Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.
Схема подключения однофазного двигателя через конденсатор
При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.
- 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
- 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
- 2 схема – подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Устройство асинхронных движков
В асинхронном двигателе, как и везде, есть статор и ротор. Такой мотор может быть трех или однофазным. Ниже мы рассмотрим однофазную машину, так речь в этой статье именно о ней.
Асинхронные двигатели характерны низким уровнем шума, поэтому их ставят в те приборы, тихая работа которых очень важна. Примером может быть холодильник, кондиционер, сплит-система.
Однофазные двигатели можно поделить на еще два подвида: бифилярные (те, в которых есть пусковая обмотка) и конденсаторные. Их основная разница (мы это уже обсуждали) состоит в продолжительности работы вспомогательных обмоток. В первом случае обмотка выключается сразу после разгона двигателя. Происходит это с помощью специального центробежного выключателя. Важно выключать пусковую обмотку из-за того, что она снижает КПД машины после пуска и даже может привести к его поломке.
Конденсаторные двигатели характерны тем, что пусковая обмотка в них работает даже после начала работы мотора. Обе они расположены перпендикулярно друг другу. Это и позволяет менять направление вращения ротора. Сам конденсатор, как правило, крепят к корпусу привода, что делает его легким для опознавания.
Точнее определить бифилярный или конденсаторный привод можно измерив сопротивление обмоток. Если показатель во вспомогательной обмотке меньше, чем в рабочей хотя бы в два раза – это, скорее всего, говорит о бифилярности машины, а также о том, что эта обмотка является пусковой. Из этого вывода понятно, что должно быть наличие центробежного выключателя или пускового реле.
Во втором типе однофазных приводов две обмотки всегда в работе, а значит, включаются они с помощью кнопки, тумблера или автомата.
Если мотор был запущен успешно, но вал начал вращаться не в ту сторону, в которую надо, направление его вращения можно изменить. Для этого нужно изменить обмотки пусковой обмотки. Сделать это можно с помощью двухпозиционного переключателя. На его центральный контакт нужно подключить конденсаторный вывод, а на два остальных выводы от фазы и «нуля».
Схема подключения трёхфазного двигателя через конденсатор
Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.
Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В – обязательно подключайте к нему – это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.
Полезное: Схема подключения люстры с 5 лампами и её ремонт
Как работает
Однофазный двигатель на 220В с конденсатором может обладать мощностью от 5 Вт до 10 кВт. Все зависит от конструктивных особенностей машины. Ротор такого привода, как правило, представляет собой короткозамкнутую обмотку по типу «беличьей клетки». Это алюминиевые стержни, залитые в пазы и замкнутые накоротко.
Обмотки в таком приводе две, несмотря на его название. Они всегда смещены относительно друг друга на 90°. При этом больше места в статоре занимает так называемая главная обмотка.
Однофазный двигатель получил такое имя из-за того, что вместе с двигателем работает только одна, главная (или рабочая), обмотка. По ней протекает переменный ток, создающий магнитное поле, которое время от времени меняется. Можно сказать, что оно состоит из двух полей, которые вращаются навстречу друг другу, а их амплитуда при этом одинаковая.
Схематическое расположение обмоток
Закон электромагнитной индукции говорит о том, что магнитные потоки в замкнутых роторных витках вызывают появление индукционного тока. Последний, в свою очередь, взаимодействует с тем полем, которое его порождает. Если все моменты сил, которые действуют на ротор равны нулю, деталь не двигается.
А с началом вращения описанное равенство будет тут же нарушено. Это связано со скольжением витков ротора. Оно будет отличным относительно вращающегося магнитного поля. Следовательно, сила Ампера, которая действует на замкнутые роторные витки со стороны прямого магнитного поля станет больше, чем со стороны обратного магнитного поля.
Возникновение индукционного тока в замкнутых роторных витках возможно только в случае, когда витки пересекают силовые линии поля. Чтобы это произошло, скорость вращения витков должна быть немного меньше той, с которой вращается поле.
Это и послужило источником названия электроприводов такого типа. Их именовали асинхронными.
Механическая нагрузка обратно пропорциональна скорости вращения. Это значит, что если увеличивается величина нагрузки, уменьшается скорость вращения. Величина индукционного тока в роторных витках при этом увеличивается. Из этого следует увеличение и механической мощности привода, а также мощности переменного тока, который он потребляет.
Внешний вид обмотки
Подведем небольшой промежуточный итог:
- Электроток – причина возникновения пульсирующего магнитного поля в статоре двигателя. Его можно рассматривать как два отдельных поля, которые вращаются навстречу с равной амплитудой.
- Если ротор не двигается, оба поля становятся причиной появления моментов, равных нулю, но разнонаправленных.
- Когда ротор начинает вращаться в одну из сторон, один из моментов будет преобладать над другим, то есть, вращение двигателя будет происходить только в заданную сторону.
- При отсутствии специальных механизмов пуска в двигателе, во время старта соответствующий момент будет нулевым, то есть привод не начнет вращаться.
Онлайн расчет емкости конденсатора мотора
Введите данные для расчёта конденсаторов – мощность двигателя и его КПД |
Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:
Рабочий конденсатор берут из расчета 0,8 мкФ на 0,1 кВт мощности двигателя; Пусковой подбирается в 2-3 раза больше.
Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.
Пусковые конденсаторы для моторов
Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.
Как запускается
- Фактически, двигатель запускает магнитное поле. Оно начинает вращать ротор – подвижный элемент мотора. Создается оно с помощью двух обмоток: рабочей и пусковой. Пусковая (вспомогательная) по размеру меньше. К электросети ее подключают через индуктивность или емкость. Включается она только в момент запуска. Маломощные моторы обладают замкнутой накоротко пусковой обмоткой.
- Осуществление запуска делается с помощью нажатия на кнопку пуска. Ее удерживают несколько секунд, пока ротор разгоняется.
- Когда кнопка запуска отпускается, перестает работать пусковая обмотка, то есть двигатель переходит в двухфазный режим работы. Его поддерживает соответствующая компонента переменного магнитного поля.
- Пусковая обмотка работает достаточно малое количество времени. Обычно, не более трех секунд. Если увеличить время работы вспомогательной обмотки, двигатель перегреется, что станет причиной возгорания изоляции или поломки всего мотора. Своевременное нажатие пусковой кнопки очень важный момент в работе с однофазным двигателем.
- В электродвигателях обычно имеется центробежный выключатель или тепловое реле. Это повышает надежность корпуса машины.
- Центробежный выключатель нужен для отключения вспомогательной обмотки во время набора скорости ротором. Пользователь в это не вмешивается, так как процесс полностью автоматизирован.
- Тепловое реле нужно, чтобы отключить обе обмотки в случае их перегрева.
Реверс однофазных синхронных машин
Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.
Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.
В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:
- Сетевое напряжение подается на клеммы W2 и V1.
- Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
- Концы второй обмотки подключают к клеммам W2 и V2.
- Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
- Клемма W1 остается свободной.
Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».
Выводы
Как можно заметить, реверс однофазного двигателя не является чем-то сложным — наоборот, он широко используется во многих системах и механизмах как часть работы движка. Однако в тех случаях, когда обратное вращение не предусмотрено, приходится искать альтернативный способ реверсировать вращение. В зависимости от конструкции мотора, сделать это можно без разбора всего механизма. Важно только проводить работу с большим вниманием к деталям и со знанием дела, начертить схему, чтобы не возникало проблем и аварийных ситуаций в будущем.
Реверс коллекторных двигателей
Схема включения его обмоток аналогична той, что используется в двигателях постоянного тока с последовательным возбуждением. Одна токоснимающая щетка коллектора подключается к обмотке статора, а питающее напряжение подается на другую щетку и второй вывод статорной обмотки.
При изменении положения штепсельной вилки в розетке происходит одновременная переполюсовка магнитов ротора и статора. Поэтому направление вращения не изменяется. Так же, как это происходит в двигателе постоянного тока при одновременном изменении полярности питающего напряжения на обмотке возбуждения и якоря. Изменить порядок следования фаза – ноль надо только в одном элементе электрической машины – коллекторе, который обеспечивает не только пространственное, но электрическое разделение проводников – обмотки якоря изолированы друг от друга. На практике это выполняется двумя способами:
- Физической переменой места установки щеток. Это нерационально, поскольку связано с необходимостью внесения изменений в конструкцию устройства. Кроме того, приводит к преждевременному выходу щеток из строя, поскольку форма выработки на их рабочем конце не совпадает с формой поверхности коллектора.
- Изменением положения перемычки между щеточным узлом и обмоткой возбуждения в клеммной коробке, а также точки подключения сетевого провода. Можно реализовать с помощью одного многопозиционного выключателя или двух магнитных пускателей.
Не забудьте, что все работы по перестановке перемычек в клеммной коробке или подключению схемы реверсирования должны проводиться при полностью снятом напряжении.
Источник: electriktop.ru
Смена направления движения привода
По факту, пусковая обмотка в двигателе нужна для того, чтобы заставить ротор двигаться, ведь он может начать вращение только с посторонней помощью. Иначе его не запустить.
Обе обмотки, рабочая и пусковая, располагаются на статоре, как уже было сказано, перпендикулярно друг другу. Но вот рабочая фаза места занимает в два раза больше, чем пусковая. Ротор в таком двигателе имеет наиболее простую конструкцию. Как правило, это «беличья клетка».
А что было бы при отсутствии вспомогательной обмотки на статоре однофазного двигателя 220В? Что если не подавать туда ток? В таком случае, во время подключения привода к сети в главной обмотке будет возникать магнитное поле и оно будет пульсировать. Ротор при этом начинает пронизывать изменяющийся магнитный поток. Вот только если ротор не был в движении с самого начала, а подача переменного тока будет идти только в главную обмотку, то деталь и не заработает. Все потому что вращательный момент по часовой стрелке и против будет нулевым, то есть причин для начала вращения не будет. Даже несмотря на то, что в роторе будет индуцироваться ЭДС.
А вот есть ротор и вал немного подтолкнуть, он будет продолжать вращаться в заданном стартовым толчком направлении. На это будет две причины:
- возникновение ЭДС и соответствующих токов в роторе, которые отталкиваются от магнитного поля согласно закону Ампера;
- величина результирующего момента по направлению толчка будет больше, чем против его направления.
Как итог – ротор продолжит вращаться.
Чтобы получить реверс однофазного двигателя 220В с емкостью, нужно лишь позаботиться о подаче пускового толчка в противоположном от изначального направления. Этого можно достигнуть, изменить относительный порядок, в котором чередуются фазы в рабочих и пусковых обмотках.
Чтобы обеспечить подобные условия, потребуется переключение одной из двух обмоток. Другими словами, «полярность» включения выводов обмотки в сеть и конденсатор нужно изменить. Реализация достаточно проста, ведь на однофазных движках всегда есть клеммники, куда выводятся все концы обмоток. Главная обмотка характерна маленьким сопротивлением относительно пусковой, так что обнаружить их с мультиметром в режиме омметра очень легко.
Лучше всего вывести концы вспомогательной обмотки на переключатель с двумя полюсами без фиксации.
Схема реверса — реализация на практике
Чтобы ротор начал вращаться в противоположную сторону, необходимо поменять вторую и третью фазу местами. Отметим, что сначала он будет продолжать двигаться в первоначальном направлении по инерции, и лишь спустя некоторое время перейдёт в состояние равновесия, из которого сменит направленность.
Полярность пусковой обмотки, необходимой для задания направления, можно выполнить по схеме с использованием специального управляющего тумблера. Прежде всего его необходимо подобрать, исходя из разрешённого напряжения мотора и токовой нагрузке, а также необходимых зафиксированных положений — 2 или 3. Ток на тумблер стоит выводить от стартовой обмотки, поскольку она работает не так долго и в целом экономит ресурс. Таким образом можно сократить расходы на обслуживание всей системы и контактной группы в частности.
Специалисты советуют выполнять реверс асинхронного двигателя следующим образом:
- если пуск предполагается тяжёлый, то его можно упростить при помощи добавочного конденсатора. Это актуально только для схем, которые используют подключение с самовозвратом ПНВ. Тогда тумблер реверса будет осуществлять включение только если ротор заторможен, но не во время работы, повышая эффективность и стабильность системы;
- посадочное место тумблера для реверса должно быть защищено от случайного срабатывания. Поскольку это сопровождается огромными скачками тока, подобное позволит сэкономить энергию и моторесурс двигателя;
- если механизм не выполняет реверс нужным образом, то после подключения нужно проверить правильность подключения проводов — нередко клеммы путают и вся схема сбивается. Также работоспособность зависит от целостности проводки.
С учётом того факта, что даже мельчайшие проблемы могут привести к сбою работы реверса, важно хорошо проверить весь механизм перед запуском. Это позволить избежать поломок и аварийных ситуаций.
Реверс трехфазных асинхронных машин
Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.
Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.
Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6. Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей. Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.
На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:
- один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
- С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
- С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.
Подробнее о схемах подключения магнитных пускателей для трехфазных электродвигателей читайте здесь.
Вариант 3: смена пусковой обмотки на рабочую, и наоборот
Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.
На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.
В этом случае поступают так:
- Снимают конденсатор с начального вывода А;
- Подсоединяют его к конечному выводу D;
- От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).
Читать также: Паук для подъема грузов
Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.
Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:
- Длина пусковой и рабочей намоток одинакова;
- Площадь их поперечного сечения соответствует друг другу;
- Эти провода изготовлены из одного и того же материала.
Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.
Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.
Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.
Вариант 1: переподключение рабочей намотки
Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:
- Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
- Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.
Читать также: Ремонт светодиодных светильников эра своими руками
В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.