Датчики приближения используются для обнаружения объектов без физического контакта. Существуют 2-проводные и 3-проводные датчики приближения, и более популярны 3-проводные датчики приближения. В зависимости от типа выхода существует два основных типа датчиков приближения: NPN и PNP.
Выбор правильного типа датчика приближения для конкретного применения может гарантировать правильную работу системы. В этой статье представлены краткое описание двух основных типов выходов и руководство по подключению датчика приближения к ПЛК.
Индуктивные датчики
В первой части статьи были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным не все так просто. Нужно учитывать много нюансов: полярность, логика работы, напряжение.
Для примера показаны упрощенные схемы подключения датчиков с транзисторным выходом (рис. 1). Нагрузка, как правило, это вход контроллера.
Рис. 1, а — датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае — отрицательный провод источника питания. Нагрузка (Load) постоянно подключена к «плюсу» (+V). Здесь активный уровень (дискретный «1») на выходе датчика — низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.
Рис. 1, б — случай с транзистором PNP на выходе. Нагрузка (Load) постоянно подключена к «минусу» (0V), подача дискретной «1» (+V) коммутируется транзистором. Этот случай — наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим (нулевым), а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.
Напряжение на транзисторном выходе, как правило, определяется напряжением питания, обычно ограниченным узкими пределами. Например, от 18 до 30 В. На это можно посмотреть с другой стороны — сейчас большинство устройств стандартизовано по напряжениям.
Далее от теории перейдем к практическим вопросам.
Внимание! Для удобства, обозначение клемм показано в вертикальном положении прибора
- Вход для цифровых датчиков температуры (сплошной провод от датчика).
- Дискретный вход №1 – позволяет подключить аварийный выход различного оборудования.
- Дискретный вход №2 – позволяет подключить аварийный выход различного оборудования.
- Выход № 1 +5 В постоянного тока.
- Выход № 2 +5 В постоянного тока.
- Выход № 4 – Контакт НЗ релейного выхода (220 В 200 Вт).
- Выход № 4 – Основной контакт реле.
- Выход № 4 – Контакт НР релейного выхода (220 В 200 Вт).
- Выход № 3 +12 В Постоянного тока.
- Общий “-” (провод с полосой от датчика).
Взаимозаменяемость датчиков
Как я уже писал в предыдущей части статьи, есть четыре вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения: PNP NO; PNP NC; NPN NO; NPN NC.
Бывает, что нужного типа датчика нет под рукой, а оборудование должно работать без простоя! Хорошая новость — перечисленные типы датчиков можно заменить друг на друга.
Это реализуется следующими способами:
- Переделка устройства инициации — механически меняется конструкция. Например, если NO датчик реагировал на наличие металла, то NC будет реагировать на его отсутствие. Если выход той же полярности, то не изменится ни программа, ни алгоритм работы.
- Изменение имеющейся схемы включения датчика (рассмотрим подробнее ниже).
- Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
- Перепрограммирование программы контроллера (изменение активного уровня входа, изменение алгоритма программы).
Естественно, производители умалчивают о таких возможностях, чтобы продавать большое количество и номенклатуру изделий. Ниже приведен пример, как можно заменить датчик PNP на NPN, изменив схему подключения (рис. 2).
Понять работу этих схем поможет осознание того факта, что транзистор — это ключевой элемент, который можно представить обычными контактами реле.
На рис. 2, а показана схема датчика с нормально открытым выходом типа PNP. Когда датчик не активен, его выходные «контакты» разомкнуты, и ток через них не протекает. И наоборот, если контакты замкнуты, то протекающий ток создает падение напряжения на нагрузке.
При активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?
Смотрим на изменения в схеме на рис. 2, б. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 4,7–10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется.
Сферы использования
Возможная область применения индукционных датчиков настолько велика, что позволяет использовать их не только в быту и автомобилестроении, но и в промышленности с робототехникой, а также медицине.
Медицинские аппараты
Индуктивные датчики широко используются при производстве медицинского оборудования, поскольку магнитные свойства устройства позволяют регистрировать легочную вентиляцию, параметры вибрации, а также снимать баллистокардиограммы.
Бытовая техника
В бытовом плане датчики могут выступать в качестве приспособления контроля водоснабжения, уровня освещения и положения двери (закрыта или открыта), поэтому используются при производстве, к примеру, стиральных машин и другой бытовой техники. Кроме того, устройства применяются в процессе создания элементов «умного дома».
Автомобильная промышленность
Используется индукционный датчик и в автостроении, выступая в роли контроллера, определяющего положение коленчатого вала. При приближении металлического объекта, в данном случае, зуба шестерни, к устройству, генерируемое встроенным постоянным магнитом магнитное поле увеличивается, что приводит к наведению в катушке переменного напряжения.
Внимание! Некоторые производители для повышения эффективности стараются изменить конструкцию индукционного датчика, к примеру, используя внешние магниты для его активации
Робототехническое оборудование
В случае с робототехникой, индуктивным датчикам нашли применение в производстве беспилотных аппаратов и промышленных роботов для повышения их чувствительности к препятствиям и способности распознавать объекты, а также устройствах, для которых важна самобалансировка.
Промышленная техника регулирования и измерения
Широко используются в работе систем транспортеров, упаковочных аппаратов и сборочных линий, а еще в составе всех видов станкового оборудования и запорной арматуры. Также индуктивные датчики помогают контролировать мелкие и крупные элементы промышленной техники (зубцы шестеренок, стальные флажки, штампы), объекты производства (металлические изделия, листы металла, крышки) и т.п. Кроме того, при их подключении к импульсным счетчикам можно в результате получить элементарное, но крайне эффективное считывающее устройство.
Как отремонтировать и проверить индуктивный датчик?
Ремонту датчики приближения практически не подлежат, поскольку имеют цельный корпус, залитый компаундом. К тому же, большинство поломок связано с механическими повреждениями из-за неаккуратного персонала или сдвига активатора.
Чтобы проверить датчик электрически, нужно подать на него питание, то есть подключить его в схему, а затем активировать (инициировать). При активации должен загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку и измерить напряжение на ней, чтобы быть уверенным на 100%.
Цветовая маркировка выводов датчиков
Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются ее.
- Синий (Blue) — минус питания.
- Коричневый (Brown) — плюс питания.
- Черный (Black) — выход.
- Белый (White) — второй выход, или вход управления.
Однако непосредственно перед монтажом нелишним будет убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.
Конкретный производители
Ниже — мое субъективное мнение по датчикам, с которыми приходилось иметь дело.
«ТЕКО». Для тех, кто выбирает отечественного производителя. Эта челябинская компания существует с советских времен и в настоящее время выпускает большое разнообразие датчиков. К сожалению, по моему опыту, на их долю приходится большое количество электрических отказов. Также у них слабая механическая прочность. Надеюсь, в настоящее время фирма улучшила качество продукции. Несомненное преимущество этой компании — цена, которая может быть в 2–3 раза ниже импортных аналогов (исключение Китай). Пример применения индуктивного датчика «Теко» — рис. 4.
Рис. 4 — Пример применения индуктивного датчика «TEKO»
В данном случае активатор, который проезжает мимо датчика, сместился и поломал оригинальный датчик. Выход — был установлен датчик «Теко» с большой зоной срабатывания.
AUTONICS. Оптимальный выбор по соотношению цена/качество. Эта корейская фирма выпускает большое количество датчиков с неплохим качеством. Благодаря скромным вложениям в раскрутку бренда, цены остаются весьма приемлемыми.
На рис. 5 показан пример модернизации спаивающей головки упаковочной линии.
Рис. 5 — Пример модернизации спаивающей головки упаковочной линии
В верхней части — датчик Autonics. Ранее установили электрический концевой выключатель, как на нижней части фото. Чтобы исключить проблемы с контактами, было решено установить индуктивный датчик, с чем Autonics прекрасно справился и сбои прекратились. Завершением стала прокладка дополнительного провода питания и изготовление крепежной пластины.
OMRON. Это старый раскрученный бренд, поэтому цена на эти датчики довольно высока. Однако и качество на уровне.
На рис. 6 — датчики показывают положение механизма редуктора.
Рис. 6 — Датчик показывает положение механического редуктора.
В большинстве случаев установка датчиков раскрученных брендов нецелесообразна, поэтому они устанавливаются в оборудовании высокой ценовой категории.
ALLEN BRADLEY. Этот американский бренд, как Rolls-Royce в мире моторов. Цена весьма высока, а вот качество в конкретно взятом случае подкачало: датчик, установленный на крышке бункера сыпучего вещества, перестал работать (рис. 7).
Рис. 7 — Дитчик Allen Bradley
Оказалось, проблема в контактах разъема. Их подогнули и почистили. В данном случае при грамотной установке датчик «Теко» прекрасно бы справился. Кстати, разница в цене этих датчиков — примерно в 10 раз!
Следует сказать, что в настоящее время более 90% от общего числа индуктивных датчиков имеют замену на датчики других производителей. Редко бывают случаи, когда нужен какой-то определенный тип. Как правило, это связано с габаритами и особенностями монтажа. В пределах одного предприятия целесообразно остановить выбор на одном производителе.
Данная статья – вторая часть статьи про разновидности и принципы работы датчиков. Кто не читал – рекомендую, там очень много тонкостей разложено по полочкам.
KERUI KR-G18 — инструкция для настройки GSM сигнализации.
Добрый день! Недавно я делал обзор сигнализации KERUI KR-G18 — GSM сигнализация KERUI KR-G18. Русская прошивка. Саму сигнализацию я купил здесь — KERUI official store. В том обзоре я обещал сделать обзор меню, а также показать как настроить KERUI KR-G18. Свое обещание выполняю. Хотя сразу скажу, что данная инструкция не является полным обзором всех возможностей GSM сигнализации. Сигнализация уже настроена и работает, поэтому проводить эксперименты на ней я не рискнул. Но я уверен, что написанной мной инструкции будет достаточно в 90% случаев. Прошу также заранее извинить за качество фотографий. Фотографировал уже установленную сигнализацию.
Перед настройкой разберемся с клавишами управления и пультом дистанционного управления:
Клавиши управления в режиме меню:
Начнем настройку KERUI KR-G18:
Шаг 1
На экране все довольно информативно: время, дата, день недели, уровень сигнала GSM, статус зарядки аккумулятора, состояние сигнализации (снято с охраны).
Шаг 2
Нажимаем на клавишу входа в меню и попадаем в главное меню:
На экране сигнализации KERUI G18 мы видим восемь пунктов главного меню: 1. Установка номеров дозвона. Служит для установки номеров для дозвона и отправки SMS. 2. Подключение датчиков и брелков. Здесь мы устанавливаем связь между сигнализацией и датчиками, брелками, сиренами, специальными устройствами. 3. Настройки. Настройка громкости, задержки срабатывания, настройки сирены, дисплея, настройка расписания … 4. Запись голосовых сообщений. 5. Настройка зон охраны. Настраиваем, как и когда будут срабатывать наши датчики, и на какие номера будут отправлять предупреждения. 6. Настройка даты и времени. 7. Журнал событий. 8. Информация об устройстве. Показывает версию прошивки GSM сигнализации.
Шаг 3
Переходим на пункт меню «Установка номеров дозвона» и нажимаем кнопку подтвердить:
Выбираем пункт «Номер для SMS» Нажимаем цифру 1(для первого номера)->подтвердить->набираем номер для отправки SMS->подтвердить. Если надо программируем другие номера. Программируем номера дозвона. Выбираем пункт «Номер для дозвона». Нажимаем цифру 1(для первого номера)->подтвердить->набираем номер для дозвона->подтвердить. Если надо программируем еще 5 номеров В пункте меню «Голос. вызов» можем проверить работу сим карты — позвонить на любой номер телефона.
Шаг 4
Переходим на пункт меню «Подключение датчиков и брелков» (Доп. аксессуары) и нажимаем кнопку подтвердить:
Сначала регистрируем брелки. Стаем на пункт меню «Регистр. брелок»->нажимаем подтвердить->Вводим порядковый номер брелка->Нажимаем подтвердить->Нажимаем на брелке любую кнопку. Повторяем для всех брелков. Затем регистрируем датчики. Переходим на пункт меню «Регистр. датчика»->нажимаем подтвердить->Вводим номер зоны, к которой будет привязан датчик->Нажимаем подтвердить-> заставляем датчик сработать. Повторяем для всех датчиков. Желательно записать к какой зоне подключен каждый датчик.
Шаг 5. Настройка зон охраны.
Переходим на пункт меню «Настройка зон охраны» и нажимаем кнопку подтвердить:
Ранее мы с вами привязали каждый датчик к своим зонам. Всего зон может быть 99. Теперь настроим каждую зону. Как видите на фото ниже мы можем отключить сирену, установить на какие номера будет поступать сигнал тревоги с данной зоны. Отдельно остановимся на настройке «Тип».
У GSM сигнализации KERUI KR-G18 есть семь типов срабатывания. С завода они настроены так:
- Нормальная — 01-59 зоны
- Частичная- 60-79 зоны
- Интеллект — 80-89 зоны
- Помощь пожилым -90 зоны
- Гонг — 91 зоны
- Приветствие — 92 зоны
- Тревожная — 93-99 зоны
Схемы подключения датчиков PNP и NPN
Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.
Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.
PNP выход датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)
NPN выход датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.
Призываю всех не путаться, работа этих схем будет подробно расписана далее.
На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.
Схемы подключения NPN и PNP выходов датчиков
На левом рисунке – датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.
Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Замена датчиков
Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:
Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.
Это реализуется такими способами:
- Переделка устройства инициации – механически меняется конструкция.
- Изменение имеющейся схемы включения датчика.
- Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
- Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.
Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:
PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.
Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).
А что там свежего в группе ВК СамЭлектрик.ру?
Подписывайся, и читай статью дальше:
Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.
Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.
Если внутренней нагрузки в датчике нет, и коллектор “висит в воздухе”, то это называют “схема с открытым коллектором”. Эта схема работает ТОЛЬКО с подключенной нагрузкой.
Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?
Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать “прям щас”.
Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.
Устройство биполярного транзистора
https://youtube.com/watch?v=iqraL2VcOjw
Элемент назвали биполярным, потому что в его работе принимают участие сразу 2 типа зарядных носителей – электроны (устойчивые отрицательно заряженные элементарные частицы) и дырки (квазичастицы с положительным зарядом). Работа ранее разработанного униполярного (полевого) устройства основана на применении лишь одного из носителей. Прибор имеет 3 слоя, на каждый из которых подается напряжение:
- эмиттер;
- база (базовая плата, пластина);
- коллектор.
Negative — это кремниевый сплав. Он обладает избытком отрицательных переносчиков заряда — электронов (n-doped), а positive — избытком положительных «дырок» (p-doped).
База очень тонкая, представлена слаболегированным полупроводником, поэтому она имеет сильное сопротивление. Коллектор, как правило, шире эмиттера. Поэтому общая площадь соединения база-коллектор значительно превышает комплекс база-эмиттер. Менять местами эти 2 области за счет изменения полярности нельзя. Транзистор не относится к симметричным элементам — это необходимо для его правильной работы.
Цветовая маркировка выводов датчиков
Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются её.
Однако, нелишне перед монтажом убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.
Вот эта маркировка.
- Синий (Blue) – Минус питания
- Коричневый (Brown) – Плюс
- Чёрный (Black) – Выход
- Белый (White) – второй выход, или вход управления, надо смотреть инструкцию.
Реальные датчики
Датчики купить проблематично, товар специфический, и в магазинах электрики такие не продают. Как вариант, их можно купить в Китае, на АлиЭкспрессе.
А вот какие оптические датчики я встречаю в своей работе.
Всем спасибо за внимание, жду вопросов по подключению датчиков в комментариях!
Вариант №1: воспользоваться специальным преобразователем, например устройством согласования сигналов УСМ, которое представлено у нас в ассортименте, или аналогичным.
Вариант №2: если вы хотя бы минимально дружите с паяльником, сделать преобразователь самому.
Если в наличии есть датчик с PNP выходом, а нужен NPN — собираем вот такую схему:
Транзистор Q1 — любой подходящий NPN, например 2SC495, BC445, BD237.
Если же в наличии имеется датчик с NPN выходом, а нужен PNP — такую схему:
Транзистор Q1 — любой подходящий PNP, например 2N5401, КТ502Д.