Защитное заземление и зануление в электроустановках

Заземление электроустановки — преднамеренное электрическое соединение ее корпуса с заземляющим устройством.

Заземление электроустановок бывает двух типов: защитное заземление и зануление, которые имеют одно и тоже назначение — защитить человека от поражения электрическим током, если он прикоснулся к корпусу элекроустановки или других ее частей, которые оказались под напряжением.

Защитное заземление — преднамеренное электрическое соединение части электроустановки с заземляющим устройством с целью обеспечения электробезопасности. Предназначено для защиты человека от прикосновения к корпусу электроустаноувки или других ее частей, оказавшихся под напряжением. Чем ниже сопротивление заземляющего устройства, тем лучше. Чтобы воспользоваться преимуществами заземления, надо купить розетки с заземляющим контактом.

В случае возникновения пробоя изоляции между фазой и корпусом электроустановки корпус ее может оказаться под напряжением. Если к корпусу в это время прикоснулся человек — ток, проходящий через человека, не представляет опасности, потому что его основная часть потечет по защитному заземлению, которое обладает очень низким сопротивлением. Защитное заземление состоит из заземлителя и заземляющих проводников.

Есть два вида заземлителейестественные и искусственные.

К естественным заземлителям относятся металлические конструкции зданий, надежно соединенные с землей.

В качестве искусственных заземлителей используют стальные трубы, стержни или уголок, длиной не менее 2,5 м, забитых в землю и соединенных друг с другом стальными полосами или приваренной проволокой. В качестве заземляющих проводников, соединяющих заземлитель с заземляющими приборами обычно используют стальные или медные шины, которые либо приваривают к корпусам машин, либо соединяют с ними болтами. Защитному заземлению подлежат металлические корпуса электрических машин, трансформаторов, щиты, шкафы.

Защитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. При повреждении изоляции ток замыкания протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека. Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество искусcтвенных заземлителей.

Зануление — преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью с нулевым проводом. Это приводит к тому, что замыкание любой из фаз на корпус электроустановки превращается в короткое замыкание этой фазы с нулевым проводом. Ток в этом случае возникает значительно больший, чем при использовании защитного заземления. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления.

Различают нулевой рабочий проводник и нулевой защитный проводник.

Нулевой рабочий проводник служит для питания электроустановок и имеет одинаковую с другими проводами изоляцию и достаточное сечение для прохождения рабочего тока.

Нулевой защитный проводник служит для создания кратковременного тока короткого замыкания для срабатывания защиты и быстрого отключения поврежденной электроустановки от питающей сети. В качестве нулевого защитного провода могут быть использованы стальные трубы электропроводок и нулевые провода, не имеющие предохранителей и выключателей.

Заземление

Начнем с разбора каждой системы по отдельности.

Так, заземление – это преднамеренное соединение электрической сети, прибора или оборудования со специальной конструкцией, закопанной в землю посредством нулевого проводника.

По сути, это единая система, соединяющая между собой токопроводящие элементы приборов и оборудования (к примеру, их корпусы), подсоединенные к ним провода, и штыри, закопанные в землю (контур).

Благодаря высокому сопротивлению контура при касании фазного провода на корпус в случае пробоя, большая часть напряжения уходит в землю, и хоть потенциал все же будет оставаться на корпусе, но его значение будет значительно сниженным и неопасным для человека.

Международный стандарт, разработанный МЭК, включает в себя несколько систем заземления, различия между которыми сводится к разным видам заземления источника питания (генератора или трансформаторной подстанции), и заземления открытых участков сети, приборов.

В стандарт входит три системы – TN, TT и IT.

Первая буква индекса указывает на тип заземления источника (T – «земля), получается, что в первых двух системах трансформаторная подстанция подключается к заземляющему контуру.

Что касается третьей (IT), то у нее источник питания заизолирован, либо же подключен к прибору, обеспечивающему высокое сопротивление (I – изоляция).

Вторая буква индекса указывает на тип заземления открытых участков сети. В системе TN (N — нейтраль) эти участки соединены с нейтральным проводником источника, подключенного к заземляющему контуру (глухое заземление нейтрали).

Для соединения оборудования и приборов используются рабочий (N) и защитный (PE) нулевые проводники.

Что касается двух других систем – TT и IT, то второй буквенный индекс указывает на то, что открытые участки сети, оборудование и приборы заземляются своим отдельным контуром.

В свою очередь система TN делится на подсистемы, их три – TN-C, TN-S, TN-C-S.

Различия между ними сводятся к использованию разных защитных проводников, которыми потребители соединяются с нейтралью источника.

В подсистеме TN-C используется объединенный проводник (PEN), совмещающий в себе и рабочий, и защитный «нуль». Эта подсистема является уже устаревшей, поэтому при укладке новых электросетей она не используется.

Подсистема TN-S отличается тем, что у нее рабочий и защитный «нули» — это разные проводники. То есть, к нейтрали подключается N-проводник, а к заземляющему контуру – PE-проводник, хоть они совмещены на источнике питания.

Третья подсистема – TN-C-S является промежуточным звеном между первыми двумя подсистемами. У нее от нейтрали отходит PEN-проводник, то есть нулевые проводники объединены, но на определенном участке сети они разделяются и к потребителям подходит отдельно рабочий и защитный «нули». После разделения защитный «нуль» дополнительно заземляется.

Более подробно о системах заземления, их достоинствах и недостатках можно почитать здесь https://elektrikexpert.ru/sistemy-zazemlenij.html.

Требования, выдвигаемые заземлению достаточно серьезные. Ведь оно должно обеспечить отвод опасного напряжения с прибора или оборудования в случае пробоя.

Заземление в обязательном порядке делается для сетей, в которых напряжение выше 42 В переменного тока или 110 В – постоянного тока.

Поэтому при проектировании должны правильно подбираться части сети и оборудования, которые подлежат обязательному заземлению, осуществляться контроль за тем, чтобы заземляющая цепь нигде не прерывалась.

Серьезно подходят и к выбору проводников, их сечение должно обеспечивать соответствующую пропускную способность.

Все требования, которые выдвигаются системам заземления прописаны в ПУЭ (Правила устройства электроустановок).

Здесь можно подробнее узнать, как сделать заземление в частном доме.

Зануление

А теперь по занулению. В определении этого термина указывается, что зануление – преднамеренное соединение токопроводящих, но не находящихся под напряжением, элементов приборов и оборудования с глухозаземленной нейтралью (трехфазные трансформаторы), выводом источника тока (однофазный трансформатор), средней точкой источника, подающего постоянный ток.

То есть, корпус любого прибора, подключенного к сети, должен быть дополнительно соединен с нейтралью источника питания.

Для систем TT и IT зануление не применяется, поскольку для заземления потребителей используется отдельный контур.

Заземляющее устройство – что это: будет интересно каждому

Заземляющее устройство – это система, включающая непосредственно заземлитель и заземляющие проводники, которые используются для соединения бытовой техники с заземлителем. Заземляющие устройства принято разделять на следующие типы:

  1. Рабочий, позволяющие обеспечить бесперебойную работу оборудования;
  2. Защитный. Обеспечивает безопасную работу приборов;
  3. Грозозащитный, позволяющий отвести разряд молнии в молниеотвод или разрядник.

Также заземление принято делить на:

  • Искусственное, изготавливаемое специально для защиты от напряжения. Состоит из металлических стержней и провода, труб некондиционного типа, стальных уголков. Специалисты рекомендуют выбирать стальные полосы или уголки толщиной минимум 4 мм, пруты диаметром от 10 мм и длиной более 10 м;
  • Естественное. Такие металлические конструкции изначально изготавливались для других целей, но могут использоваться для защиты от напряжения. Тем, кто впервые столкнулся с понятием естественный заземлитель, что является определением данного термина – будет интересно. Сюда относятся изделия из железобетона, трубопроводы, осадные трубы. Исключение составляют системы, предназначенные для транспортировки газа и горючей жидкости.


Заземляющее устройство может быть в виде полосы
В условном обозначении к заземляющему устройству можно определить его тип. Первая буква показывает:

  • Т – источник питания соединяется с землей напрямую;
  • I – токоведущие элементы изолируются от земли.

Второй символ в условном обозначении показывает:

  • Т – открытые детали, находящиеся под напряжением, должны быть заземлены, независимо от их связи с грунтом;
  • N – открытые части, находящиеся под напряжением, защищаются от источника питания через глухозаземленную нейтраль.

Буквы, следующие в условном обозначении через тире после N, отражают характер связи и метод обустройства проводников:

  • S – защиту РЕ нулевого и N-рабочего проводников выполняют раздельными проводами;
  • С – защита выполнена одним проводом.

Особенности зануления в квартире

У потребителя часто возникает вопрос: что необходимо занулять в квартире, а чего делать не следует? Коротко ответим на этот вопрос. Сначала расскажем чего делать не следует. Зануление в квартире не рекомендуется использовать для изделий, которые заземлены через трубы. К ним относятся металлические ванны, умывальники, смесители и другие предметы, связанные с землей через стальные трубы. В случае зануления этих изделий можно получить поражение электрическим током при включении бытовой техники. Выравнивать потенциалы металлических предметов на кухне, в ванной и туалете следует используя заземление.

Все бытовые приборы в квартире необходимо занулять. В новых домах эта проблема, как правило, решена, так как нейтраль уже подведена к розеткам, а все современные бытовые приборы имеют вилку с заземляющим контактом. В старых домах электропроводка выполнена по двухпроводной схеме. В этом случае для зануления бытовой техники необходимо завести отдельный провод от квартирного электрического щитка, что позволит занулить оборудование через розетки.

В каких случаях необходимо заземление?

Так зачем нужно заземление? Для наглядности стоит рассмотреть несколько примеров:

1. К примеру, в квартире установлена посудомоечная машина. Но по какой-то причине в определенный момент на корпусе появилась фаза, и корпус не заземлен. Но нейтраль линии электропередачи, которая ведет к дому и дает электричество — заземлена, также под заземлением краны и батареи.

Если надеты резиновые тапочки, то при соприкосновении никаких неприятных ощущений и даже малейшего удара не будет. Но вот если нет обуви, и при этом человек еще и схватился за кран, а вторая рука расположена на корпусе, то он становится проводником электрического тока, который подается через корпус на человека, и далее в землю на нейтраль, и на подстанцию.

2. Если посудомоечная машина заземлена? Что произойдет в такой ситуации? Если по каким-то причинам на корпусе появится ноль, то ток сразу уйдет в грунт. Хоть человек босой, хоть в тапочках, ничего не произойдет, заземление сработало, никакого поражения электрическим током все целы и невредимы. Один недостаток, посудомоечную машину нужно будет ремонтировать, но все равно это будет дешевле и лучше.

3. В помещении поломалась стиральная машина, и корпус оборудования находится под напряжением. При соприкосновении с корпусом в таком случае человек получит удар током. Вот зачем нужно заземление, тогда ток уходит в землю и с человеком все хорошо.

Дело в том, что сопротивление человеческой кожи намного выше, чем сопротивление провода, и тогда ток идет по пути наименьшего сопротивления, попадает в землю, и человек остается в целостности. Это один из наиболее простых примеров, который и показывает, зачем нужно заземление в доме или другой постройке. Без такой системы риск получить удар электрическим током возрастает.

Мнение эксперта Евгений Попов Электрик, мастер по ремонту

Стоит брать в расчет еще один момент, особенно для владельца частного дома это крайне важная информация. Даже если сооружение построено из натурального материала, количество электрической проводки остается тем же что и в многоэтажном жилом здании, но натуральный материал отлично воспламеняется. Именно исходя из этого, система заземления в частном доме может предотвратить возникновение неприятных ситуаций и пагубных последствий.

Наиболее страшным событием, которое может произойти – это пожар, он возникает вследствие короткого замыкания или выхода из строя электрооборудования. То есть если возникает сомнения и вопросы по поводу того, зачем нужно заземление в частном доме, нужно осознавать, что подобная система защищает не только от возгораний, но и предотвращает от удара электрическим током каждого члена семьи.

Мнение эксперта Евгений Попов Электрик, мастер по ремонту

Ситуации могут быть довольно жуткими, но они являются наглядным примером того, к чему может привести халатность и пренебрежение техникой безопасности. Как видно, иногда последствия могут быть действительно самыми серьезными и пагубными.

Чем отличается заземление от зануления (видео)

Как вы заметили изготовить правильное заземление в доме очень легко. Такая система защиты является безопасной и долговечной. А вот для создания зануления вам необходимо обращаться к услугам специалиста, который выполнит установку самостоятельно. Так же необходимо проводить периодически осмотр своей системы защиты. Специалисты рекомендуют использовать защитную систему зануления, только в тех случаях, если вы проживаете в хрущевках. Думаем после изучения статьи и всех отличий вы разобрались в разнице между заземлением и занулением.

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком, нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

Заземление и зануление: отличие друг от друга

Рис 1

Заземление и зануление нужны для отвода напряжения, только происходит это различными способами (Рис 1). В конце статьи приведены схемы подключения TN — C, TN — S, TN — C — S.

Отличие первое – способ утилизации тока

Разница состоит в том, что зануление способствует мгновенному отключению электричества при касании человеком электро шнура или прибора, отводя ток однофазного короткого замыкания на вводной щит, а заземление мгновенно отводит опасное напряжение в почву.

Отличие второе – особенности монтажа

Монтаж заземления и зануления имеет разные степени сложности.

Устройство заземления в частном строении влечет за собой определенные монтажные работы, занимающие в среднем до одного рабочего дня. Приобрести готовые комплекты модульно-штыревого (глубинного) заземления либо выполнить их самостоятельно из допустимых материалов, четко следуя указаниям производителя либо требованиям к заземлению – довольно несложно. Непосредственно заглубление заземлителя можно доверить сервисным службам, имеющим специальное оборудование либо обойтись своими силами, обладая достаточным опытом и физической силой.

Относительно зануления, то сам по себе монтаж контура зануления выглядит нетрудоемким, но не стоит обманываться: при отсутствии должной квалификации электромонтера минимальный промах и незнание могут обернуться бедой.

Отличие третье – защита человека

Согласно правилам устройства электроустановок (ПУЭ), зануление может быть применено только для промышленных установок и не является в полной мере гарантией безопасности. При попадании фазы на открытую часть электроприбора или оборудования, ток никуда не девается. Происходит контакт двух фаз и короткое замыкание. Нейтраль нужна для скорого срабатывания защитного автомата при замыкании, но не для защиты человека от электроудара. Поэтому зануление рекомендуется к использованию на производстве, где при аварии требуется незамедлительное отключение питания.

Отличие четвертое – требования к профессионализму наладчика

Когда организуется зануление, то для того, чтобы верно распознать нулевые точки и подобрать способ защиты, крайне необходимо участие профессионального электрика. А вот грамотно собрать контур заземления и погрузить его в грунт по силам большинству домашних умельцев.

К сожалению, на практике довольно часто можно столкнуться с результатами вопиющей некомпетентности в вопросах зануления и электробезопасности в целом, беря во внимание, как частных наладчиков, так и электриков сервисных служб. А вот типичные и очень опасные ошибки кустарного зануления:

А вот типичные и очень опасные ошибки кустарного зануления:

  • подключение электроприбора с занулением к незануленному щиту;
  • подсоединение заземляющего контакта розетки к «нулевому» автомату;
  • установка в розетке перемычки, соединяющей нулевой и защитный контакты;
  • выполнение зануления в двухпроводной системе и др.

Заземление: теория и практика

В данной статье будут рассмотрены следующие вопросы:

  • Для чего нужно заземление (защитное зануление)
  • Требования Правил устройства электроустановок (ПУЭ) к заземлению (защитному занулению)
  • Способы реализации заземления (защитного зануления).

Итак, для чего же заземление все-таки нужно? Компьютер без него вполне работоспособен и, как правило, с успехом выполняет возложенные на него пользователем задачи. В общем и целом все так. Но… есть ряд небольших нюансов.

Помехи

В большинстве блоков питания компьютеров на входе стоит элементарный фильтр, состоящий из двух конденсаторов, задача которого сводится к тому, чтобы не пропустить высокочастотную составляющую. Фильтр может быть и более продвинутым, включающим в себя катушки индуктивности (зависит от «серьезности» производителя БП), но, в большинстве случаев, это фильтр, показанный на рисунке. В результате, в зависимости от емкости конденсаторов, мы получаем на корпусе компьютера потенциал порядка 100 В относительно фазного (L) и нулевого (N) провода. Иначе говоря, при определенных условиях при прикосновении к корпусу компьютера можно получить удар электрическим током. Впрочем, в помещениях, где разводка сети выполнена по трехфазной схеме, ситуация гораздо хуже: разность потенциалов между корпусами компьютеров, сидящих на разных фазах, пойдет уже на сотни вольт. В результате, при объединении компьютеров, к примеру, в сеть, практически гарантированно получаем повреждение аппаратного обеспечения.

Кстати, те господа, которые применяют сетевые фильтры (ZIS, APC и т. д.) при отсутствии заземления (защитного зануления), в свете вышесказанного на самом деле используют просто удлинители за $20 и выше.

Защита от электромагнитного излучения

В смысле того излучения, которое оказывает вредное влияние на организм человека. Фирмы-производители постоянно борются за снижение электромагнитного излучения. Приходится им бороться — постоянно ужесточаются стандарты и требования. В общем, частоты растут, а уровень излучения должен снижаться. Так вот, все эти мероприятия практически сводятся к нулю в результате неправильного подключения аппаратуры.

Подведем итог. Заземление нужно, чтобы:

  • Уменьшить электромагнитное излучение высокой частоты
  • Уменьшить выброс помех в электрическую сеть
  • Уменьшить влияние внешних помех на аппаратуру
  • Обеспечить нормальную работу аппаратуры в составе сети
  • Исключить поражение человека емкостным током

Теперь попробуем разобраться, какие требования предъявляются к электрической сети в общем, и к заземлению в частности.

Основным документом в данном вопросе, безусловно, являются «Правила устройства электроустановок» (ПУЭ). Все монтажные работы и, впоследствии, приемо-сдаточные испытания базируются на требованиях ПУЭ. Здесь стоит отметить один, на мой взгляд, любопытный факт. Дело в том, что те или иные требования к электроустановкам определяются в первую очередь исходя из категории помещения с точки зрения электробезопасности. Согласно ПУЭ существует три категории помещений:

  1. Без повышенной опасности
  2. С повышенной опасностью
  3. Особо опасные

Согласно этой классификации квартиры попадают в категорию помещений с повышенной опасностью. Но при этом, в ПУЭ до 1999 года они относятся к так называемым жилым помещениям где, оказывается, нет необходимости в заземлении (занулении). И только в седьмом издании ПУЭ (утверждено 06.10.1999) эта позиция была пересмотрена. Более того: были введены требования, которые уже давно применяются в, скажем так, передовых странах.

Ниже будут приведены некоторые пункты правил, касающиеся заземления, но вначале хотелось бы остановиться на некоторых понятиях.

Электрические сети делятся на сети с изолированной и глухозаземленной нейтралью. В наше стране для питания жилых помещений, как правило, используются сети с глухозаземленной нейтралью (заземлена средняя точка генератора), поэтому корректнее говорить не «заземление», а «защитное зануление» (РЕ).Фазное напряжение Напряжение между фазным (L) и рабочим нулевым (N) проводниками. Для сети 380/220 В — 220 В.Линейное напряжение Напряжение между двумя фазными (L) проводниками. Для сети 380/220 В — 380 В.Рабочий ноль (N) Проводник, обеспечивающий вместе с фазным проводником питание потребителя.УЗО — устройство защитного отключенияПринцип работы устройства основан на правиле Кирхгофа (сумма токов равна нулю). Устройство отслеживает токи утечки, возникающие при прикосновении человека к токоведущему проводу, повреждении изоляции и т. п. Наиболее распространены УЗО с током отсечки 10 мА, 30 мА и 300 мА. При этом в жилых и общественных помещениях, как правило, применяются УЗО с током отсечки 30 мА. Основная задача УЗО — защита человека от поражения электрическим током и от возникновения пожара.

Выдержки из ПУЭ

7.1.21.

При питании однофазных потребителей зданий от многофазной распределительной сети допускается для разных групп однофазных потребителей иметь общие N и PE проводники (пятипроводная сеть), проложенные непосредственно от ВРУ1, объединение N и PE проводников (четырехпроводная сеть с PEN) не допускается.

При питании однофазных потребителей от многофазной питающей сети ответвлениями от воздушных линий, когда PEN проводник воздушной линии является общим для групп однофазных потребителей, питающихся от разных фаз, рекомендуется предусматривать защитное отключение потребителей при превышении напряжения выше допустимого, возникающего из-за несимметрии нагрузки при обрыве PEN проводника. Отключение должно производиться при вводе в здание, например воздействием на независимый расцепитель вводного автоматического выключателя посредством реле максимального напряжения, при этом должны отключаться как фазный (L), так и нулевой рабочий (N) проводники.

При выборе аппаратов и приборов, устанавливаемых на вводе, предпочтение, при прочих равных условиях, должно отдаваться аппаратам и приборам, сохраняющим работоспособность при превышении напряжения выше допустимого, возникающего из-за несимметрии нагрузки при обрыве PEN или N проводника, при этом их коммутационные и другие рабочие характеристики могут не выполняться.

Во всех случаях в цепях PE и PEN проводников запрещается иметь коммутирующие контактные и бесконтактные элементы.

Допускаются соединения, которые могут быть разобраны при помощи инструмента, а также специально предназначенные для этих целей соединители.

7.1.34.

В зданиях следует применять кабели и провода с медными жилами².

В жилых зданиях сечения медных проводников должны соответствовать расчетным значениям, но быть не менее указанных в таблице:

Наименование линийНаименьшее сечение кабелей и проводов с медными жилами, мм²
Линии групповых сетей1,5
Линии от этажных до квартирных щитков и к расчетному счетчику2,5
Линии распределительной сети (стояки) для питания квартир4

7.1.36.

Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего назначения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный — L, нулевой рабочий — N и нулевой защитный — РЕ проводники).

Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий.

Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.

Сечения проводников должны отвечать требованиям п. 7.1.45.

7.1.45.

Выбор сечения проводников следует проводить согласно требованиям глав ПУЭ.

Однофазные двух- и трехпроводные линии, а также трехфазные четырех и пятипроводные линии при питании однофазных нагрузок, должны иметь сечение нулевых рабочих (N) проводников, равное сечению фазных проводников.

Трехфазные четырех- и пятипроводные линии при питании трехфазных симметричных нагрузок должные иметь сечение нулевых рабочих (N) проводников, равное сечению фазные проводников, если фазные проводники имеют сечение до 16 мм² по меди и 25 мм² по алюминию, а при больших сечениях — не менее 50% сечения фазных проводников.

Сечение РЕN проводников должно быть не менее сечения N проводников и не менее 10 мм² по меди и 16 мм² по алюминию независимо от сечения фазных проводников.

Сечение PE проводников должно равняться сечению фазных при сечении последних до 16 мм², 16 мм² при сечении фазных проводников от 16 до 35 мм² и 50% сечения фазных проводников при больших сечениях.

Сечение PE проводников, не входящих в состав кабеля, должно быть не менее 2,5 мм² — при наличии механической защиты и 4 мм² — при ее отсутствии.

7.1.49

В зданиях при трехпроводной сети (см. п. 7.1.36) должны устанавливаться штепсельные розетки на ток не менее 10 А с защитным контактом.

Штепсельные розетки, устанавливаемые в квартирах, жилых комнатах общежитий, а также в помещениях для пребывания детей в детских учреждениях (садах, яслях, школах и т.п.) должны иметь защитные устройство, автоматически закрывающие гнезда штепсельной розетки при вынутой вилке.

7.1.68.

Во всех помещениях необходимо присоединять открытые проводящие части светильников общего освещения и стационарных электроприемников (электрических плит, кипятильников, бытовых кондиционеров, электрополотенец и т. п.) к нулевому защитному проводнику.

7.1.69.

В помещениях зданий металлические корпуса однофазных переносных электроприборов и настольных средств оргтехники класса I по ГОСТ 12.2.007.0.-75 «ССБТ. Изделия электротехнические. Общие требования безопасности» должны присоединяться к защитным проводникам трехпроводной групповой линии (см. п. 7.1.36).

К защитным проводникам должны подсоединяться металлические каркасы перегородок, дверей и рам, используемых для прокладки кабелей.

7.1.72.

Если устройство защиты от сверхтока (автоматический выключатель, предохранитель) не обеспечивает время автоматического отключения 0.4 с при номинальном напряжении 220 В из-за низких значений токов короткого замыкания и установка (квартира) не охвачена системой уравнивания потенциалов, установка УЗО является обязательной.

7.1.74.

В зоне УЗО нулевой рабочий проводник не должен иметь соединений с заземленными элементами и нулевым защитным проводником.

7.1.75.

Во всех случаях применении УЗО должно обеспечить надежную коммутацию цепей нагрузки с учетом возможных перегрузок.

7.1.76.

Рекомендуется использовать УЗО, представляющее собой единый аппарат с автоматическим выключателем, обеспечивающим защиту от сверхтока.

Не допускается использовать УЗО в групповых линиях, не имеющих защиты от сверхтока, без дополнительного аппарата, обеспечивающего эту защиту.

При использовании УЗО, не имеющих защиты от сверхтока, необходима их расчетная проверка в режимах сверхтока с учетом защитных характеристик вышестоящего аппарата, обеспечивающего защиту от сверхтока.

7.1.77.

В жилых зданиях не допускается применять УЗО автоматически отключающие потребителя от сети при исчезновении или недопустимом падении напряжения сети. При этом УЗО должно сохранять работоспособность на время не менее 5 с при снижении напряжения до 50% номинального.

7.1.78.

В зданиях могут применяться УЗО типа «А», реагирующие как на переменные, так и на пульсирующие токи повреждений, или «АС», реагирующие только на переменные токи утечки.

Источником пульсирующего тока являются, например, стиральные машины с регуляторами скорости, регулируемые источники света, телевизоры, видеомагнитофоны, персональные компьютеры и др.

7.1. 79.

В групповых сетях, питающих штепсельные розетки, следует применять УЗО с номинальным током срабатывания не более 30 мА. Допускается присоединение у одному УЗО нескольких групповых линий через отдельные автоматические выключатели (предохранители).

Установка УЗО в линиях, питающих стационарное оборудование и светильники, а также в общих осветительных сетях, как правило, не требуется.

7.1.80.

В жилых зданиях УЗО рекомендуется устанавливать не квартирных щитках, допускается их установка на этажных щитках.

7.1.81.

Установка УЗО запрещается для электроприемников, отключение которых может привести к ситуациям, опасным для потребителей (отключению пожарной сигнализации и т.п.).

7.1.82.

Обязательной является установка УЗО с номинальным током срабатывания не более 30 мА для групповых лини, питающих розеточные сети, находящиеся вне помещений и в помещениях особо опасных и с повышенной опасностью, например, в зоне 3 ванных и душевых помещений квартир и номеров гостиниц.

7.1.86.

Если УЗО предназначено для защиты от поражения электрическим током и возгорания или только для защиты от возгорания, то оно должно отключать как фазный, так и нулевой рабочие проводники, защита от сверхтока в нулевом рабочем проводнике не требуется.

7.1.87.

На вводе в здание должна быть выполнена система уравнивания потенциалов путем объединения следующих проводящих частей:

  • Основной (магистральный) проводник
  • Основной (магистральный) заземляющий проводник или основной заземляющий зажим.
  • Стальные трубы, коммуникаций зданий и между зданиями.
  • Металлические части строительных конструкций, молниезащиты, системы центрального отопления, вентиляции и кондиционирования. Такие проводящие части должны быть соединены между собой на вводе в здание
  • Рекомендуется по ходу передачи электроэнергии повторно выполнять дополнительные системы уравнивания потенциалов.

Примечания:

  1. Вводно-распределительное устройство
  2. До 2001г. по имеющемуся заделу строительства допускается использование проводов и кабелей с алюминиевыми жилами.

Теперь можно поговорить о возможности зануления оргтехники. Если ваш дом сдан после 1998–1999 года, то, скорее всего, на розетки в квартире заведен защитный ноль. Если вас мучают сомнения, то можно удостовериться в наличии нуля на заземляющем контакте розетки следующим образом. Найти фазу (при помощи, например, однополюсного индикатора). Далее один из способов:

  1. Замерить напряжение между фазой и нулем и, затем, между фазой и заземляющим контактом. В обоих случаях показания должны быть одинаковы.
  2. Зарядить патрон Е27 (обычный бытовой) проводниками достаточной длины. Вкрутить в него лампу накаливания мощностью не менее 100 Вт. Один провод вставить в фазное гнездо, вторым коснуться поочередно рабочего и защитного нуля (ВНИМАНИЕ! При наличии УЗО произойдет его отсечка, что подтверждает наличие защитного нуля). Лампа должна гореть одинаково ярко и ровно.

Желательно также отследить отходящие концы от распределительного щитка на вашу квартиру. Как правило, заводится группа на освещение (L+N), группа на розетки (L+N+PE), группа на электроплиту (L+N+PE). То есть на розетки у вас должны отходить 3 конца, причем N и PE, согласно ПУЭ, не должны заводиться под один болт.

Ниже будет рассмотрен вариант самостоятельного подключения защитного нуля.

ВНИМАНИЕ! Работы в распределительном устройстве могут вестись только лицами из электротехнического персонала обслуживающего предприятия с группой допуска по электробезопасности не ниже III.

Категорически не рекомендую при отсутствии опыта заниматься прокладкой защитного зануления в организации, где на розетки заводятся все три фазы: при использовании одного рабочего нуля и случайном повреждении или ослаблении его во время монтажных работ, вы получаете две фазы на входе аппаратуры. Могу только сказать, что при таком раскладе перегорают (плавятся) даже варисторы сетевых фильтров.

Для домашней сети вам понадобится медный провод соответствующей длины и сечением не менее 1,5 мм² (чем больше, тем лучше — я, например, использовал провод сечением 4 мм²) и, конечно, розетка с заземляющим контактом. Короб, плинтус, скоба — дело эстетики. Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй — на заземляющий контакт розетки. Не допускается заводить под один болт N и РЕ проводники. При наличии в щите УЗО РЕ проводник не должен учитываться (болтить именно на корпус щита) и не должен нигде на линии иметь контакта с N проводником (в противном случае будет срабатывать УЗО).

К вопросу о заземлении на батарею (водопровод) — не советую. Теоретически должна быть где-то в подвале система выравнивания потенциалов (собственно трубы, проложенные в земле, это естественный заземлитель), фактически же на батарее может вдруг появиться потенциал, отличный от нуля. К примеру, сосед ваш сверху использует ее в качестве рабочего нуля по причине отгорания проводника в штробе.

И еще один момент, касающийся монтажа. Сеть в квартирах пока выполняется алюминиевым проводом. При необходимости нарастить концы (например для переноса розетки) и использовании медного провода, никогда не скручивайте медь с алюминием — возникает гальваническая пара, металл в месте контакта активно разрушается, переходное сопротивление растет, возникает подгорание, что, в конце концов, может привести к пожару. Медный и алюминиевый проводники соединяются между собой либо через переходную колодку, либо через переходные шайбы. Допускается использовать в качестве переходника стальные шайбы.

Заземление

А вот теперь основной вопрос, чем отличается заземление от зануления? Все дело в установке дополнительных защитных устройств. Чтобы добиться безопасной эксплуатации бытовых электрических приборов, в распределительный щит необходимо вмонтировать или УЗО (устройство защитного отключения), или дифференцированные автоматические выключатели. Оба вида устройств имеют в своей конструкции специальный рабочий орган, который выравнивает силу тока в фазном и нулевом проводе.


Схема подключения заземления

  • Если сеть и бытовые приборы работают в штатном режиме, то токи в разных контурах одинаковы по величине, но протекают в разных направлениях: по фазе в квартиру, по нулю из нее. То есть, вся система сбалансирована, поэтому бытовые приборы работают хорошо по номинальным параметрам.
  • Если в любом месте электрической системы произошел разрыв изоляции (провода, бытовые приборы, автоматы и так далее), ток начинает движение к земле. При этом этот ток проходит мимо проводника нуля. То есть, заземление перестает действовать. В рабочем органе УЗО или дифференцированного автомата происходит нарушение баланса. Как только нарушение начинается, сразу же срабатывает защитное устройство, которое разъединяет контакты. Электричество в систему перестает подаваться.

И еще один момент, который касается защитного заземления и зануления. Специалисты рекомендуют устанавливать отдельный контур, в который монтируется так называемый РЕ-проводник. Его специально выводят за пределы распределительного щита и устанавливают около розетки в гнезде. При этом розетка должна быть трехфазной: фаза, ноль и земля. Проводник соединяется с «землей».

Обратите внимание, что вилка от бытового прибора при включении в розетку сначала касается «земли», а затем двух основных фаз. То же самое происходит и в момент выключения: сначала выводятся фазы, затем в последнюю очередь земля

Это гарантия, что в случае короткого замыкания в самом бытовом электрическом приборе не произойдет сбой всей системы за счет повышенного действия силы тока в ней.

Обычно УЗО устанавливается в распределительном щитке после основного вводного автомата. Необходимо учитывать тот момент, что устройство защитного отключения не защищает электрическую сеть от короткого замыкания проводов. Вероятность, что это устройство само выйдет из строя по этой причине, очень велика

Поэтому так важно скорректировать параметры вводного автомата с параметрами самого УЗО. Оптимальный же вариант – установить перед устройством еще один автомат, который по параметрам будет идентичен защите

Кстати, необходимо отметить, что УЗО с автоматом для него – это, по сути, обычный дифференциальный автомат. Последний стоит дороже защитного устройства, но по размерам намного компактнее.

Теперь вы можете понять, в чем отличия заземления и зануления.

Что такое зануление: принцип работы и устройство

Зануление монтируется по другому принципу. Но чтобы с этим разобраться разберем, что такое глухозаземленная нейтраль. На ТП (трансформаторную подстанцию) по ЛЭП приходит 3 фазы. Собственное заземление, смонтированное вокруг, и является глухозаземленной нейтралью, которая идет на жилые дома от подстанции, вместе с фазными проводами.

Зануление производится так. В распределительном щите делается разводка, приходящая с ТП глухозаземленная нейтрель (PEN) разбивается перед вводным автоматом на ноль (N), идущий в квартиру, и то, что можно считать землей (PE). На самом деле по сути это и останется глухозаземленная нейтраль, которая будет использоваться для зануления. От рабочего N занулять оборудование запрещается – это опасно для жизни. Если все сделано правильно, то при соприкосновении корпуса включенного устройства с токоведущим оголенным проводом происходит короткое замыкание, после чего срабатывает автомат.


Простейшая схема зануления квартирной электросети

Мнение эксперта Игорь Мармазов Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО «АСП Северо-Запад»

“Защитное зануление – это система, которая монтируется для мгновенного срабатывания автоматики при появлении напряжения на корпусе устройства и полного отключения электроэнергии.”

Только полное понимание того, что такое заземление и зануление, в чем их особенности, позволит выполнить в квартире или доме тот вид защиты, который будет эффективным и безопасным.

Конструкция контура

Составные части

Уже упоминавшееся ранее сопротивление заземления (Rз) контура – основной параметр, контролируемый на всех этапах его эксплуатации и определяющий эффективность его применения. Эта величина должна быть настолько малой, чтобы обеспечить свободный путь аварийному току, стремящемуся стечь в землю.

Обратите внимание! Важнейшим фактором, оказывающим решающее влияние на величину сопротивления заземления, является качество и состояние грунта в месте обустройства ЗУ. Исходя из этого, рассматриваемое ЗУ или заземляющий контур ЗК (что для нашего случая – одно и то же) должны иметь конструкцию, удовлетворяющую следующим требованиям:

Исходя из этого, рассматриваемое ЗУ или заземляющий контур ЗК (что для нашего случая – одно и то же) должны иметь конструкцию, удовлетворяющую следующим требованиям:

  • В её составе необходимо предусмотреть набор металлических прутьев или штырей длиной не менее 2-х метров и диаметром от 10-ти до 25-ти миллиметров;
  • Они соединяются между собой (обязательно на сварку) пластинами из того же металла в конструкцию определённой формы, образуя так называемый «заземлитель»;
  • Кроме того, в комплект устройства входит подводящая медная шина (её ещё называют электротехнической) с сечением, определяемым типом защищаемого оборудования и величиной токов стекания (смотрите таблицу на рисунке ниже).

Таблица сечений шин

Эти составляющие устройства необходимы для соединения элементов защищаемого оборудования со спуском (медной шиной).

Различие по месту устройства

Согласно положениям ПУЭ, защитный контур может иметь как наружное, так и внутреннее исполнение, причём к каждому из них предъявляются особые требования. Последними устанавливается не только допустимое сопротивление контура заземления, но и оговариваются условия измерения этого параметра в каждом частном случае (снаружи и внутри объекта).

При разделении систем заземления по их местонахождению следует помнить о том, что лишь для наружных конструкций корректен вопрос о том, как нормируется сопротивление заземлителя, поскольку внутри помещения он обычно отсутствует. Для внутренних конструкций характерна разводка по всему периметру помещений электротехнических шин, к которым посредством гибких медных проводников подсоединяются заземляемые части оборудования и приборов.

Для элементов конструкций, заземлённых снаружи объекта, вводится понятие сопротивления повторного заземления, появившееся вследствие особенной организации защиты на подстанции. Дело в том, что при формировании нулевого защитного или совмещённого с ним рабочего проводника на питающей станции нейтральная точка оборудования (понижающего трансформатора, в частности) уже заземляется один раз.

Поэтому когда на ответном конце того же провода (обычно это PEN или PE шина, выводимая непосредственно на щиток потребителя) делается ещё одно местное заземление, его с полным основанием можно назвать повторным. Организация этого вида защиты показана на рисунке ниже.


Повторное заземление

Важно! Наличие местного или повторного заземления позволяет подстраховаться на случай повреждения защитного нулевого провода PEN (PE – в системе электропитания TN-C-S). Такая неисправность в технической литературе обычно встречается под наименованием «отгорание нуля»

Такая неисправность в технической литературе обычно встречается под наименованием «отгорание нуля».

Чем отличается заземление от зануления?

Этот вопрос может возникнуть у читателя на фоне предыдущей информации. Ведь по сути от ТП идет то же заземление. Объясним. Пришедший в дом четвертый провод заземляющим уже быть не может, ведь он использован другими жильцами в качестве нулевого. Для примера возьмем ситуацию, при которой мы решили, что ноль и заземление – одно и то же. Делаем разводку непосредственно в розетке, бросив перемычку между нулем и заземляющим контактом и успокаиваемся – мы под защитой.

Как бы ни так! Оголенный провод находится вплотную к корпусу устройства, но еще не прикоснулся к нему, но магнитное поле уже возникло и токонесущий проводник начинает греться. Но при этом еще сильнее греется нулевой провод в месте слабого соединения. Изоляция токонесущего проводника прогорает, он прикасается к корпусу, отжигая нулевой. Все, света в квартире нет, но автомат не сработал. Теперь корпус прибора находится под фазным напряжением. А что будет, если к нему прикоснуться? Напряжение пройдет сквозь человека в землю по пути наименьшего сопротивления, нанеся максимальный урон проводнику (понятно о ком речь).


Такое заземление однажды может кого-то убить

Схема работы

Как было сказано выше, зануление основано на провоцировании короткого замыкания после попадания фазы на металлический корпус электроустановки, соединенной с нулем. Так как сила тока возрастает, подключается защитный механизм, отключающий электропитание.

По нормативам Правил установки электроустановок в случае нарушения целостности линии она должна отключаться автоматически. Регламентируется время на отключение — 0,4 секунды (для сетей 380/220В). Для отключения используются специальные проводники. Например, в случае однофазной проводки задействуется третья жила кабеля.

Для правильного зануления важно, чтобы петля фазы-нуля характеризовалась невысоким сопротивлением. Так обеспечивается срабатывание защиты за нужный промежуток времени.

Организация зануления требует высокой квалификации, поэтому такие работы должны выполнять только квалифицированные электрики.

На схеме ниже показан принцип работы системы:

Проверка эффективности зануления

Чтобы проверить, насколько действенно зануление, нужно сделать замер сопротивления петли фаза-ноль в наиболее отдаленной от источника электропитания точке. Это даст возможность проверить защищенность в случае воздействия тока на корпус.

Сопротивление измеряется с использованием специализированной аппаратуры. Измерительные приборы оснащены двумя щупами. Один щуп направляют на фазу, второй — на зануленную электроустановку.

По результатам измерений устанавливают уровень сопротивления на петле фазы и нуля. С полученным результатом рассчитывают ток однофазного замыкания, применяя закон Ома. Расчетное значение тока однофазного замыкания должно быть равно или превышать ток срабатывания защитного оборудования.

Предположим, что для предохранения электроцепи от перегрузок и коротких замыканий подключен автомат-выключатель. Ток срабатывания составляет 100 Ампер. По результатам измерений сопротивление петли фазы и нуля равно 2 Ом, а фазовое напряжение в сети — 220 Вольт. Делаем расчет тока однофазного замыкания на основе закона Ома:

I = U/R = 220 Вольт/2 Ом = 110 Ампер.

Поскольку расчетный ток короткого замыкания превышает ток мгновенного срабатывания автомата-выключателя, делаем вывод об эффективности защитного зануления. В противном случае понадобилась бы замена автомата-выключателя на прибор с меньшим током срабатывания. Другой вариант решения проблемы — сокращение сопротивления петли фаза-ноль.

Нередко при проведении расчетов ток срабатывания автомата умножают на коэффициент надежности (Кн) или коэффициент запаса. Причина в том, что отсечка не всегда равна указанному показателю, то есть возможна определенная погрешность. Поэтому использование коэффициента позволяет получить более надежный результат. Для старого оборудования Кн составляет от 1,25 до 1,4. Для новой техники применяется коэффициент 1,1, так как такие автоматы работают с большей точностью.

Разница между занулением и заземлением

Между занулением и заземлением имеются отличия:

  1. В случае заземления лишний ток и появившееся на корпусе напряжение перенаправляются в грунт. Принцип действия зануления основан на обнулении на щитке.
  2. Заземление более эффективно с точки зрения защиты человека от удара током.
  3. Заземление основано на быстром и значительном уменьшении напряжения. Тем не менее, какое-то (уже неопасное) напряжение остается.
  4. Зануление заключается в создании соединения между металлическими деталями, в которых отсутствует напряжение. Принцип зануления основан на умышленном создании короткого замыкания при пробое изоляции или попадании тока на нетоковедущие части электроустановок. Как только происходит замыкание, в дело вступает автоматический выключатель, перегорают предохранители или срабатывают иные средства защиты.
  5. Заземление чаще всего используют на линиях с изолированной нейтралью в системах типа IT и TT в трехфазных сетях, где напряжение не превышает тысячи вольт. Заземление применяют при напряжении более тысячи вольт с нейтралью в любом режиме. Зануление используют в глухозаземленных нейтралях.
  6. При занулении все элементы электроприборов, не находящиеся в стандартном режиме под напряжением, соединяются с нулем. Если фаза случайно коснется зануленных элементов, резко увеличивается ток и отключается электрооборудование.
  7. Заземление не зависит от фаз электроприборов. Для организации зануления требуется соблюдение жестких условий подключения.
  8. В современных домах зануление применяется редко. Однако этот способ защиты все еще встречается в многоэтажных домах, где по каким-либо причинам нет возможности организовать надежное заземление. На предприятиях, где имеются повышенные нормативы по электробезопасности, основной способ защиты — зануление.

Обратите внимание! Для правильного определения нулевых точек и выбора способа защиты понадобится помощь квалифицированного электрика. Сделать заземление, собрать элементы контура и установить его в грунт можно и своими руками.

Как работает заземление?

Безопасное использование бытовых устройств благодаря подключению корпуса к защитному нулю, обеспечивая работу «Оборудования защитного отключения» или автоматические выключатели. У последних есть работающий механизм, который сравнивает токи, входящего в фазный провод в дом и выходящего из рабочего проводника.

Если режим электропередачи нормален, токи равны, а также противоположно направлены. Из-за этого их взаимодействие уравновешено и сбалансировано, обеспечивая исправную работу с нормальными параметрами.

При возникновении нарушения изоляции в одном или нескольких местах цепочки, через такую область выходит ток, направленный к земле. Через рабочий проводник нуля ток не проходит. В механизме происходит нарушение тока, который приводит к выключению защищающего органа и отключается соединения защитного механизма, предотвращая поступление тока по цепи. Завершение подачи напряжения происходит за миллисекунду.

При подключении заземления к бытовому устройству, используют PE-проводник. Он выводится из распределительного щитка по специальному пути к розетке, который оборудован особым выходом. Подобная защита не предотвращает возникновение короткого замыкания, поэтому на нее ставится автоматизированный выключатель. Покупка оного обойдется в несколько тысяч рублей и занимает много места.

Особенности земли:

  1. Если металлический отвод бытового устройства и фаза связаны, поэтому в не возникает напряжение. При нарушении изоляции провода, человек дотронувшийся до него получит серьезный удар током. Воспользовавшись заземление можно предотвратить подобное.
  2. Различные токи поступают на заземляющий проводник, предотвращая опасность для человека.
  3. При возникновении напряжения, которое поступает на радиатор отопления, несет еще большую опасность. Из-за этого все батарею превращаются в проводники. Устанавливая землю, весь ток выходит через проводник.
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]