Молния: что это такое, виды, как и почему возникает, фото и видео

В разных точках нашей планеты одновременно бушует около 2000 гроз и в каждую секунду в поверхность Земли бьет приблизительно 50 молний. Человечество изучает молнии издавна, однако только четверть века назад американским ученым Бенджамином Франклином было доказано, что молния представляет собой электрический разряд несущий в себе отрицательный заряд. Сегодня скоростная фотосъемка позволила установить, что вспышка состоит из нескольких коротких разрядов длящихся десятые доли секунды.

Как и почему возникает молния

Молнии в большинстве случаев образуются в облаках кучево-дождевого типа, а иногда и в слоисто-дождевых тучах большого размера. Грозовые тучи отчетливо выделяются на фоне остальных за счет насыщенного темного цвета.

Темно-синий оттенок появляется из-за толщины облака. При этом нижний его край располагается на высоте около 1 км над поверхностью земли, а верхний достигает 6-7 км в высоту.

Как известно, облако состоит из водяного пара. На высоте капельки замерзают и превращаются в кристаллы льда. Из-за неравномерного распределения температуры нагретый воздух поднимается вверх и влечет за собой мелкие частицы льда. При этом вниз опускаются более крупные замерзшие льдины – частицы постоянно сталкиваются.


Образование молнии

При столкновении происходит электризация льдинок (такое же явление, как и во время трения разных предметов). Более мелкие частицы получают положительный заряд, а те, что крупнее – отрицательный. Соответственно заряжаются и разные части облака. Вверху грозовая туча со знаком «плюс», а внизу – со знаком минус.

В результате возникает разница потенциалов. Причем она образуется как между разными частями облака, так и между тучей и землей. Эта разность измеряется в сотнях тысяч вольт.

Молния не возникает мгновенно из ничего, хоть и движется она достаточно быстро. Формирование молнии можно условно разделить на начальную, среднюю и финальную стадию.

Начальная стадия

Разряд появляется в определенной части облака, где присутствует большое количество ионов. Ион – это частица с электрическим зарядом. Она возникает, когда атом или молекула получают либо теряют электроны.

Так же происходит и с грозовым облаком. Ионы образуются за счет молекул воды и газов, из которых, собственно, и состоит туча. На этом этапе мнения ученых расходятся, поскольку досконально изучить природу молнии еще не удалось.


Схема развития наземной молнии

Одни специалисты считают, что высокая концентрация ионов получается по причине разгона свободных электронов. Они всегда присутствуют в воздухе, хоть и в небольшом объеме. Затем эти электроны сталкиваются с нейтрально заряженными молекулами, в результате чего происходит их ионизация.

Согласно другой гипотезе, все дело в космическом излучении. Оно тоже воздействует на атмосферу Земли постоянно. Именно таким образом ионизируется воздух. Ионизированный газ хорошо проводит электричество, поэтому через него в облаке проходит ток.

Средняя стадия

Далее запускается цепная реакция. Ток, проходящий под высоким напряжением, нагревает воздух в определенной области. Образуется все больше и больше энергетических частиц, которые превращают в ионы соседние области. Поэтому молния распространяется чрезвычайно быстро.


Этапы нисходящего удара молнии

В составе молнии есть главенствующая часть – наиболее мощный канал, от которого распространяются ответвления в разные стороны. Этим объясняется извилистая форма разрядов: с каждой новой вспышкой молния как будто скачками продвигается все дальше и дальше примерно на несколько десятков метров.

Интересный факт: иногда скорость «главной» молнии достигает 50 000 км в секунду.

В определенный момент наиболее мощный разряд достигает земной поверхности либо другой части тучи. Но и это еще не конец. Как только электрическим разрядом пробивается ионизированный канал толщиной несколько сантиметров, заряженные частицы на высокой скорости проходят по нему. Фактически это и есть молния, которую мы можем наблюдать.

Из-за высокого напряжения температура внутри данного канала измеряется в тысячах градусов. Поэтому мы видим молнию в виде очень яркой вспышки. Гром же является следствием резкого перепада температур и давления. Во время электрического разряда выделяется огромное количество энергии, несмотря на кратковременность явления.

Финальная стадия

Скорость перемещения зарядов по каналу быстро снижается. Однако напряжение и сила тока все равно остаются очень высокими. Как раз на конечной стадии молния обычно достигает земли, различных объектов.


Финальная стадия молнии

В случае нахождения поблизости людей молния становится очень опасной. Финальная стадия занимает даже не секунду, а ее десятые доли. Но и этого достаточно для нанесения ущерба, образования пожаров и т.д. Молния зачастую ударяет в одно и то же место несколько раз, если именно этот путь самый короткий и «удобный» для разряда.

Интересно: Ветер: что это такое, как образуется, виды, сила ветра, фото и видео

Электростатический разряд

В начале было слово. В нашем случае: в начале было сосредоточение заряда. Магистральное условие электростатических явлений — скопление заряда на поверхности тела. Почему и как заряд образуется мы успели обсудить вдоволь. Сейчас интерес представляет совершенно другое: почему в некоторых случаях взаимодействие заряженного тела с предметами результируется в притяжение или отталкивание, а в некоторых приводит к электростатическому разряду, иногда сопровождаемому искрами?

Уместным будет, во-первых, определение:

Электростатический разряд — неконтролируемый резкий сброс электрического заряда между телами.

Повторимся, что сброс по качеству неконтролируемый: быстрый, внезапный поток перераспределения заряда между телами, длящийся доли секунд. Сразу в противовес понятно, что электростатическое притяжение или отталкивание — процесс, занимающий некоторое время.

Перераспределение электронов происходит неспешно и постепенно, если сравнивать с разрядом. Если между телами имеется сильный электронный дисбаланс — тело с огромным отрицательным зарядом вступает во взаимодействие с таким же, но положительно заряженным, — это приводит к быстрому обмену зарядами.

Виды молнии

Молнии делятся на множество видов. Основным критерием является характер образования разряда, ведь молнии могут возникать на разной высоте. Также они могут иметь разную форму, длину и прочие параметры.


Виды молнии в слоях атмосферы

Линейная (туча-земля)

Часто встречающийся вид, возникающий из-за разных зарядов верхней и нижней частей облака. Появляется и развивается линейная молния по принципу, описанному ранее – в результате активной ионизации воздуха. От основного канала-лидера ступенчато расходятся вспышки в разные стороны, на финальной стадии достигающие земли.


Линейная молния

Земля-облако

Объекты, расположенные на большой высоте, часто приманивают молнию, накапливая электростатический заряд. Разряды «земля-облако» возникают как следствие пробивания слоя атмосферы между нижней частью грозовой тучи и заряженной верхушкой.


Молния “земля-облако”

Облако-облако

Большинство молний возникают именно среди облаков. Вспышки образуются в результате того, что разные части туч имеют разные заряды. Поэтому облака, расположенные поблизости, пробивают друг друга электрическими разрядами.


Молния “облако-облако”

Интересный факт: в Венесуэле есть уникальное место, где река Кататумбо впадает в Озеро Маракайбо. Здесь круглый год появляется множество молний (обычно ночью), которые вспыхивают непрерывно длительное время. Частота разрядов – 250 на квадратный километр за год. Наибольший пик – май и октябрь.

Горизонтальная

Похожа на «облако-земля», но не достигает земной поверхности. Вспышки распространяются в разные стороны. Такая молния считается чрезвычайно мощной. Для ее образования достаточно одной грозовой тучи на чистом небе.


Горизонтальная молния

Ленточная

Интересную форму приобретает молния, в которой несколько одинаковых каналов устремляются вниз параллельно друг другу на небольшом расстоянии. Вероятно, причина кроется в сильном ветре, расширяющем данные каналы.


Ленточная молния

Четочная (пунктирная)

Редкий вид молнии, природа которого мало изучена. Разряд идет не сплошной линией, а с частыми мелкими промежутками – пунктирами. Возможно, некоторые участки молнии быстро остывают, придавая ей такую форму. Вспышка длится пару секунд, а сама молния бьет волной и только одним следом.


Четочная молния

Шторовая

Возникает над облаками, а не внутри или под ними, как предыдущие виды. Как именно образуется, неизвестно. Внешне это широкая светящаяся полоса, состоящая из большого количества разрядов. При этом можно услышать негромкий гул. Впервые такую молнию удалось запечатлеть лишь в 1994 году.


Шторовая молния

Спрайт

Если обычная молния возникает на высоте около 16 км, то спрайты появляются гораздо выше – 50-130 км. Они представляют собой электрические разряды холодной плазмы, бьющие из облаков вверх.


Спрайты

Рассмотреть их проблематично, но образуются спрайты группами при каждой сильной грозе через несколько секунд после мощной молнии. Средняя длина вспышек – 60 км, диаметр – до 100 км, длительность – до 100 миллисекунд.

Эльф

Масштабные конусообразные вспышки со слабым красным светом (диаметр примерно 400 км). Образуются в верхних слоях грозовых туч. В высоту достигают 100 км, а длятся около 3 миллисекунд.


Эльф

Джет

Молнии трубчато-конусной формы с синим свечением. В высоту достигают нижних слоев ионосферы (от 40 до 70 км). По продолжительности немного обгоняют эльфов.


Джеты

Вулканическая

Возникает при извержении вулкана. Вероятно, из-за того, что пепел и магма при выбросе несут электрический заряд. Кроме того, эти частицы постоянно сталкиваются, чем и вызывают разряды.


Вулканическая молния

Огни Святого Эльма

Фактически это не молния, а разряды, которые возникают на заостренных концах возвышающихся объектов. Сюда относятся вершины скал, деревья, мачты судов, башни и т.п. Образуются они из-за высокой напряженности электрического поля. Чаще всего это происходит во время грозы или метели зимой.


Огни Святого Эльма

Шаровая

Молния в виде сгустка плазмы шарообразной формы, плавающего прямо в воздухе. Как и почему образуется такой разряд, учеными до сих пор не установлено. Можно наверняка утверждать лишь то, что такая молния ведет себе непредсказуемо. Многие до сих пор сомневаются в ее существовании.


Шаровая молния, гравюра XIX века

Третий этап

Ионизация, не забыли? Сильное электронное поле облака влияет как на земную поверхность, так и воздушную среду.

Безусловно, ионизация воздуха происходит неравномерно, от заряженного облака порциями по «кривым» траекториям. Воздух разнороден, содержит пыль и всяческие микроэлементы, поэтому какие-то атомы быстрее превращаются в ионы, какие-то медленнее. Вот вам, кстати, причина, почему молния выглядит рвано — ломанными линиями, растекающимися в разные стороны. Она следует по траектории наименьшего электрического сопротивления.

Цвет молнии

Молния может иметь разные оттенки: голубоватый, белый, желтый, оранжевый, красный. Цвет зависит от состава атмосферы. Канал молнии разогревается в 5 раз сильнее Солнца. При такой температуре воздуху свойственны голубые, фиолетовые тона. Поэтому разряды, видимые неподалеку в чистой атмосфере, приобретают синеватое свечение.


Голубоватое свечение молнии – наиболее распространенное

На более значительном расстоянии вспышки становятся белыми, еще дальше – желтеют. Так происходит из-за того, что голубые тона рассеиваются в воздухе. Если в атмосфере много пыли, вспышки приобретают оранжевый цвет.

Капли воды «окрашивают» молнию в красные оттенки. Наиболее редкое явление – создание сложных оптических эффектов за счет высокой концентрации мелких частиц льда в воздухе.

Скорость и длина молнии

В среднем молнии перемещаются на скорости около 56 тысяч км/сек. При этом грозовое атмосферное явление движется со скоростью 40 км/час. Средняя длина электрического разряда – 9,5 км.

Интересно: Живая и неживая природа — что это, определение, описание и фото


Старое фото молнии в Бостоне

Интересный факт: самая длинная молния в мире зафиксирована в американском штате Оклахома – 321 км. А наиболее длительный разряд по времени наблюдали в Альпах – на протяжении 7,74 сек.

Частота молнии

Ранние исследования показывали, что молния ударяет примерно 100 раз в секунду на территории нашей планеты. Но спутники позволяют наблюдать за самыми удаленными или труднодоступными местами на Земле.


Частота молнии (на квадратный километр за год)

Новые данные указывают на 44 плюс-минус 5 ударов молнии в секунду. Это значит, что за год случается около 1,4 миллиарда электрических разрядов. Из них примерно 25% ударяют в землю, а остальные 75% вспыхивают среди облаков.

Как определить расстояние до молнии по грому?

Установить расстояние до грозы по грому можно приблизительно. Для этого засекается, сколько секунд проходит между звуком грома и вспышкой молнии. Необходимо учитывать скорость звука – около 300 метров в секунду. Так, 3 секунды – это примерно 1 км до грозы.


Расстояние до молнии

Выполнение нескольких замеров позволяет узнать, приближается или удаляется гроза по отношению к наблюдателю. Важно помнить о том, что молния растягивается на несколько километров. Если при отсутствии грома видны разряды молнии, значит, гроза находится на расстоянии более 20 км.

Последствия молнии

Молния оставляет за собой большое количество разных следов, в зависимости от места, куда ударяет разряд, а также его мощности. Рассмотрим следующие проявления молнии:

  • образование фульгуритов;
  • попадание в землю;
  • попадание в деревья, дома и прочие объекты;
  • попадание в автомобили;
  • попадание в человека.

Фульгурит – это вещество, которое образуется при попадании электрического разряда в песок или любую горную породу. По сути, определенное количество песка просто плавится и застывает под кратковременным воздействием высокой температуры.


Фульгурит

Обнаружить фульгуриты непросто. Обычно они встречаются на горных вершинах или в областях, где грозы считаются частым явлением. Попадая в залежи песка, молния образует из него трубочки произвольных форм, полые внутри. Фактически они получаются стеклянными.

Между песчаными частицами всегда есть влага и воздух. Мощный удар их быстро нагревает до высоких температур, расширяет, в результате чего и появляются эти трубочки всевозможных размеров и форм. Затем они моментально охлаждаются.

Очень редко разряды молнии попадают именно в землю, поскольку для них предпочтительнее максимально короткий и доступный путь. Но в случае попадания на поверхности остается углубление, от которого в разные стороны уходят витиеватые линии, напоминающие молнию по форме.


След от молнии на земле

Возвышаясь над другими объектами, деревья чаще всего привлекают к себе молнию. В большинстве случаев они сгорают, причем моментально. Если же в дерево попадает шаровая молния, она поджигает его изнутри. При попадании в здание молния зачастую повреждает кровельную часть и тоже может вызвать возгорание.


Молния ударила в дерево

Если разряд угодит в закрытое транспортное средство, например, автомобиль, то быстро распространится по металлическому корпусу и уйдет в земную поверхность. Считается, что авто – безопасное место, в котором можно переждать непогоду, так как молния не попадает внутрь салона. Однако последствия прямого попадания все равно серьезные.


Молния ударила в авто

Попадание разряда молнии в человека непредсказуемо. Оно сравнимо удару электрическим током, но напряжение при этом в разы выше. Чаще всего молния поражает грудную клетку или голову.


Фигуры Лихтенберга

На теле остаются особенные следы, которые напоминают молнию по форме – их называют фигурами Лихтенберга. Такой след остается в результате повреждения кровеносных сосудов. Удар молнией крайне опасен, поэтому в случае грозы следует принять все необходимые меры безопасности.

Какую опасность таит гроза?

Молния — это заряд электричества огромной мощности, который вызывает разрушения и возгорания. Если разряд такого рода попадает в человека, то наносит серьёзные увечья или убивает. Может произойти остановка сердца, разрушается нервная система и поражается головной мозг. Если верить статистике, то молния попадает в человека только в одном проценте случаев, однако, это довольно опасно.

Ударная волна одного разряда в щепки ломает дерево, оглушает, вызывает серьёзные ожоги и прочее. Эта природная стихия беспощадна.

Можно ли использовать энергию молнии?

Существует специальный термин – грозовая энергетика. Это способ, при помощи которого энергия молнии «собирается» и направляется в электрические сети. Эта энергия принадлежит к числу альтернативных возобновляемых источников.


Электросети

Потенциал использования энергии молнии огромен. Ее запас бесконечный – он решит проблему дорогостоящего электричества и снизит ущерб, который сейчас наносится экологии планеты. В настоящее время ведутся разработки экспериментальных установок для захвата молнии, изучается грозовая активность.

Интересно: Фотосинтез – что это, определение, как происходит, фазы, значение, фото и видео

Но есть у данного способа энергопотребления и свои минусы. Сложно предсказать, где и когда будет гроза. Кроме того, вспышка длится доли секунды, поэтому требуется мощное дорогое оборудование.

Что делать во время грозы?

Если гроза застала на улице необходимо следовать таким правилам:

  1. Нельзя прятаться под деревьями и другими высокими объектами, стоять рядом со столбами, дорожными знаками, в которые чаще всего бьет молния. Следует отойти от них подальше, так как от центра удара напряжение расходится в разные стороны.
  2. На открытой местности нужно присесть и прижать голову к коленям, занять максимально низкорасположенное место.
  3. Убрать подальше от себя зонт, все металлические и длинные предметы – они притягивают молнию.
  4. Выключить телефон, прочие устройства.
  5. При возможности укрыться в машине.
  6. Не подходить к водоему, тем более не купаться.


Что делать во время грозы
Находясь в помещении, следует также выключить телефон, электроприборы, подачу газа. Рекомендуется закрыть все окна. Существует версия, что даже луч лазерной указки, направленный в небо, может привлечь разряд.

Интересный факт: существует понятие шагового напряжения. Оно возникает между двумя точками поверхности, и чем больше расстояние между этими точками, тем выше сила тока. Например, в большей опасности находится крупный рогатый скот, лошади, потому что передние и задние ноги у них расположены далеко.

Удивительный огненный шар

Одним из наименее изученных, а потому наиболее таинственных явлений природы считается шаровая молния – передвигающийся по воздуху святящийся плазменный шар. Загадочен он потому, что принцип формирования шаровой молнии неизвестен и поныне: несмотря на то, что существует большое число гипотез, объясняющих причины появления этого удивительного явления природы, на каждую из них нашлись возражения. Учёным так и не удалось опытным путём добиться образования шаровой молнии.

Шарообразная молния способна существовать длительное время и перемещаться по непрогнозируемой траектории. Например, она вполне способна зависать несколько секунд в воздухе, после чего метнуться в сторону.

В отличие от простого разряда, плазменный шар всегда бывает один: пока не было одновременно зафиксировано двух и больше огненных молний . Размеры шаровой молнии колеблются от 10 до 20 см. Для шаровой молнии характерны белый, оранжевый или голубой тона, хотя нередко встречаются и другие цвета, вплоть до чёрного.

Ученые еще не определили температурные показатели шаровой молнии: несмотря на то, что она по их подсчётам должна колебаться от ста до тысячи градусов Цельсия, люди, находившиеся недалеко от этого феномена, не ощущали исходившей от шаровой молнии теплоты.

Основная трудность при изучении этого феномена состоит в том, что зафиксировать его появление учёным удаётся редко, а показания очевидцев часто ставят под сомнение тот факт, что наблюдаемое ими явление действительно являлось шаровой молнией. Прежде всего, расходятся показания относительно того, в каких условиях она появилась: в основном её видели во время грозы.

Существуют также показания, что шаровая молния может появляться и в погожий день: спуститься с облаков, возникнуть в воздухе или появиться из-за какого-нибудь предмета (дерева или столба).

Ещё одной характерной особенностью шаровой молнии является её проникновение в закрытые комнаты, была замечена даже в кабинах пилотов (огненный шар может проникать через окна, спускаться по вентиляционным каналам и даже вылетать из розеток или телевизора). Также были неоднократно задокументированы ситуации, когда плазменный шар закреплялся на одном месте и постоянно там появлялся.

Нередко появление шаровой молнии не вызывает неприятностей (она спокойно движется в воздушных потоках и через какое-то время улетает или исчезает). Но, были замечены и печальные последствия, когда она взрывалась, моментально испаряя находящуюся неподалёку жидкость, плавя стекло и металл.

Возможные опасности

Поскольку появление шаровой молнии всегда неожиданно, увидев возле себя этот уникальный феномен, главное, не впадать в панику, резко не двигаться и никуда не бежать: огненная молния очень восприимчива к колебаниям воздуха. Необходимо тихо уйти с траектории движения шара и постараться держаться от неё как можно дальше. Если человек находится в помещении, нужно потихоньку дойти до оконного проёма и открыть форточку: известно немало историй, когда опасный шар покидал квартиру.

В плазменный шар ничего нельзя бросать: он вполне способен взорваться, а это чревато не только ожогами или потерей сознания, но остановкой сердца. Если же случилось так, что электрический шар зацепил человека, нужно перенести его в проветриваемую комнату, теплее укутать, сделать массаж сердца, искусственное дыхание и сразу же вызвать врача.

Коалы – оригинальные представители живого мира Австралии93304.811

Как защищают самолеты от молнии?

Весь корпус самолета защищен специальной оболочкой, внутри которой содержится экранирующая сетка из металла. Таким образом, при ударе молнией оболочка проводит ток, но предотвращает проникновение электрического разряда внутрь самолета. Находящиеся внутри люди и оборудование остаются в безопасности.


Разрядники на крыле самолета

Также все техническое оснащение самолета оборудовано дополнительной защитой от электрических разрядов. Попадание молнии приходится на нос самолета, разряд продвигается к крыльям и хвосту. Пассажиры и экипаж могут во время удара услышать громкий звук, но так происходит не всегда.

Интересный факт: перед тем, как самолет сдается в эксплуатацию, он проходит тщательную проверку. Один из ее этапов – симуляция попадания молнии.

Четвертый этап

Сверху для разряда все готово, и электроны с облака устремляются вниз по ионизированным тропам. Массовка, как говорится, пошла. Заряд приближается к земле, расширяя зону действия электрического поля, на которое активнее начинают реагировать вынужденно заряженные положительно тела на поверхности.

Они, чуя противоположный заряд, стремятся подняться выше к облаку. За счет стремления заряда с поверхности, процесс ионизации завершается и снизу.

Теперь дорожка для электрического разряда полностью протоптана. Отрицательный поток продолжает путь, наконец встречается с положительным…

Бум! Молния.

Подумайте сами. Снимая шерстяной свитер в сухом помещении, вы можете услышать характерный электростатический треск. Молния тоже не случается в тишине. Как же молния связана с потрескивающим свитером? Откуда берется раскат грома? И почему между звуковым и визуальным эффектами возникает временная разница?

Как защищают оборудование от молнии?

Нужно понимать, что защиты от прямого попадания молнии в оборудование не существует. Речь идет о грозозащите – это специальное оснащение, которое позволяет обезопасить технику от повреждений, возникающих из-за грозы. Также оборудуют громоотводы и защищают оборудование от перенапряжения.


Грозозащита

Главная цель грозозащиты – защитить оборудование от статического электричества. У него имеется определенный показатель защиты, обозначаемый как ESD Protection. Этот показатель измеряется в киловольтах и указывается в виде числовой величины.

Стандарт грозозащиты – 15-20 кВ. Она представляет собой диодный мостик. При обнаружении в проводах разницы напряжения в 6 В и более, срабатывает защитный диод, который заземляет провода.

Интересные факты

Существует немало интересных и шокирующих фактов, связанных с этим природным явлением:

  • поверхности земли достигает только четверть разрядов;
  • шанс смертельного исхода от попадания молнии всего 1 к 2 миллионам, столько же составляет риск умереть от падения с кровати;
  • самый длинный разряд был зафиксирован в 2007 году и его протяженность составила 321 км;
  • самая продолжительная молния длилась 7.74 секунды;
  • молнией вызывается около 10 тысяч лесных пожаров ежегодно;
  • в среднем, по всему миру, от попадания молнии погибает около 3 тысяч человек;
  • самой распространенной причиной попадания молнии в человека является факт беседы во время грозы по мобильному телефону;
  • 70% людей, пораженных молнией, выживают. Известно, что в американца Роя Селливана грозовой разряд попал семь раз и он после этого остался жив;
  • срок жизни шаровой молнии составляет 10 секунд, а вероятность увидеть ее хотя бы один раз в жизни сопоставим 1:10000;
  • подобное явление наблюдается не только в земной атмосфере. Грозы и вспышки также возникают на юпитере, Сатурне, Уране и Венере.

Понимание того, как в грозовых тучах образуется молния и что она из себя представляет поможет относиться к этому явлению без пренебрежения. При неправильном поведении во время грозы молнии несут прямую опасность здоровью и жизни человека. Потому важно не забывать вовремя выключить мобильный телефон и постараться найти подходящие убежище на время буйства стихии.

История изучения

Наблюдать молнию люди могли еще с древних времен, но длительное время этому явлению не было объяснения. Изначально считалось, что вспышки в небе – результат деятельности богов. Еще древнегреческие философы подметили, что молния поражает высокие объекты.

Значимый вклад в изучение молнии сделали мореплаватели. В открытом море электрические разряды оказались еще мощнее. Связь между молнией и электричеством была выдвинута в 17-18 веках, в период развития физики.


Молния в море

Наиболее подробно такую гипотезу описал в своих исследованиях Бенджамин Франклин. В 1750 он представил научный труд, в котором был описан известный нынче эксперимент по определению электрической природы молнии.

Суть опыта состояла в запуске воздушного змея во время грозы. При этом к змею крепился стержень из меди, а к тросу – металлический ключ. Цель эксперимента – доказать электрическую природу молнии.


Опыт Бенджамина Франклина, иллюстрация

Для подтверждения гипотезы молния должна ударить в змея, пройти по тросу и оставить след на ключе. Опыт Франклин провел в июне, позаботившись о громоотводе. Стоит сказать, что он прошел успешно и подтвердил все догадки физика.

В 20-м веке ученые открыли необычные виды молнии (спрайты, джеты, эльфы), которые возникают в верхних слоях атмосферы. В настоящее время исследования молнии проводятся при помощи спутников.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]