходимо смонтировать для реализации надлежащего сопротивления. Работа трудоемкая, требуется закупка определенных материалов для создания конструкции.
Примеры специальных заземляющих устройств:
- железные балки, трубы, стержни или уголки, монтируемые в землю;
- разной формы стальные полотна, которые закладываются в грунт.
Преимуществом электромонтажа заземления с применением естественного заземляющего устройства выступает его бюджетность:
- минимальные затраты на материал;
- монтаж заземляющего контура не требует значительных капиталовложений.
Преимущества
Естественные заземлители не делают специально, а применяют то, что есть под рукой. Для того чтобы использоваться металлические конструкции в роли заземлителей, они должны полностью соответствовать требованиям, предъявляемым правилами для электроустановок.
Естественный заземлитель можно сочетать с искусственным. Такая схема применяется, когда требуется отвести большие токи. Искусственный заземлитель будет направлять ток к естественному, по которому он уйдет в грунт.
Естественные контуры применяются достаточно часто без искусственных, сами по себе. Благодаря такому подходу обеспечивается не только безопасная работа, но и происходит значительная экономия материалов, расходуемых на обустройство заземляющего контура.
Так как конструкция уже существует, не требуется монтировать что-то еще, благодаря этому можно значительно сузить временные рамки, отведенные на монтаж, использовать простое, недорогое приспособление.
Принцип соединения железобетонных конструкций
Соединения между деталями производятся, ориентируясь на образование между ними электрической цепи (проходит по металлу). Заблаговременно подготавливаются закладные элементы внутри железобетонных конструкций, посредством которых реализуется соединение технологического или электрического оборудования для последующего заземления.
Наличие болтов, заклепок, сварки или аналогичных соединений позволит смонтировать постоянную коммутационную электрическую цепь. При отсутствии подобных соединений предусмотрен вариант создания аналогичных соединений с использованием гибких перемычек. Эти элементы привариваются к частям конструкции. Стандартизация сечения перемычек составляет 100 кв. мм и выше.
Из чего делают естественные заземлители
Естественные заземлители используют, чаще всего, чтобы заземлить электроустановку, например, металлические части (арматуру), входящие в устройство железобетонных элементов, допустим, фундаменты опоры линии электропередач и подстанций, а также фундаментов зданий. Кроме того, в качестве естественного заземлителя могут использоваться разного рода металлические подземные коммуникации, например, трубопроводы, броня или оболочка кабелей. В некоторых случаях, допустимо дляестественного заземлителя использовать и наземные коммуникации, например, рельсовые пути.
Монтаж и соединение заземлителей
Разновидности грунта, подходящие под строительство заземления:
- суглинок;
- глина;
- торф.
Приведенные различные виды почв, в которых рекомендуется проводить установку заземлителей. Разновидности грунта, не подходящие под строительство заземления:
- каменный грунт;
- скальный грунт.
Приведенные различные виды почв, в которых не рекомендуется проводить установку заземлителей. Таблица 1. Показания удельных сопротивлений различных типов грунта, необходимые при монтаже заземления.
Каждый тип грунта, обладает при определенных условиях различными свойствами. Заземлительные электроды, зачастую выполняются из меди либо черного металла, покрытого цинком.
Таблица 2. Рекомендуемые сечения стальных (без покрытия) электродов для выполнения монтажа заземления.
Таблица 3. Рекомендуемые сечения медных электродов для выполнения монтажа заземления.
Таблица 4. Рекомендуемые сечения стальных оцинкованных электродов для выполнения монтажа заземления.
В виде электродов, для прокладки заземления можно применить:
- уголок из стали с номинальными размерами 50 х 50 х 5, имеющие сечение 480 – 500 мм2;
- полосу из стали с номинальными размерами 40 х 4, имеющие сечение 160 – 200 мм2.
Изображения нескольких разновидностей электродов, которые рекомендуется применять при различных видах заземления. Отобранные вертикальные заземлительные материалы вкапываются в землю не полностью. Над поверхность должно остаться 20-25 см электрода. На следующем этапе электроды привариваются к стальным уголкам, установленным по периметру в виде треугольника.
Схема подключения стальных уголков, сваренных между собой по периметру в виде треугольника.
Защитная функция заземления
Принцип защитного заземления
Защитное действие заземления основано на двух принципах:
- Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.
- Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).
- В системах с глухозаземлённой нейтралью — инициирование срабатывания предохранителя при попадании фазного потенциала на заземлённую поверхность.
Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземлённых предметах не превысит безопасных величин. Более того, неисправный участок сети будет отключён в течение очень короткого времени (десятые…сотые доли секунды — время срабатывания УЗО).
service-gas.ru
Существует два вида заземления: искусственное и естественное. Роль естественного заземления выполняют части металлических конструкций объекта, постоянно находящиеся в земле: арматура фундамента, водопровод, обсадные трубы и т.д. Искусственное заземление — это отдельная самостоятельная конструкция, монтирующаяся в землю. Практически каждый подрядчик сталкивается с вопросом при установке заземления, какой заземлитель лучше: искусственный или естественный?
Для ответа на данный вопрос обратимся к нормативным документам, а именно к пунктам 1.7.54 и 1.7.109 “Правил Устройства Электроустановок” (ПУЭ). Здесь мы видим ответ: для заземления подойдут как естественные, так и искусственные заземлители. Давайте выясним, в каких случаях правильнее применить тот или иной способ? Разберем подробнее каждый из вариантов.
Вариант 1. Естественный заземлитель
Если вы решили использовать естественный заземлитель, то вам нужно знать о многих факторах: типе фундамента объекта, его материале, а также об агрессивности грунта. В разделе ПУЭ 1.7.109 изложены варианты конструкций объекта, которые можно применить в качестве заземлителя. Самым распространенным из них является фундамент. Различают несколько видов фундамента: ленточный, столбчатый, свайный и плитный. Выбор основы зависит от плотности грунта, сейсмической активности, рельефа поверхности, уровня грунтовых вод и глубины промерзания грунта. В качестве материала используют: арматуру, бетон, кирпич, дерево, бут, асбестоцементные или металлические трубы. Подробную информацию о фундаменте можно найти в нормативной документации (СНБ 5.01.01-99 Основания и фундаменты зданий и сооружений). Таким образом, при решении использования вашего фундамента в качестве заземлителя, нужно удостовериться, что он имеет электрически связанные металлические части.
Все элементы естественного заземлителя должны быть объединены в общий контур и контактировать с землей для отвода токов непосредственно или через бетон. Также, выбранный заземлитель должен удовлетворять требованиям ПУЭ касательно величины площади поперечного сечения проводника (Таблица 1.7.4). В процессе эксплуатации естественного заземлителя, нельзя допустить разрушение его структуры или нарушение работы устройств, связанных с ним.
Не допускаются в качестве заземлителя трубы канализации и центрального отопления, а также трубопроводы для горючих и взрывоопасных смесей. Трубы легко поддаются коррозии металла, разрывая при этом электрический контакт. Данный вид заземления безусловно более экономичный: не требует затрат на материалы, монтаж и демонтаж заземляющего устройства, но в ходе его длительной эксплуатации, ремонт поврежденных участков будет стоить не меньше, чем установка отдельного заземления.
Естественный заземлитель
Вариант 2. Искусственный заземлитель
Представляет собой совокупность электродов, установленных в земле и объединенных с электрооборудованием с помощью заземляющего проводника. В качестве материала электродов применяют омедненную сталь, оцинкованную сталь или черные металлы:
- Омедненная сталь — имеет наиболее высокую электропроводность и сцепление с различными материалами. Соединение меди и стали крепче, чем с цинком, поэтому омедненные стержни прочнее, чем оцинкованные. Медь менее электрохимически активная, чем цинк и сталь, что увеличивает срок службы до 100 лет.
- Оцинкованная сталь — коррозионностойкий материал с низким удельным сопротивлением. Электроды из данного металла имеют высокую устойчивость к кислотным средам со средним сроком службы 30 лет.
- Черные металлы — имеют высокую механическую прочность, но быстро разрушаются при эксплуатации в агрессивной среде грунта, образуя ржавчину и коррозию. И, как следствие, получаем высокое сопротивление растекания тока, представляющее опасность для жизни человека.
Размеры проводников должны соответствовать требованиям ГОСТ Р 50571.5.54-2013. Множество вариантов установки заземляющего устройства помогает обеспечить нужную площадь контакта поверхности заземлителя с грунтом, что в свою очередь позволяет влиять на значение сопротивления растеканию тока. Преимуществом искусственного заземлителя является то, что его можно установить глубоко в землю, где удельное сопротивление ниже за счет грунтовых вод, которые стекают вниз. Это обеспечивает стабильность итогового сопротивления.
Искусственный заземлитель
Подведем итоги: можно выбрать в качестве заземлителя любой из описанных выше вариантов, главное подойти к данному вопросу ответственно. Для безопасности вашего дома и продолжительного срока службы, выбирайте заземление с антикоррозионным покрытием, изготовленным в соответствии с нормативными правилами. Позвоните или напишите в наш Технический центр и мы подберем для вашего объекта нужный комплект заземления.
www.zandz.ru
Системы заземления, применяемые в электротехнике
В электротехнике применяют несколько систем заземления – TN-C, TN-S, TN-C-S, IT, TT. Расшифровываются эти обозначения следующим образом:
۞ первая буква латинского алфавита определяет, как заземлен источник питания:
- T – нейтральный проводник источника питания соединен с землей;
- I – любые токопроводящие части изолированы от контакта с землей.
۞ вторая буква указывает на характер заземления открытых токопроводящих частей электроустановки:
- T – открытые проводящие части связаны с землей независимо от заземления источника питания;
- N – все открытые токопроводящие элементы связаны с точкой, в которой заземлен источник питания.
۞ буквы, которые указываются в обозначении после буквы N через дефис, определяют как устроен защитный и рабочий проводники:
- C – функции защитного и рабочего проводников выполняются одним общим PEN;
- S – функции защитного PE и рабочего N проводника обеспечиваются раздельно.
В «Правилах устройства электроустановок» используют именно такие обозначения.
Система TN-C
Самая простая и самая «древняя» схема заземления, в которой нулевой и заземляющий проводники объединены. При «пробое» фазы на токопроводящие части, ток уходит в землю, а автоматический выключатель обесточивает цепь.
Однако у этой системы есть существенный недостаток. При больших нагрузках нулевой провод может медленно «подгорать». При коротком замыкании, которое образуется при «падении» фазы на корпус, уже поврежденная нейтраль может отгореть так быстро, что автомат не успеет среагировать – в цепи еще не возникнет ток отключения. В результате вместе с нейтралью пропадет и защитное заземление, а вот фаза останется на корпусе, так как автомат не отключил ее.
Если произойдет касание проводящих частей человеком, его тело образует проводник между фазой и землей. В этом случае поражение электрическим током неминуемо.
Система TN-S
Это более современная система, в которой нейтральный и заземляющий проводник разделяют по всей цепи. Такая система намного сложнее, чем TN-C, однако она и намного безопаснее. Третий, заземленный проводник в однофазной сети, или пятый в трехфазной, соединяют с заземляющим контуром на трансформаторной подстанции.
Система TN-C-S
Устройство такой электропроводки предполагает комбинирование совмещенного провода PEN и отдельного заземляющего проводника. Так бывает, например, если во всем доме проводка выполнена с отдельным заземляющим проводом, который подключен к самостоятельному заземляющему контуру, а подключение дома от трансформаторной подстанции произведено совмещенным PEN-проводником.
Такая схема оказывается более экономичной по сравнению с TN-S, так как наиболее протяженный участок электролинии можно изготовить без отдельного заземляющего провода. Тем не менее, эта схема так же надежна, как и TN-S.
Системы IT и TT
С системой ТТ все предельно ясно — заземлен корпус источника (трансформаторной подстанции), и отдельно заземлены все электроприборы в доме. Такая схема редко, но встречается при устройстве электропроводки в частных домах.
Система IT практически не встречается в быту. Она применяется в специфических случаях — например, при электроснабжении помещений с чувствительным к помехам оборудованием. Отсутствие заземления источника питания позволит минимизировать наведенные токи в сети. Безопасность обеспечивается заземлением каждого электроприбора. Такую схему применяют в лабораториях, больницах.
Типы искусственного заземления
Основной регламентирующий документ в России, который позволяет использовать разные системы заземления — ПУЭ пункт 1,7. Он был разработан с учетом способов устройства заземляющих систем, их классификации и принципов. Документ утвержден специальным протоколом Международной электротехнической комиссии.
Сокращенные названия существующих систем являются сочетаниями первых букв французских слов.
- Т – заземление.
- N – подсоединение к нейтрали.
- I — изолирование.
- С – соединение рабочего и защитного нулевых проводников в один провод.
- S – раздельное использование защитного и рабочего нулевых проводников.
Чтобы понять, в чем заключаются отличия и способы реализации, нужно ознакомиться с каждой разновидностью более детально.
Устройство заземления TN
Самый распространенный вид заземляющих систем. Суть его заключается в соединении нулей с землей вдоль всей длины. Этот тип имеет еще одно альтернативное название – снабжение глухозаземленной нейтрали.
Для реализации способа требуется технологично вбить в вертикальном положении группу штырей в землю, чтобы глубина залегания была не менее 2,5 метров. Все штыри должны быть соединены друг с другом при помощи кабеля и полоски в единый контур жилого дома.
Система TN-C
Достаточно устаревшая система, которая все еще используется в старых жилых фондах. Суть защиты заключается в том, что ноль N играет также роль защитного провода РЕ, две функции совмещены в одном проводнике. Преимущество этого способа заключается в простоте реализации и бюджетном изготовлении, предназначен для электрических приборов мощностью не более 1000 В.
На сегодняшний день этот тип несет потенциальную опасность, поскольку не имеет ни единого отдельного проводника. Если при аварийной или нештатной ситуации обрывается нулевой провод, весь электрический потенциал концентрируется на приборах, а это уже несет опасность для здоровья и жизни человека, есть вероятность образования пожара.
Система TN-S
TN-S
В проектируемых новых зданиях используется новая заземляющая система. Суть ее реализации заключается в присутствии отдельного провода фазы, нейтрали и защитного проводника. Проводники РЕ и N – отдельные составляющие системы электроснабжения.
Из принятых и утвержденных способов заземления электрической сети система TN-S считается самой безопасной и надежной. Из недостатков следует выделить дороговизну.
Система заземления TN-C-S
Система заземления TN-C-S
Данная заземляющая система вобрала в себя лучшие качества своих предшественников и частично исключила их недостатки. Способ относительно прост в реализации, еще одно достоинство вида – можно реализовать во время реконструкции и модернизации устаревших зданий. Смысл состоит с организации системы TN-C, здесь разделяют нейтральный провод на два проводника N и PE, далее начинает реализовываться способ TN-S.
Однако по-прежнему не решена проблема защитного контура системы ТN-С. Если шина обрывается, весь электрический потенциал концентрируется на бытовых приборах. Бороться с этим недостатком можно с помощью вспомогательных конструкций, например, реле напряжения, которое способно автоматически проводить аварийное отключение приборов от сети.
Естественные и искусственные виды заземления
Естественное заземление — конструкции непосредственно соприкасающиеся с землей В качестве естественной защиты используются:
- Свинцовые оболочки кабелей, проложенные в траншеях под землей; рельсовые пути неэлектрифицированных подъездных путей, железных дорог и т.д.
- Железобетонные и металлические конструкции любых строительных сооружений, которые непосредственно соприкасаются с землей.
- Проведенные под землей водопроводные и канализационные магистрали. Нельзя использовать металлические трубы, по которым проходят взрывоопасные и горючие вещества.
Искусственное заземление Как правило, для искусственных заземлителей используют горизонтальные и вертикальные электроды. Роль вертикальных может играть прутик или стальная труба, длиной не менее 3 метров. Суть реализации состоит в том, чтобы верхние концы погрузить в землю и соединить полоской из стали, используя сварочный аппарат. Такая технология образует контур заземления.
Для безопасного использования электрических приборов должны быть использованы естественные заземлители. Их применение позволяет сэкономить семейный бюджет и время, поскольку нет необходимости сооружать искусственные заземлители. Если естественный вид удовлетворяет все требования ПУЭ по сопротивлению растекания, искусственное можно не сооружать.
Сравнение искусственного и естественного контура
Трубопроводы, находящиеся в земле, выполняют роль естественного заземлителя Естественный контур – это две и более металлические конструкции, которые контактируют с почвой для безопасного использования бытовой техники. Естественное заземление также делится на следующие разновидности:
- Трубопроводы, предназначенные для различных целей, находящиеся в земле.
- Арматура строительных сооружений, которая погружается в слои грунта.
Данные типы защитного контура обязательно должны быть связаны с объектом минимум двумя элементами. Как правило, их устанавливают в разных частях конструкции.
В качестве естественной защиты запрещается использовать:
- отопительные системы и канализационные магистрали;
- трубы, поверхность которых покрыта антикоррозийным составом;
Искусственный заземлитель - металлоконструкции, предназначенные для транспортировки горючих и токсичных веществ.
Искусственный контур – это специальные конструкции, изготовленные из металла. Для работы их погружают в слои грунта. Наиболее распространенные примеры искусственных защитных контуров:
- Металлические полотна, заложенные в землю. Им могут быть свойственны разные формы и размеры.
- Стержни, уголки, трубы и стальные балки, помещенные в землю.
Глубинный заземлитель
Использование глубинного заземлителя позволяет существенно уменьшить площадь, занимаемую заземлителем на поверхности, а также повысить его эффективность (уменьшить сопротивление заземления), так как электрод(ы) такого заземлителя находится в слоях грунта с меньшим удельным сопротивлением, чем у поверхностных слоев (за счет большей влажности и плотности почвы).
Этот способ строительства заземлителя в прошлом не часто использовался из-за сложности монтажа, где требовалось привлечение специальной строительной техники — буровой установки.
В настоящем, с широким распространением модульного заземления, монтаж глубинных заземлителей стал простым и быстрым без привлечения спецтехники. Простота позволяет производить работы в подвальных помещениях.
Технологии заземляющих устройств
Есть несколько способов изготовления контура заземления.
Чаще всего, используют две из них:
- Модульно-штыревое заземление.
- Традиционное заземление.
Конструкция модульного заземления
Для ее устройства используют стержни, из покрытого медью качественного металла. Их вертикально забивают в грунт на глубину около 1 м, диаметр стержней 14 мм. По краям стержня нарезают по 30 мм резьбы и так же покрывают ее медью.
Металлические части конструкции соединяют вместе латунными муфтами. По горизонтали их соединяют стальными полосами с латунными зажимами или используют для этого комплект медного провода. Также, устраивают соединение контура заземления и щитка-распределителя. Для защиты элементов заземления от коррозии, в комплект входит защитная паста.
Традиционное заземление
Изготавливают такую систему из черного металла: полос, труб, уголка. На 3 м в грунт, с промежутком 5 м вбивают треугольником три металлических электрода. Далее, электроды соединяют в общий контур, используя металлическую полосу и электросварку.
Такое заземление имеет несколько отрицательных свойств (к примеру, трудоемкость создания контура и коррозия, разрушающая металл изделия), по этой причине, в наше время вместо нее стараются использовать более совершенный способ заземления.
Естественные заземляющие элементы
Чаще всего, их используют для заземления электрического оборудования. В качестве естественных заземлителей применяют металлические элементы различных ЖБ конструкций, к примеру, фундаменты подстанций и линий электропередач и фундаменты строений.
Дополнительно, для естественного заземления подключают части подземных коммуникаций, изготовленных из металла, к примеру, подходит броня кабелей и всевозможные трубопроводы, иногда допустимо подключать и наземные коммуникации, к примеру, подойдут для этой цели рельсовые пути.
Сечение заземляющих электродов
Для обеспечения надежной и долгой работы заземлителей с точки зрения коррозионной и механической стойкости приняты минимальные размеры заземляющих электродов.
Медь
Профиль | Площадь поперечного сечения, мм² | Диаметр, мм | Толщина, мм |
Прямоугольный | 50 | 2 | |
Круглый провод (глубина погружения < 0,5 м) | 25 | ||
Трос | 25 | 1,8 для каждой проволоки | |
Трубный | 20 | 2 |
Омеднённая сталь (электролитическое осаждение)
Профиль | Диаметр, мм | Толщина покрытия, мкм |
Круглый стержень | 14 | 100 |
«Чёрная» сталь (без покрытия)
Профиль | Площадь поперечного сечения, мм² | Диаметр, мм | Толщина, мм |
Прямоугольный | 150 | 5 | |
Угловой | 150 | 5 | |
Круглый стержень | 18 | ||
Трубный | 32 | 3,5 |
Нержавеющая сталь
Профиль | Площадь поперечного сечения, мм² | Диаметр, мм | Толщина, мм |
Прямоугольный | 90 | 3 | |
Угловой | 90 | 3 | |
Круглый стержень | 16 | ||
Трубный | 25 | 2 |
Оцинкованная сталь
Профиль | Площадь сечения, мм² | Диаметр, мм | Толщина, мм | Толщина покрытия, мкм |
Прямоугольный | 90 | 3 | 70 | |
Угловой | 90 | 3 | 70 | |
Круглый стержень | 16 | 70 | ||
Трубный | 25 | 2 | 55 |
Необходимость электрически соединять контур заземления молниезащиты, установленной непосредственно на здании, с контуром заземления для электрических установок, прописана в действующих нормативных документах (ПУЭ). Цитируем дословно: «Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими». Как раз 2-я и 3-я категории являются наиболее распространёнными, в 1-ю категорию входят взрывоопасные объекты к молниезащите которых предъявляются повышенные требования. Тем не менее, наличие оборота «как правило» подразумевает возможность наличия исключений.
Современные офисные, а теперь и жилые здания содержат множество инженерных систем жизнеобеспечения. Сложно представить отсутствие систем вентиляции, пожаротушения, видеонаблюдения, контроля доступа и т.д. Естественно, у проектировщиков таких систем есть опасения, что в результате действия молнии “нежная” электроника выйдет из строя. При этом некоторые сомнения у специалистов-практиков вызывает целесообразность соединения контуров двух видов заземлений и возникает желание «в рамках закона» запроектировать электрически не связанные заземления. Возможен ли такой подход и повысит ли он на самом деле безопасность эксплуатации электронных устройств?
Системы TN
Такие конструкции отличаются наличием глухо заземленной нейтрали и подсоединением к ней всех способных проводить электроэнергию элементов сети.
Подключение к нейтрали производят используя нулевые проводники.
Электрошкафы, щиты и корпуса приборов, подключают к проводнику PEN. Выполняется это для создания короткого замыкания, при пробивании проводки на корпус, в результате чего, защитные автоматы обесточивают сеть, идущую на вышедший из строя участок сети, таким образом, предупреждая поражение током людей, находящихся поблизости.
Система с нулевым и расчлененным рабочим проводником
Система TN-S
Система TN-S для безопасности оборудована двумя, а не одним нулевым проводом, один из них служит как защитный провод, а второй используется в качестве нейтрального проводника, подключенного к глухо заземленной нейтрали. Эта конструкция сегодня является самой безопасной, способной эффективно защитить от удара электричеством.
Принцип работы этой конструкции состоит в том, что используют всего одну фазу для подачи рабочего напряжения и ноль.
Разводку производят проводом из трех жил, одна из которых служит как нуль и подключается к вводному проводу.
Функциональное заземление типа ТТ
Функциональное заземление используется в тех условиях, когда организовать заземляющий контур типа ТN попросту невозможно. Суть реализации заключается в двух разделенных заземляющих устройствах. Чаще всего применяют при прокладке воздушных линий электропередач. Также его используют при аварийном состоянии нулевых проводников.
Особенность защиты человека от поражения током заключается в обязательной установке и использовании прибора защитного отключения с дифференциальным током не более 30 мА.
Основная система уравнивания потенциалов.
Построение основной системы уравнивания потенциалов – создание эквипотенциальной зоны в пределах электроустановки с целью обеспечения безопасности персонала и самой электроустановки при срабатывании системы молниезащиты, заносе потенциала и коротких замыканиях.
Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:
1 ) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;
2 ) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и TT;
3 ) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание;
4)металлические трубы коммуникаций , входящих в здание…
6 ) металлические части централизованных систем вентиляции и кондиционирования….
7 ) заземляющее устройство системы молниезащиты 2-й и 3-й категории;
8 ) заземляющий проводник функционального ( рабочего ) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;
9 ) металлические оболочки телекоммуникационных кабелей.
Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов. (ПУЭ п. 1.7.82)
Несоединенный с ГЗШ элемент конструкции, инженерной системы, независимой системы рабочего заземления ( FE ) и тд. – грубейшее нарушение целостности основной системы уравнивания потенциалов. Появление разности потенциалов ( возможность искры ) – угроза жизни персонала и безопасности объекта.
Примечание: разрядник, указанный на рисунке – специализированный искровой разрядник с малым напряжением срабатывания для систем уравнивания потенциалов. Например: серии «KFSU», «EXFS..» компании DEHN.
Система дополнительного уравнивания потенциалов значительно улучшает уровень электробезопасности в помещении. Короткие проводники защитного заземления и уравнивания потенциалов, сведенные на шину, формируют эквипотенциальную зону по принципу аналогично основной системы уравнивания потенциалов.
Сторонняя проводящая часть — проводящая часть, не являющаяся частью электроустановки.
Если формально подходить к определению, то и металлическая дверная ручка и петли на деревянной двери в деревянном доме являются сторонними проводящими частями.
Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!
9-1,6 с основной задачей предельно ограничить разность потенциалов, под которую может попасть человек, одновременно соединенный и с землей и с корпусом. Если же вам что-то непонятно, пишите мне!
Заземлитель, их разновидности и функциональные особенности
- Естественные устройства заземления лучше использовать в тех случаях, когда они позволяют обеспечить все требования техники безопасности, предъявляемые к ним.
- Контуры заземления искусственные рекомендуется использовать для уменьшения величин токов, которые будут уходит в земли через естественные заземлители.
- В большей степени можно обойтись использованием только естественных заземлительных приспособлений. Это прежде всего сохранит затраты на покупку дополнительных материалов, а также гораздо уменьшит трудовые и физические затраты. Кроме того, использование естественных приспособлений гораздо проще в применении нежели искусственных.
Заземление посредством железобетонного фундамента
Выбор такой конструкции в качестве заземлителя можно осуществить лишь при соответствии физических основ фундамента (гидрофильность бетона) с количественными показателями влажности грунта.
Допускается реализация такого технологического варианта заземления только при условии наличия влажности грунта, на котором находится объект, свыше 3 %. Меньший показатель такой характеристики почвы отразится на гидрофильности бетона: произойдет мощное электрическое сопротивление, железобетонная конструкция потеряет свойства заземлителя.
Естественный заземлитель посредством железобетонного фундамента практичнее применять при таких условиях:
- наличие неагрессивной среды (грунтовые воды с минимальным показателем жесткости);
- отсутствие гидроизоляции;
- наличие дополнительной защиты фундамента (битумное покрытие).
Нормативная стандартизация применения такого типа заземлителя предусматривает варианты, когда его запрещено использовать в системе заземления объекта.
Сопротивление заземлителей для различных объектов
В частных домах, где используются электрические сети, напряжением 220-380 вольт, сопротивление заземлителя не должно превышать 30 Ом.
Максимальное сопротивление, не превышающее 10-ти Ом, допускается при подключении к дому газопровода и другого опасного оборудования. Это же значение используется и при подключении молниеприемников. Для каждого вида оборудования с повышенной опасностью, производится устройство локального заземления.
Все эти усредненные показатели сопротивления соответствуют нормальным стандартным грунтам, удельное сопротивление которых не превышает 100 Ом х м. При более высоком удельном сопротивлении грунта, пропорционально увеличивается и сопротивление заземлителя.
Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!
В местах, доступных только квалифицированному персоналу например, щитовых помещениях жилых домов , главную заземляющую шину следует устанавливать открыто. Если же вам что-то непонятно, пишите мне!
Заземление электроустановок до 1000В по ПУЭ 7
- Длина проводников дополнительной системы уравнивания потенциалов, соединяющих контакты штепсельных розеток, сторонние проводящие части и корпуса электрооборудования не должна превышать 2,5 м.( ? ). Сечение 4 мм 2 Сu ( ПВ-1, ПВ-3 ). См. ПУЭ 1.7.82 рис. 1.7.7.
- Для электроустановки здания, где применяются негорючие ( ВВГ нг –FRLS…) кабеля, следует с осторожностью использовать кабеля марки ПВ-1, ПВ-3 ( проводники уравнивания потенциалов от дополнительной системы уравнивания потенциалов до ГЗШ или щитовой шины заземления ). Данный тип кабеля, будучи уложенным вместе с негорючими кабелями, формально превращает всю систему в распространяющую горение. В большинстве случаев контролирующие органы относятся к этому спокойно, но в некоторых случаях стоит применить негорючие одножильные кабеля той же марки с нанесением соответствующей маркировки.
- Для зданий детских дошкольных учреждений, больниц, специальных домах престарелых и тд. применяемые пластиковые короба должны иметь сертификат о не выделении токсичных веществ при горении. Тоже касается линолеума. Поставляемые в Россию короба Legrand, ABB … таких сертификатов не имеют. Как вариант — короба фирмы DKC в которых в качестве отбеливающего вещества используется мел и есть все необходимые сертификаты.
Требования к заземлению электроустановок до 1000 Вольт
Заземление оборудования – это комплекс технических мероприятий, позволяющих получить надежное электрическое соединение между защищаемыми корпусами электроустановок и землей. Оно организуется с целью защиты оперативного персонала и работающих на оборудовании людей от случайного токового удара.
В соответствии с требованиями ГОСТ 12.1.030-81 защитное заземление электроустановки следует выполнять:
- при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех случаях;
- при номинальном напряжении от 42 В до 380 В переменного тока и от 110 В до 440 В постоянного тока при работах в условиях с повышенной опасностью и особо опасных по ГОСТ 12.1.013-78.
Важно! При правильно обустроенной системе заземления попавший на корпус станка, например, опасный потенциал не причинит прикоснувшемуся к нему человеку никакого вреда.
Объясняется это тем, что, при пробое изоляции основная часть токового заряда стечет по заземляющей шине в защитный контур, сопротивление которого на порядок ниже, чем тот же показатель для тела человека.
Естественные заземлители
Согласно правилам ПУЭ, корпуса технологического оборудования и других приборов должны подключаться к естественным или искусственным заземлителям (ИЗУ). При реализации первого из этих способов традиционно используются следующие подсобные элементы:
- металлические каркасы проложенных в земле конструкций, имеющие прямой контакт с ней;
- металлические кожуха кабелей, прокладываемых непосредственно в грунте;
- обычные металлические трубы (за исключением газовых и нефтепроводов);
- рельсы железнодорожных путей.
Обратите внимание: Использование готовых конструкций существенно упрощает решение проблемы заземления, упрощая этот процесс.
Кроме того, их использование при организации эффективного заземления позволяет несколько снизить затраты на его обустройство.
Важность сопротивления стеканию току
Основное требование к заземлениям до 1000 Вольт – их способность создать надежную цепочку для стекания аварийных токовых зарядов в грунт. Ее оценивают величиной сопротивления, которое приходится преодолевать токам замыкания на землю.
Согласно нормативным документам (ПУЭ, в частности) сопротивление заземления (сопротивление растеканию электрического тока) должно быть:
- в частных домах с напряжением питания 220 и 380 Вольт, должно составлять не более 30-ти Ом.
- для промышленного оборудования (трансформаторов подстанций, в частности, или генераторов и сварочных аппаратов) не должен превышать 4-х Ом.
- в отношении источника тока (генератора или трансформатора) не более 2, 4 и 8 Ом соответственно, при междуфазных напряжениях 660, 380 и 220 В трехфазного источника питания или 380, 220 и 127 В однофазного источника питания.
Соединение элементов в конструкции
Неважно из чего сделаны детали конструкции, из металла или железобетона, главное то, что они должны соединяться таким образом, чтобы в этих деталях образовалась электрическая цепь, что будет проходить по самому металлу. Если конструкция железобетонная, то следует дополнительно подготовить закладные детали в ней. Их наличие должно быть на каждом этаже объекта недвижимости.
Благодаря этим закладным деталям в устройстве можно соединить электрическое или технологическое оборудование, которое следует заземлить. Если в зданиях существуют соединения в виде болтов, заклепок или сварки, то их будет достаточно для того, чтобы смонтировать постоянную электрическую цепь. Если же подобные соединения отсутствуют то можно использовать гибкие перемычки, которые приваривают к элементам конструкции. Сечение перемычек должно быть от ста квадратных миллиметров.
Что нельзя использовать из железобетонных конструкций в качестве заземлителей? Если сборный фундамент выполнен из железобетона, то естественный заземлитель к нему лучше не подсоединять. Если есть возможность, то лучше сначала соединить между собой арматуру близлежащих блоков, и лишь потом приступать к изготовлению естественного заземления. Если такое соединение осуществить нет возможности, то тогда лучше всего сделать искусственный заземляющий контур.
Между собой железобетонные конструкции соединяются следующим образом: в случае, если фундамент здания осуществлен из свай, тогда арматуру свай соединяют с блоками фундамента или с арматурой ростверка с помощью электродуговой сварки. Но такая сварка не подойдет для пространственных колон и металлических каркасов. В этом случае применяют точечную сварку.
samelectrik.ru
Искусственный заземлитель: виды, функции, требования и установка
- Самый опасный вариант – когда металлический корпус прибора не заземлен, а УЗО совсем не установлено. Попадание фазы на проводящие ток части никак не проявляется, кроме как ощутимый удар при случайном прикосновении.
- В отсутствие УЗО корпус подключен к контуру установленного заземления, а ток утечки по цепи стекания очень велик. В этом случае прибор сработает мгновенно и отключает питающую линию или отдельную ее цепочку.
- При наличии УЗО корпус не заземлен, что обнаруживается только при протекании тока утечки, который вызовет срабатывание устройства защиты. За время порядка 200-300 миллисекунд прикоснувшийся к прибору человек ощутит лишь легкий удар током.
- И, наконец, самый безопасный вариант предполагает заземление корпуса и одновременную установку в данную ветку отдельного УЗО.