Типы электродвигателей, их разновидности, свойства, характеристики


Электрическим двигателем называют машину, которая преобразует электрическую энергию в механическую. Обычно механическая работа выражается во вращении вала. Работают эти устройства от различных источников питания и хотя выполняют одну задачу, имеют определённые отличия, которые обуславливают область их применения. Ведь не зря же в холодильники ставят одни моторы, в вентиляторы – другие, в стиральные машины, вообще, третьего вида. Для лучшего понимания рассмотрим виды электродвигателей и чем они отличаются друг от друга. Это поможет понять логику выбора того или иного движка для каждого из устройств.

Виды электродвигателей: классификация

Жёсткой классификации электродвигателей нет, но различать их можно по нескольким параметрам. Основные – тип питания и наличие скользящего контакта. Эти позиции можно считать ключевыми и по ним проще ориентироваться. В общем-то, видов электродвигателей не так и много – синхронные, асинхронные, постоянного тока, вентильные. Вот, пожалуй, всё. Другое дело, что в большинстве «категорий» есть достаточно вариантов, которые значительно меняют свойства и характеристики. Но с этим придётся разбираться применительно к каждой конструкции.

Электрические двигатели отличаются типом питания, устройством и назначением

Итак, рассмотрим виды электродвигателей по виду питающего напряжения. Они бывают:

  • постоянного тока;
  • переменного тока: однофазное питание;
  • трехфазное питание;
  • универсальные.
  • Пояснений требует только универсальный тип. Такой электродвигатель может работать как от постоянного, так и от переменного напряжения. По сути, один вид – универсальный коллекторный двигатель с обмотками возбуждения. К двигателям переменного тока относятся синхронные, асинхронные. На постоянном токе работают коллекторные и вентильные.

    Наиболее распространённые виды электродвигателей

    По способу передачи электропитания все электродвигатели можно разделить на две группы:

    • с коллектором (щёточные);
    • без коллектора (бесщёточные).

    Бесщёточные электродвигатели требуют меньше обслуживания, работают тише, более надёжны. К ним относятся асинхронные с короткозамкнутым ротором (работают от переменного напряжения), вентильные (питаются постоянным напряжением). Остальные имеют коллектор и щётки, через которые на обмотки катушек подаётся напряжение.

    Перемотка

    Для того, чтобы электрический двигатель асинхронного типа продолжал на высоком уровне выполнять свои задачи, необходимо тщательно контролировать состояние обмоток его статора. Наиболее распространенный метод устранения выявленных неполадок – перемотка. Но, как мы уже писали – для начала стоит провести точный контроль медных компонентов на предмет обрывов, потертостей и прочих поломок. Самый удачный способ определить – провести прозвонку катушек статора силового агрегата.

    Прозвонка

    Чаще всего отечественными электриками для такой цели используется такое устройство, как мультиметр. Но, перед этим следует провести визуальный осмотр. Обращать внимание стоит на наличие внешних повреждений оболочки и компонентов изоляции, области прожигания проводов при коротких замыканиях.

    Прозвонка статора

    Осуществляется прозвонка довольно просто – омметром необходимо проверить показатели сопротивления каждой из обмоток. Они должны быть одинаковыми. Также стоит проверить корпус, проведя замер сопротивления на корпус. При прозвонке изоляции все же лучше применять мегаомметр, который обеспечит более точные результаты замеров.

    Замена

    Если в процессе измерений повреждений выявлено не было, намотку стоит использовать дальше. Но, если дефекты все-таки были выявлены, стоит произвести перемотку – замену медных элементов статора.

    Осуществляется она по такому алгоритму:

    1. демонтаж старой обмотки и очистка каналов от остатков изоляции;
    2. создание схемы новой статорной катушки с параметрами, аналогичными предыдущей, вышедшей из строя;
    3. физическая реализация новой намотки, придерживаясь имеющихся технологических шаблонов;
    4. мониторинг активных компонентов статора, прокладывание медных элементов;
    5. запаивание медных элементов по реализованной выше схеме;
    6. пропитка готовой конструкции при помощи лака;
    7. просушивание.

    Общие рекомендации

    При реализации процесса создания обновленной обмотки и её дальнейшего подключения можно придерживаться таких рекомендаций:

    • между обмоточными выводами и корпусом уровень сопротивления должен стремиться к максимально возможным показателям;
    • асинхронные электрические двигатели на три фазы должны обладать сопротивлением всех обмоток на одинаковом уровне;
    • у однофазных же модификаций показатели сопротивления рабочих обмоток должны быть на порядок меньше, чем у пусковых.

    Перемотка обмоток статора

    Преимущества перемотки

    Реализация обновления состояния статорных обмоток позволит продлить срок эксплуатации силовых агрегатов без существенного ущерба их производительности.

    К другим преимуществам таких действий относятся:

    • увеличение удельной мощности, которая снижается в процессе эксплуатации;
    • эффективность и надежность. Компонент работает без сбоев;
    • возможность бесперебойного дублирования намоток, что существенно упрощает установку и дальнейшее использование.

    Стоит также учитывать высокое качество применяемых материалов, которые также обеспечивают надежность обмотки.

    Постоянного тока

    Двигатели постоянного тока появились еще в конце 19 века. С некоторыми изменениями они используются и сегодня и притом они популярны. Например, вибрирование в современном смартфоне обеспечивает именно двигатель постоянного тока, очень маленький и мощностью в милли ватты, но все же. В большей части игрушек тоже стоят такие движки. Но это не значит, что их не используют в серьёзной технике, ещё как используют. Самые мощные стоят в качестве тяговых на электровозах. У них мощность исчисляется сотнями киловатт (больше 800), а питаются они от напряжения 1,5 кВ.

    Типы электромоторов постоянного тока

    Коллекторные

    Коллекторный двигатель постоянного тока, как и все другие, состоит из неподвижной (статор) и подвижной (якорь) части. На статоре установлены магнитные полюса. Для маломощных моделей ставят постоянные магниты, для мощных добавляют обмотки (называются обмотками возбуждения), которые усиливают магнитное поле.

    Ротор представляет собой магнитопровод из металлических пластин, в пазы которого уложены витки медного провода – роторные обмотки. Концы роторных обмоток выведены на коллектор, который представляет собой медные пластины в виде секторов цилиндра. Пластины изолированы друг от друга и от вала, на котором закреплены. Концы обмоток выводятся на коллекторные пластины. Вторая часть коллекторного узла – графитовые щётки со щеткодержателем. Щётки прижимаются к коллекторным пластинам, но не мешают вращению якоря.

    Устройство двигателя постоянного тока коллекторного типа

    На щетки подаётся напряжение. В определённый момент времени они имеют контакт с какой-то парой пластин на коллекторе (редко щеток бывает четыре). Эта пара пластин подключена к роторным обмоткам, то есть, через щетки на обмотку подаётся питание. Вокруг якоря возникает магнитное поле, которое взаимодействует с магнитным полем статора. Результирующий вектор этого взаимодействия «толкает» якорь, заставляя его вращаться.

    Вал прокручивается, щетки контактируют с другой парой пластин, передавая потенциал на другие обмотки, которое проталкивают якорь дальше. Так и работает коллекторный двигатель постоянного тока, а более подробно в предыдущей статье.

    Универсальный

    В большей части бытовой техники, которая работает от сети, стоит универсальный коллекторный двигатель. Его отличия от описанного выше незначительны. Как может одна и та же конструкция работать и на постоянном и на переменном напряжении? Всё из-за того, что в этой машине взаимодействуют магнитные поля полюсов и роторных обмоток. Все знают, что поменять направление вращения якоря просто: надо изменить полярность на полюсах или на роторе. А что получится, если их поменять сразу и там, и там? Ничего. Якорь продолжит движение в прежнем направлении. На этом и основана работа коллекторного электродвигателя на переменном токе.

    Универсальный коллекторный двигатель в разрезе

    Обмотки возбуждения и якоря соединяются последовательно, так, что полярность питания на них меняется практически в одно и то же время. Единственное, что пришлось изменить в универсальном двигателе – сделать сердечник якоря шихтованным. Это необходимо чтобы стабилизировать взаимодействие магнитных полей якоря и полюсов (с обмотками возбуждения).

    Достоинства, недостатки, область применения

    Почему коллекторные двигатели ставят в большей части бытовой и строительной техники? На то есть несколько причин. Первая: они могут разгоняться до высоких скоростей – до 10 тыс.об/мин. По сравнению с 3 тыс. об/мин, которые развивают асинхронные их ближайшие конкуренты, а это очень неплохо. Вторая причина популярности – ими легко управлять. Частота вращения напрямую зависит от приложенного напряжения, а момент от тока якоря. До появления полупроводников и создания частотных преобразователей, это был единственный тип электродвигателей, который позволял легко и достаточно точно управлять скоростью. Третья причина широкого применения, несложная конструкция и относительно небольшая цена. Четвёртая – они могут иметь хороший крутящий момент даже на небольших оборотах.

    Один из популярных видов электродвижков — коллекторный двигатель

    Все эти свойства определили широкую область применения коллекторных двигателей постоянного тока. Они стоят на стиральных машинах, в дрелях, миксерах и т.д. Везде, где требуются высокие скорости, возможность плавной регулировки, хороший крутящий момент.

    Но наличие щеток, которые искрят и стираются, вносит свои коррективы. Этот узел требует постоянного ухода, часто щетки приходится заменять, коллектор чистить. Кроме того, он является причиной ещё двух неприятных моментов. Первая – шумная работа. Для строительной техники или промышленного оборудования это, возможно, и не очень критично, но для бытовой – существенный минус. Вторая неприятность – щетки перескакивают с одной пары на другую, так что потребление тока получается импульсным, что плохо влияет на параметры питания и создаёт радиопомехи. Это оказывает влияние на работающие рядом приборы с радиоуправлением. Это не только игрушки, но и разного рода пульты ДУ. Для сглаживания этих скачков на входе ставят конденсаторы, они сглаживают пульсации и убирают помехи.

    Вентильные электродвигатели

    Эти двигатели называют ещё вентильно-индукторными, безколлекторным или безщеточными. Бывают вентильные двигатели двух типов – «обычный» и с самовозбуждением. Причем отличаются и по устройству и по функциям.

    Вентильные двигатели независимо от типа предусматривают электронное управление

    Вентильно-индукторный двигатель

    Если сравнивать виды электродвигателей по размеру, вентильные будут самыми маленькими. Что характерно, работают они от постоянного тока, причём питаются им статорные обмотки, ротор обмоток не имеет, а сделан из постоянных магнитов. Причём и ротор, и статор имеют зубчатое строение. В «комплект» входит датчик холла, небольшой современный контроллер, который определяет положение ротора и в зависимости от его положения подаёт питание на ту или другую пару обмоток на статоре. То есть, вентильный двигатель управляется при помощи электронного прибора.

    Конструкция вентильного безколлекторного электродвигателя

    Принцип работы, наверное, уже понятен. Питание подаётся на одну пару обмоток, вокруг неё возникает магнитное поле. К этому полю притягивается ближайший полюс магнита. Далее, питание переключается на следующую пару обмоток, магнит притягивается туда. Так и получается вращение ротора. Чем быстрее переключается питание, тем быстрее скорость вращения ротора. Как видим, никаких щеток, только магнитная индукция. Это и есть основной плюс, а минус – в «пульсирующем» характере крутящего момента. Потому вентильно-индукционные двигатели не применяются в транспорте, мало кому понравиться, если колёса будут прокручиваться рывками. Тем не менее рассматривая эти виды электродвигателей, приходим к выводу, что этот имеет четыре существенных плюса: простота конструкции, хорошая управляемость скоростью, отсутствие коллектора и четвёртый – малые габариты. Всё это позволяет заменять ими асинхронные движки в некоторых случаях.

    С независимым возбуждением

    Этот вид электродвигателей стоит выделить отдельно, так как он значительно отличается как по устройству, так и по характеристикам и области применения. Начнём с того, что ротор состоит из двух отдельных магнитных пакетов, разнесённых на некотором расстоянии друг от друга. Полюса двух пакетов ориентированы так, чтобы результирующий момент был равен нулю (согласованное положение). Обмотка возбуждения крепится к статору хотя и обмотана вокруг ротора, но его она не касается. Магнитная система статора также собрана из металлических пластин. По характеру трёхфазная распределённая, три фазных обмотки со смещением друг относительно друга на 120°. Обмотка статора по размерам слегка больше либо равна собранному ротору (оба пакета охватывает магнитное поле).

    Вентильно-индукционный электродвигатель с самовозбуждением

    Питание подаётся на одну из обмоток статора. Поле, наводимое, в роторе поворачивает его так, чтобы оно совпало с полем статора. Причём поле одновременно наводится в двух пакетах, так что движение не такое скачкообразное, как у предыдущей модели. Питание переключается на следующую обмотку, вращение продолжается.

    Чем хорош этот вид электродвигателей? Плюсов много. Легко управлять скоростью вращения, как у синхронных машин с обмоткой возбуждения, доступно векторное управление. Можно увеличивать или уменьшать скорость, регулировать момент. В нём нет магнитов, которые стоят немало, да ещё могут размагнититься. И еще один плюс, нет коллектора и щеток. Минус, все-таки есть. Этот вид электродвигателей нельзя запитать напрямую от сети – требуется преобразователь. И ещё, он имеет более сложную конструкцию, чем описанный выше вариант. Зато крутящий момент более плавный и практически линейный.

    Двигатель Минато

    Еще одним ярким примером использования энергии магнетизма для самовозбуждения и автономной работы является сегодня уже серийный образец, разработанный более тридцати лет назад японцем Кохеи Минато. Его отличают бесшумность и высокая эффективность. По собственным заявлениям Минато, самовращающийся магнитный двигатель подобной конструкции имеет КПД выше 300%.

    Двигатель Минато

    Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.

    Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.

    Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.

    Переменного тока

    Электрические двигатели переменного тока бывают синхронными и асинхронными. Чем отличаются эти виды электродвигателей? Разница в том, что у синхронных ротор вращается с той же скоростью, с которой изменяется поле статора, в асинхронных моделях скорость ротора отличается.

    Есть два типа двигателей переменного тока – с синхронным и асинхронным вращением ротора

    Асинхронный двигатель переменного тока

    В устройствах, которые питаются от трехфазной сети обычно ставят асинхронные движки. Так, что на производстве стоят именно они. В этих машинах в статор отдельная электромагнитная система. Внутрь корпуса вставляются пластины, в пазах которых располагаются фазные обмотки. Обычно фаз в статоре три, но может быть две, а может и много.

    Ротор может быть двух типов – короткозамкнутый или фазный. Короткозамкнутый может быть цельнометаллическим (последние модели) или состоять из «беличьей» клетки с залитыми алюминием промежутками между стержнями клетки. Ротор вставляется в статор, между ними оставляют минимальный зазор, не более пары миллиметров даже для самых мощных. На статор подается напряжение, которое формирует вращающееся магнитное поле. Ротор попадает в зону действия магнитного поля, в нем наводятся токи. Результирующее поле имеет определённое направление, так что ротор начинает вращение. Так как поле возникает путём индукции, электрического контакта ротора со статором нет, нет коллектора и щеток. Вал фиксируется только в крышках статора на подшипниках. Этот двигатель относится к группе бесщеточных (безколлекторных).

    Асинхронный двигатель с разными роторами

    Асинхронный двигатель с фазным ротором имеет коллекторный узел. На вал надевают магнитопровод из наборных пластин с ячейками под три фазные обмотки. Питание на обмотки подаётся через коллекторный узел, в них поочерёдно возникает магнитное поле, которое вкладывается с магнитным полем статора. Благодаря этому возникает вращение.

    Особенности однофазных моделей

    В однофазном асинхронном двигателе в статоре располагают две обмотки: она фазная, вторая вспомогательная или стартовая. Она нужна для «разгона» ротора, чтобы придать ему начальное вращение. Для обеспечения «отставания» включается стартовая обмотка через конденсатор. Так что часто такой тип асинхронника называют конденсаторным двигателем. Хотя, по сути, двигатель всё тот же асинхронный, но двухфазный.

    Такие двигатели не могут развивать достаточного крутящего момента, потому применяются там, где это не требуется, например в вытяжных вентиляторах. Другие виды электродвигателей в этой области не применяют, так как большой крутящий момент тут излишен.

    Достоинства, недостатки, область применения

    Как уже говорили, асинхронные двигатели популярны и в основном модели с короткозамкнутым ротором. Плюсов несколько. Первый – нет коллектора, что упрощает конструкцию, мотор требует более простого и редкого обслуживания. Второй – их можно подключать к сети напрямую. Во время старта потребление тока сильно возрастает (в 3-7 раз по сравнению с номинальным), го такие перегрузки допустимы. Третий – конструкция проста и следовательно недорога.

    Область применения асинхронных двигателей промышленные процессы, оборудование. Особенно там, где нет необходимости в высоких скоростях и в изменении скорости. Максимальная скорость, которую может развить подобный движок – 3 тыс. об /мин. Не так много, но для большинства оборудования достаточно. Регулируется скорость у такого движка слабо. Можно понизить напряжение и скорость уменьшится. Но если напряжение будет слишком низким, вырастет отставание скорости ротора от скорости магнитного поля, что приведёт к перегреву и двигатель может перегореть.

    Область применения двигателей переменного тока – приводить в действие оборудование на производстве

    В настоящее время решена проблема регулирования скорости асинхронных двигателей. Их используют совместно с преобразователями частоты, подавая напряжение с них или встраивают этот блок в конструкцию, получая так называемые инверторные двигатели. В большинстве случаев, это именно асинхронники, питание которых осуществляется через встроенный преобразователь. Что позволяет менять скорость в ещё более широких пределах, чем это позволяет делать двигатель постоянного тока. Причём может регулироваться и момент, уходит проблема стартовых токов, выключать движок тоже можно «мягко».

    Синхронные электродвигатели

    Статор синхронного двигателя переменного тока сделан практически так же, как и асинхронного. Разница между ними в устройстве ротора. Он состоит из постоянных магнитов. Они могут быть закреплены на поверхности или встроены внутрь. Так что виды электродвигателей, синхронный от асинхронного, можно отличить по ротору.

    Когда на обмотки статора подаётся питание, возникает вращающееся магнитное поле. Магнитное поле ротора постоянное и при их взаимодействии возникает крутящий момент, который и «проталкивает» ротор. Во время работы постоянное поле магнитов на роторе «сцепляется» с вращающимся магнитным полем статора, потому их скорости вращения одинаковы и скоростью ротора легко управлять. Но это явление затрудняет пуск. Ротор «сцепится» с полем статора только, если будет иметь ту же скорость.

    Ротор синхронного двигателя постоянного тока сделан из магнитов

    У синхронных электродвигателей есть одна проблема – их сложно завести. Скорость вращения ротора должна быть равна скорости поля статора или так, или никак. Сразу, со старта он развить такую скорость просто не может, потому поле статора просто «соскальзывает». В результате ротор, при старте просто подрагивает, но не вращается. Говорят двигатель «не синхронизировался». Проблема обычно решается устройством на роторе специальной пусковой обмотки асинхронного типа. С её помощью вал разгоняется, затем пусковая обмотка отключается, а постоянное поле магнитов синхронизирует частоту вращения.

    Достоинства, недостатки, применение

    Как вы уже, наверное, поняли, скорость синхронного двигателя никак не регулируется. В смысле, можно изменять скорость магнитного поля статора, а оно зависит от частоты. До изобретений полупроводниковых приборов это было сложно, хлопотно и неэффективно. Несмотря на стабильность работы, простоту конструкции, применялись они мало. Во-первых, трудно запустить; во-вторых, нет возможности регулировать скорость. Другие виды электродвигателей были более популярны.

    С изобретением частотного преобразователя проблема исчезла. Частоту трехфазного тока с их помощью можно менять от 1 Гц до 500 Гц, так что и пределы регулировки асинхронного двигателя тоже могут быть более чем значительны. Причем характеристики этой «пары» практически такие же, как и у двигателей постоянного тока. Потому сейчас синхронные двигатели с частотными преобразователями активно заменяют другие виды электродвигателей, например, ставят вместо коллекторного привода. Пример тому стиральные машины с прямым приводом, кулеры охлаждения. Стали менять и двигатели постоянного тока, появились новые электропоезда с синхронными двигателями и частотными преобразователями.

    Принцип преобразования энергии

    Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

    Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

    Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.


    Картинка кликабельна.

    Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

    • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
    • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
    • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

    Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

    После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

    Виды электродвигателей: какой лучше

    Описаны только основные виды электродвигателей и даны краткие характеристики, очень сжато описано устройство и принцип работы. Тем не менее, уже можно сделать выводы о том, что идеального решения, причём для всех случаев, просто нет. Есть наиболее подходящее для каждого конкретного случая.

    • Асинхронный электродвигатель без частотного регулирования – лучший выбор для насосов.
    • Коллекторный двигатель с его регулируемыми скоростями вне конкуренции для дрелей и пылесосов. И то, в последнее время стали делать с вентильными, они без щеток, что делает работу тише, срок службы дольше, хотя цену выше. Так что, тут, как посмотреть.

      Выбирать вид электродвигателя надо под каждый конкретный случай

    • Для вентиляторов с длительным режимом работы выбирать приходится между асинхронных и вентильных. Но только если они не слишком мощные. Для мощных важным является возможность разделения на секции, а это проще реализовать у вентильных. И даже на кулерах стали в последнее время использовать вентильные с магнитным ротором.

    В общем, чтобы ответить какой лучше, надо рассматривать совокупность условий и характеристик работы. Принимать во внимание достоинства и недостатки, перебирать все виды электродвигателей и только так можно найти оптимальный.

    Двигатель Лазарева

    Устройство двигателя Лазарева

    Отечественный разработчик Николай Лазарев создал работающий и довольно простой вариант агрегата, использующего магнитную тягу. Его двигатель или роторный кольцар, состоит из емкости, разделенной пористой перегородкой потока на верхнюю и нижнюю части. Они сообщаются между собой за счет трубки, по которой из нижней камеры в верхнюю идет поток воды/жидкости. В свою очередь поры обеспечивают гравитационное перетекание вниз. Если под потоком жидкости поместить колесико, на лопастях которого будут закреплены магниты, то получиться добиться цели потока – вращения и создания постоянного магнитного поля. Схема роторного двигателя Николая Лазарева используется для расчета и сборки простейших самовращающихся устройств.

    Устройства для самолетов

    Работа двигателей данного типа построена на принципе электромагнитной индукции. Для этого статоры применяются трехполюсного типа. Также электромагнитные двигатели летательных аппаратов включают в себя бесщеточные коллекторы. Клеммные коробки в устройствах располагаются над контактными кольцами. Неотъемлемой частью статора является якорь. Вал вращается благодаря роликовым подшипникам. У некоторых модификаций применяются щеткодержатели. Также важно упомянуть о различных типах клеммных коробок. В данном случае многое зависит о мощности модификации. Электромагнитные двигатели для самолетов с целью охлаждения оборудуются вентиляторами.

    Статор элетродвигателя

    Статор – это неподвижный электрический компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых всё время меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.

    Все статоры устанавливаются в раму или корпус. Корпус статора электродвигателей Grundfos для электродвигателей мощностью до 22 кВт чаще всего изготавливается из алюминия, а для электродвигателей с большей мощностью – из чугуна. Сам статор устанавливается в кожухе статора. Он состоит из тонких пластин электротехнической стали, обмотанных изолированным проводом. Сердечник состоит из сотен таких пластин. При подаче питания переменный ток проходит по обмоткам, создавая электромагнитное поле, перпендикулярное проводникам ротора. Переменный ток (AC) вызывает вращение магнитного поля.

    Изоляция статора должна соответствовать требованиям IEC 62114, где приведены различные классы защиты (по уровням температуры) и изменения температуры (AT). Электродвигатели Grundfos имеют класс защиты F, а при увеличении температуры – класс B. Grundfos производит 2-полюсные электродвигатели мощностью до 11 кВт и 4-полюсные электродвигатели мощностью до 5,5 кВт. Более мощные электродвигатели Grundfos закупает у других компаний, уровень качества продукции которых соответствует принятым в Grundfos стандартам. Для насосов, в основном, используются статоры с двумя, четырьмя и шестью полюсами, так как частота вращения вала электродвигателя определяет давление и расход насоса. Можно изготовить статор для работы с различными напряжениями, частотами и мощностями на выходе, а также для переменного количества полюсов.

    Бесколлекторные модификации

    Бесколлекторные модификации в наше время не являются распространенными. Используются они для вентиляционных систем. Отличительной их особенностью считается бесшумность. Однако следует учитывать, что модели выпускаются небольшой мощности. В среднем указанный параметр не превышает 12 кВт. Статоры в них часто устанавливаются двухполюсного типа. Валы используются короткие. Для ограждения ротора применяются специальные уплотнители. Иногда двигатели заключаются в кожух, у которого имеются вентиляционные каналы.

    Краткий обзор известных конструкций

    Среди большого количества конструкций магнитных двигателей можно выделить следующие:

    1. Двигатели магнитного типа Калинина. Конструкция полностью неработоспособна, так как не доведен до ума механизм пружинного компенсатора.
    2. Магнитно-механический мотор конструкции Дудышева. Если произвести грамотную доводку, то такие двигатели могут работать практически вечно.
    3. «Перендев» — электромагнитные моторы, выполненные по классической схеме. На роторе устанавливается компенсатор, но он не способен работать без коммутации при прохождении мёртвой точки. А чтобы ротор проходил мертвую точку удержания, можно выполнить коммутацию двумя вариантами — с помощью электромагнита и механического устройства. Такая конструкция не может претендовать на звание «вечный двигатель». Да и у простого асинхронного двигателя электромагнитный момент окажется значительно выше.
    4. Электромагнитные двигатели конструкции Минато. Выполненный по классической схеме, представляет собой обычный электромагнитный мотор, у которого очень высокий коэффициент полезного действия. С учётом того, что конструкция не может достичь КПД в 100 %, она не работает как «вечный двигатель».
    5. Моторы Джонсона являются аналогами «Перендев», но у них меньше энергетика.
    6. Мотор-генераторы Шкондина представляют собой конструкцию, которая работает при помощи силы магнитного отталкивания. Компенсаторы в моторах не используются. Не способны работать в режиме «вечного двигателя», коэффициент полезного действия не более 80 %. Конструкция очень сложная, так как в ней присутствуют коллектор и щеточный узел.
    7. Наиболее совершенным механизмом является мотор-генератор конструкции Адамса. Это очень известная конструкция, работает по такому же принципу, как и мотор Шкондина. Вот только в отличие от последнего, отталкивание происходит от торца электромагнита. Конструкция устройства намного проще, нежели у Шкондина. Коэффициент полезного действия может составлять 100 %, но в том случае, если производить коммутацию обмотки электромагнита при помощи короткого импульса с высокой интенсивностью от конденсатора. В режиме «вечного двигателя» работать не может.
    8. Электромагнитный двигатель обратимого типа. Магнитный ротор находится снаружи, внутри установлен статор из электромагнитов. Коэффициент полезного действия приближается к 100 %, так как магнитопровод разомкнут. Такой электромагнитный соленоидный двигатель способен работать в двух режимах – мотора и генератора.

    Категория размещения и климатическое исполнение

    Все электродвигатели производят с учетом воздействия во время эксплуатации определенных факторов окружающей среды. По этой причине все электрические машины подразделяют на следующие категории размещения:

    • Для помещений с высоким уровнем влажности.
    • Для помещений закрытого типа с вентиляцией естественного типа без искусственного регулирования климатических параметров. При этом ограничено воздействие пыли, влаги и УФ- излучения.
    • В условиях открытого пространства.
    • Для помещений закрытого типа с искусственным регулированием климатических параметров. При этом ограничено воздействие пыли, влаги и УФ-излучения.
    • Для помещений с изменением влажности и температуры, которые не отличаются от изменений на улице.

    В зависимости от климатического исполнения в соответствии с требованиями ГОСТ 15150 — 69 все электрические двигатели подразделяют на следующие типы исполнения:

    • Все возможные макроклиматические районы (В).
    • Холодный (ХЛ).
    • Все морские районы (ОМ).
    • Сухой тропический (ТС).
    • Общий (О).
    • Умеренный (У).
    • Умеренный морской (М).
    • Влажный тропический (ТВ).

    Категория размещения и климатическое исполнение указывают в условном обозначении электродвигателя на его бирке и в паспорте.

    Синхронные устройства

    Схема синхронного двигателя включает в себя двухполюсный статор, а также щеточный коллектор. В некоторых устройствах применяется магнитопровод. Если рассматривать бытовые модификации, то в них используются щеткодержатели. В среднем параметр мощности составляет 30 кВт. Устройства с вентиляторами встречаются редко. У некоторых моделей применяются зубчатые передачи.

    Для охлаждения двигателя на кожухе имеются вентиляционные отверстия. В данном случае стопорное кольцо устанавливается у основания вала. Обмотка используется низковольтного типа. Принцип работы синхронной модификации построен на индукции электромагнитного поля. Для этого в статоре устанавливаются магниты разной мощности. При возбуждении обмотки вал начинается вращаться. Однако частотность у него невысокая. Мощных модели имеют коллекторы с реле.

    Модели с параллельным возбуждением

    Электромагнитные двигатели данного типа изготавливаются на базе щеточных коллекторов. Якоря в данном случае отсутствуют. Вал в устройствах крепится на роликовых подшипниках. Также для уменьшения силы трения используются специальные лапы. У некоторых конфигураций есть магнитопроводы. Подключаться модели могут только к сети с постоянным током.

    Еще важно отметить, что на рынке в основном представлены трехтактные модификации. Щеткодержатели в устройствах выполнены в форме цилиндров. По мощности модели отличаются. В среднем параметр рабочего тока на холостом ходе не превышает 50 А. Для усиления электромагнитного поля применяются роторы с высоковольтной обмоткой. У некоторых конфигураций используются наконечники на магнитопроводах.

    Патенты на электромагнитные машины

    Многие инженеры уже запатентовали свои конструкции двигателей. Но вот только реализовать работоспособный вечный двигатель ещё никто не смог. Такие устройства ещё не освоены, редко внедряются в технику, встретить в продаже их вряд ли получится. Намного чаще используются электромагнитные клапаны (дизельные двигатели работают под управлением электроники стабильнее и способны выдать большую мощность). Некоторые конструкторы уверены, что до серийного выпуска не доводятся электромагнитные двигатели, потому что все разработки засекречиваются. И большинство проблем в таких двигателях до сих пор не решены полностью.

    Рейтинг
    ( 2 оценки, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]