Повторное заземление PEN-проводника/нулевого провода ВЛ на вводе в дом/здание.

На обустройство так называемого повторного заземления на вводе в здание всегда обращают внимание инспекторы по Технике Безопасности (ТБ).

Вопросам организации заземляющего контура на стороне потребителя всегда уделяется повышенное внимание, поскольку от правильности его обустройства, в конечном счете, зависит здоровье пользователей электросетей.

Согласно требованиям нормативных документов (ПУЭ, в частности) заземляющий контур, защищающий работающих на электрооборудовании людей, обязателен при любых обстоятельствах. Это объясняется тем, что передаваемая по отдельному защитному проводу функция заземления, устроенного на трансформаторной подстанции, очень ненадежна из-за большой вероятности обрыва нулевой жилы («отгорания» нуля).

Для чего нужно повторное заземление

С технической точки зрения повторное заземление (ПЗ) – это специально обустраиваемое на стороне потребителя защитное устройство, гарантирующее безопасность работающих на линии людей. Оно «срабатывает» в случае пропадания связи с подстанцией по нулевому или совмещенному проводу.


Схема работы повторного заземления при обрыве нуля на линии ВЛ-0,4 кВ

Для обустройства повторного заземления допускается применять так называемые «естественные» заземлители, к которым относят:

  • металлические каркасы конструкций, уже проложенных в почве и имеющих непосредственный контакт с ней;
  • металлические защитные кожуха и броню силовых кабелей, заглубленных в грунт;
  • участки стальных труб (исключение составляют газовые магистрали и нефтепроводы);
  • железнодорожные рельсы.

Обратите внимание: Использование в качестве контура повторного заземления уже уложенных в почве готовых конструкций упрощает монтаж ЗУ и позволяет минимизировать расходы на его обустройство.

Отметим, что их сопротивление никак не контролируется пользователем, поэтому его значение может в любое время непредсказуемо измениться. Чтобы исключить такое положение – в особо ответственных случаях обустраиваются искусственные заземляющие конструкции, имеющие стабильные технические характеристики.

Повторное заземление нулевого провода – один из способов организации искусственной системы, способной продублировать функцию станционного ЗК. Последним объяснением исчерпывается вопрос о том, что такое есть повторное заземление и как его можно обустроить.

Заземлители

1.Естественные

— водопроводные трубы, проложенные в земле (ХВ)

— металлические конструкции здания и фундаменты, надежно соединенные с землей

— металлические оболочки кабелей

— обсадные трубы артезианских скважин

— газопроводы и трубопроводы с горючими жидкостями

— алюминиевые оболочки подземных кабелей

— трубы теплотрасс и горячего водоснабжения

Соединение с естественным заземлителем должно быть не менее чем в двух разных местах.

Искуственные

Контурные

Выносные: групповые и одиночные

Позволяют выбрать место с минимальным сопротивлением грунта.

Традиционно, для искусственных заземлителей применяют угловую сталь толщиной полки не менее 4 мм, стальные полосы толщиной не менее 4 мм или прутковую сталь диаметром от 10 мм.

Широкое распространение в последнее время получили глубинные заземлители с омедненными или оцинкованными электродами, которые по долговечности и затратам на изготовление заземлителя существенно превосходят традиционные методы.

Особая проблема — создание качественного заземления в условиях вечной мерзлоты. Здесь стоит обратить внимание на системы электролитического заземления, позволяющие эффективно решить проблему.

Подробную информацию о различных схемах зазелителей, способах расчета и консультации можно получить на сайте www.zandz.ru

Применение повторного заземления в классической системе TN

Повторное заземление является важнейшим элементом комплексной системы защиты от поражения электрическим током. Его используют для заземления нулевого защитного провода РЕ и РЕN электрических сетей до 1000 Вольт в системе ТN с глухозаземленной нейтралью трансформатора.

Классические системы заземления принято различать по состоянию их нейтрали, которая может быть глухо заземленной или изолированной. В соответствие с этим признаком они делятся на две большие группы и обозначаются соответствующим сочетанием английских букв. «Т» означает земля, а «N» – нейтраль, что при их совместном написании символизирует заземленный «нуль». Помимо этого в данных системах предусмотрены проводники и шины, обозначаемые как PE (отдельный заземляемый повод) или же PEN –совмещенная рабочая и защитная шина.

В зависимости от выбранной схемы постоянно заземленный нейтральный провод N может быть как независимым от защитного PE-проводника, а может соединяться с ним, образуя шину PEN. В первом случае получаем систему TN-S («Separate» или раздельная прокладка), а во втором – TN-C.

Обратите внимание: Здесь «C» означает «Combined» или комбинированный.

Существует еще один вариант, когда два провода (защитный и нулевой) на стороне подстанции объединены, а при вводе на объект разделяются на защитный проводник PE и функциональную шину N. Подобная организация системы защиты потребителя носит название TN-C-S и также предполагает обязательность заземления нулевого провода.

Совместимость с устройствами отключения

Чтобы сделать работу человека максимально безопасной, ПУЭ рекомендует применять УЗО или дифавтоматы. Такие устройства можно применять в системе ТN-C-S, когда PEN-провод разделен на PE и N-проводники. Это разделение происходит в вводном электрощите на главной заземляющей шине. Причем подключение главной заземляющей шины производится к повторному заземлению или к заземленному на вводе в здание PEN-проводнику.

УЗО или дифавтомат реагирует на токи утечки в нагрузке. При появлении утечки в изоляции или при повышении влажности появляются токи утечки. При превышении определенного значения тока утечки УЗО обесточивает защищаемую цепь. Дифференциальный автомат обесточивает цепь при появлении в нагрузке короткого замыкания.

Применение устройства вторичного заземления нулевого провода влияет на время срабатывания автоматических выключателей. Чем ниже показатель сопротивления заземления, тем быстрее и надежнее сработает автоматический выключатель, а значит, выше безопасность человека при аварийных ситуациях в электрических сетях.

Применение системы TN-C

Система TN-C широко применялась в распространенных ранее двухпроводных сетях, которые нередко встречаются и сегодня (в основном – в домах старой застройки). С точки зрения рядового пользователя она характеризуется тем, что в этом случае в розетках отсутствует специальный заземляющий контакт.


Система заземления TN-C

В сетях, сконструированных на основе этой схемы, нулевой провод заземляется только на станционной стороне (фото выше). Поэтому при его случайном обрыве или так называемом «отгорании» все подключенные к линии электроустановки и приборы оказываются совершенно незащищенными. Это вынуждает пользователей персонально заземлять каждую единицу эксплуатируемого в доме бытового прибора или устанавливать УЗО.

Обратите внимание: Для владельцев частных и загородных домов условия в этом случае более чем выгодные, поскольку они могут организовать повторное заземление, обустроив выносной контур прямо на участке.

В современном строительстве эта системы уже много лет не используется; сегодня ей на смену пришла более эффективная TN-S.

Применение системы TN-S

Система TN-S более совершенна в смысле организации защиты, то есть имеет большую степень электрической безопасности. Это объясняется тем, что в ней имеется «самостоятельный» заземленный проводник, служащий исключительно для этих целей. Правда, за счет использования дополнительного медного материала стоимость системы существенно возросла. В случае трехфазного питания, например, от источника электроэнергии (трансформаторной подстанции) приходится прокладывать кабель, содержащий пять проводов. Это три обязательные фазы A, B и C, а также нейтраль и защитный проводник PE.


Система заземления TN-S

При реализации системы TN-C в электрических цепях организация повторного заземления нулевого провода также обязательна. Она производится методом соединения нейтрального проводника с земляной жилой защитного контура, обустраиваемого на стороне потребителя.

Система TN-C-S

Эта схема разработана с целью устранения недостатков системы TN-S и предусматривает использование в качестве общей шины совмещенного PEN-проводника, проложенного только до ввода на объект.

Важно! Непосредственно перед вводом в здание общая шина разделяется на две жилы (на нейтраль N и защитный провод PE).

Эта система представляет собой нечто среднее между двумя уже рассмотренными вариантами защиты. Она не лишена тех же минусов, что и TN-S, так как в случае повреждения проводника PEN на линии от подстанции до объекта, все установленные в нем электроприборы окажутся под опасным напряжением. Для этого случая ПУЭ предписывают дополнительную защиту шины PEN от деформаций и механических повреждений.


Система заземления TN-C-S

В этой системе обустраиваемый контур заземления – это повторное соединение нулевого провода PEN с ЗУ перед вводом на конкретный объект. При случайном обрыве проводника на участке линии питания «трансформатор подстанции — здание» заземление осуществляется исключительно посредством PE провода.

Для этого на вводе в электроустановку напряжением до 1 кВ или в распределительном шкафу дома провод PEN обязательно «расщепляется» на две шины. Одна из них используется как рабочий нулевой проводник, а вторая – в качестве заземляющей жилы.

Рассмотренный подход к организации ПЗ позволяет исключить занос в силовые цепи дома наведенных токов через эффект, оказываемый э/м полями внешних коммуникаций. Вдобавок к этому оно снижает потенциал на корпусах оборудования и бытовых приборов при случайном обрыве N-проводника.

Монтаж штыревого заземления для газового котла, на участке с суглинистой почвой

Напомним. Что для газового котла, необходимое сопротивление заземления (контура заземления) не должно превышать 10 Ом. в сухую погоду. На нижеприведенных снимках, монтаж производился в сырую погоду, во время дождя. Поэтому необходимо было выйти на показания сопротивления не хуже 7-8 Ом. Первый штырь, показал неплохое сопротивление, в пределах 30 Ом, что дало надежду на получение заданных значений. Второй штырь, вероятнее всего, вошел в грунтовые воды и сопротивление резко упало до необходимых значений

Однако помня, что зимой почва промерзает на 1-1,5 метра, а так же что летом возможно грунтовые воды опустятся глубже, было решено смонтировать стандартный комплект из 4-х штырей, на глубину 6 метров. Обратите внимание, что последние показания в 5,1 Ом, хуже предыдущих в 4,8 Ом. Это происходит потому, что во время монтажа, верхняя часть грунта разбивается и образуется небольшая воронка, в которой штырь не соприкасается с землей

По окончании монтажа, после того как штырь будет засыпан землей, а так же по прошествии некоторого времени, после осадки земли, показания вернутся к наилучшим значениям.

Воздушные линии электропередач

На опорах линий электропередач (ВЛ) согласно действующим положениям ПУЭ повторное заземление PEN-проводника, прокладываемого от трансформаторной подстанции, делается обязательно. Объяснить это можно потребностью повышения электрической безопасности персонала, работающего на ВЛ, а также созданием условий для надежного срабатывания автоматов защиты.


Схема повторного заземления нулевого провода в системе электроснабжения

Обратите внимание: Количество и частота размещения повторных заземлителей вдоль трассы прокладки линий электропередач определяется подготовленным для нее проектом электроснабжения.

ПЗ обязательно обустраивается в следующих местах:

  • На опорах, расположенных в конце ВЛ.
  • На столбах, непосредственно перед вводом «воздушки» на объект.
  • Перед любым ответвлением от трассы, протяженность которого составляет более 200 метров.


Заземление опоры ВЛ
Для монтажа заземляющего устройства обычно используется подземная часть ВВ опоры. В случае, когда ее недостает для получениятребуемых характеристик – делается дополнительный контур. Для оформления спуска с вершины столба применяется проволока без изоляции диаметром 6,0 или 8,0 мм. Помимо PEN-провода, обязательно заземляются все элементы конструкции опоры, изготовленные из металлов. Согласно требованиям ПУЭ сопротивление повторного контура не должно превышать 30-ти Ом.

На столбах с приборами уличного освещения обязательному заземлению подлежат не только провода СИП, но также корпуса светильников и другие детали самих опор, изготовленные на основе металла. Для этих целей в городской черте с ограниченными возможностями заглубления вместо типовых вертикальных штырей нередко используются горизонтальные полосы. После их монтажа полагается провести испытание обустроенной системы, проверив реальное сопротивление заземляющего устройства посредством специальных измерительных инструментов. Без повторного заземления самонесущих проводов и опор городского освещения, данный участок трассы приемной комиссией к эксплуатации не допускается.

Основные виды опор

Деревянные

Подобные конструкции в большинстве случаев будут изготавливаться из дерева, которое не будет иметь коры. Длина одного бревна будет составлять от 5 до 13 метров. Толщина опоры может составлять от 12 до 26 см. Чтобы подобная деревянная опора меньше поддавалась гниению медленнее его будут покрывать специальным антисептиком. Деревянные опоры могут иметь два вида, к которым относят C1 и C2.

Железобетонные

Подобные приспособления на сегодняшний день выполняются из арматуры и бетона. Они могут напоминать вид прямоугольника или трапеции. Это железобетонное устройства также будет иметь маркировку, которая имеет название CB. После этих букв также будут писаться цифры, которые означают длину столба. Например, вы можете встретить маркировку CB-95 и это означает, что железобетонный столб будет иметь длину 9.5 метров. На фото ниже вы сможете увидеть, как выглядит ЖБ опора:

На современном рынке можно встретить следующие конструкции:

  • CB
  • CB
  • CB
  • CB

Чтобы выполнить вторичное заземление PEN проводника с двух сторон столба приваривают арматуру.

Обоснование проектных решений

Чтобы не возникало сложностей с согласованием и сдачей проекта, нужно быть внимательным при получении ТЗ на проектирование. Если на проектируемом объекте применяется чувствительное к воздействию помех оборудование, то нужно сразу же запросить у заказчика или у производителя паспорта на данное оборудование, где должна быть обоснована необходимость устройства независимого заземлителя и указано требуемое сопротивление функционального заземления. Паспорта (сертификаты) на применяемое оборудование прилагаются к проекту и служат обоснованием проектных решений на всех этапах согласования проекта.

Независимое функциональное заземление выполняется по схеме на рис. 4.

Если независимый функциональный заземлитель производителем оборудования не предусматривается, то в этом случае функциональное заземление должно быть выполнено по одной из схем (рис. 2, 3) с учетом требований к электромагнитной совместимости. Изолированная шина функционального заземления в этом случае может быть установлена в отдельном ящике заземления, исключающем одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.

Пример такого ящика функционального заземления показан на рис. 6.

Методы определения

Рассмотрим способы определения нулевого и заземляющего проводников, от очень простого к более сложным.

Цепь имеет защиту по дифф-току

. Если весь объект или исследуемая ветка снабжены защитой по дифференциальному току — дифф-автоматом или УЗО, задача значительно упрощается. Нужно контрольный прибор, например лампа с проводниками, подключить к фазе и к одному из исследуемых проводников. Если дифф-защита не сработала, значит лампа подключена к рабочему нолю. Если происходит срабатывание УЗО при подключении лампы — вы ее подключаете к фазе и земле. Все достаточно просто и заодно проверите устройство защитного отключения на практике.

Перед выполнением такого теста нужно убедиться в работоспособности дифф-защиты, нажав кнопку «тест» на защитном аппарате. Следует отметить, что способ будет работать при условии, что ток через лампу будет превышать номинальный дифференциальный ток аппарата. То есть, при использовании лампы накаливания (энергосберегайка не подходит) сработает УЗО с током утечки 10-30 мА. Вводное УЗО на утечку 300 мА может не сработать, для надежной проверки нужно брать прибор помощнее.

Сравнение с заземляющими контактами розеток

. Данный метод будет работать если на вводе стоит двухполюсный автомат, размыкающий рабочий ноль и в помещении имеются розетки с заземлением. Вводной автомат следует отключить, тем самым мы разомкнем любую связь ноля с землей. По возможности следует отключить все приборы из розеток.

Далее следует «прозвонить» мультиметром в режиме измерения сопротивления заземляющий контакт одной из розеток с исследуемыми контактами. При соединении с нулевым проводом, мультиметр должен показывать большое сопротивление, с заземляющим контактом на неизвестной точке с землей розетки сопротивление практически нулевое.

Таким способом можно заодно проверить правильность подключенных розеток: при отключенном вводном двухполюсном автомате, нулевые и заземляющие контакты прозваниваться не должны. Ну это при условии, что проводка изначально исправна и верно смонтирована.

Лезть в щит

. Если предыдущие способы реализовать нет возможности, придется лезть в «начинку» электрощита. Думаю напоминать здесь о технике безопасности не стоит: ее никто не отменял. На самом деле способ достаточно прост: нужно найти нулевой проводник, уходящий в помещение и отсоединить его от клемм щита. Затем прозвонить с исследуемыми контактами: с которым будет звониться — тот и есть нулевой проводник.


В случае с щитом вполне может возникнуть сложность, когда даже в щите сложно отличить ноль от заземления. В этом случае понадобятся токовые клещи. Нужно включить напряжение и нагрузку в помещении, и исследовать клещами неизвестные проводники в щите — где будет ток, так и рабочий ноль

Обратите внимание: метод работает только в том случае, когда вы точно знаете, что один из проводников — ноль, а другой — земля.

Все вышеописанные методы работают как с заземлением, так и с «занулением»

Определить контакты при подключении электроплиты

. Иногда возникает необходимость заменить розетку электроплиты, а проводка советских времен или начала 90-х, одноцветная. Для верного определения зануления электроплиты необходимо условие — двухполюсный автомат во вводном щите, отключающий и фазу, и ноль от всей квартиры.

Итак, при включенной электроэнергии определяем фазу на ичсследуемых выводах для будущей розетки — этот контакт помечаем и откидываем в сторону, далее он нам не нужен. Потом нужно определить ноль в любой розетке в квартире — так как проводка советская, земли там нет, поэтому нолем окажется тот вывод, на котором не светится отвертка-индикатор.

Теперь обесточиваем всю квартиру и мультиметром прозваниваем ноль обычной розетки с двумя оставшимися контактами на электроплиту. Тот контакт, который звонится с нолем розетки — рабочий, а тот что не звонится — зануление (земля). Если же звонятся оба контакта — нужно искать ошибки в электропроводке. При организации зануления в советское время, его присоединяли к клемме «PEN» без каких-либо коммутационных аппаратов.

Сторонняя проводящая часть

Проводник, который не является частью электроустановки, называется сторонней проводящей частью. Формальным примером служат металлическая дверная ручка или петля.

Можно ориентироваться на 2 принципа, согласно которым выбираются части для подключения на шину дополнительного уравнивания потенциалов. Задача – не делать систему чрезмерно перегруженной.

  • Фактическая или потенциальная возможность связи с «землей».
  • Возможность появления потенциала на сторонней проводящей части при аварии электрооборудования в процессе эксплуатации.

В таблице ниже приведены примеры сторонних проводящих частей, которые стоит или нет подключать к шине дополнительного уравнивания потенциалов:

Сторонняя проводящая частьСхемаНеобходимость подключения
Металлическая полка, закрепленная на стене из непроводящего материала.Нет
Металлическая полка, закрепленная на стене из железобетона.Да (потенциальная связь с «землей» за счет крепежа к стене)
Металлическая полка, закрепленная на стене из непроводящего материала. На полке расположен электроприбор.Да (возможность появления потенциала при аварии прибора с классом изоляции I)
Металлическая тумбочка с резиновыми или пластиковыми колесиками на бетонном полу.Нет
Металлическая тумбочка с резиновыми колесиками на бетонном полу. В помещении грязь и пыль в сочетании с повышенной влажностью.Да (потенциальная связь с «землей» за счет загрязнения и повышенной влажности)

Вопросы, связанные с уравниванием потенциалов в ванных и душевых помещениях, регулируются циркуляром № 23/2009.

Один из распространенных вопросов: может ли быть сторонней проводящей частью водопроводная вода, подающаяся по пластиковым трубам? Указанный циркуляр дает такой ответ: « …Водопроводная вода нормального качества …не рассматривается как сторонняя проводящая часть». Это означает, что такая возможность существует, как минимум из-за значительного присутствия различных железистых соединений в воде. Циркуляр рекомендует использовать токопроводящие вставки на отводах от стояков водопровода, подключив их к шине дополнительного уравнивания потенциалов.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]