Вторичные цепи: понятие, определение, назначение, принцип работы, монтаж и применение


Виды

Вторичные цепи бывают нескольких разновидностей. Так, к ним относятся цепи напряжения и токовые. Они отличаются наличием устройств для измерения показателей тока, мощности, напряжения.

Бывает и оперативная разновидность. Она способствует передаче тока к основным исполнительным устройствам. Вторичные цепи такого вида представлены электромагнитами, контакторами, автоматизированными выключателями, предохранителями, ключами и так далее.

Токовая цепь, которая идет от ТТ для измерений, применяется чаще всего, чтобы питать:

  • Приборы, которые показывают и измеряют амперметры, ваттметры, варметры и так далее.
  • Защитные систем реле: дистанционные, против замыканий, от отказа выключателей и другие.
  • Устройств для того, чтобы регулировать перетоки мощности, противоаварийную автоматику.
  • Ряда устройств, входящих в систему сигнализации либо блокировки.

Помимо этого, токовую цепь применяют, когда есть необходимость питать приспособления для превращения переменного тока в постоянный, которые используются как источники оперативного тока.

Ты мастер

3.4.1. Настоящая глава Правил распространяется на вторичные цепи (цепи управления, сигнализации, контроля, автоматики и релейной защиты) электроустановок.

3.4.2. Рабочее напряжение вторичных цепей присоединения, которое не имеет связи с другими присоединениями и аппаратура которого расположена отдельно от аппаратуры других присоединений, должно быть не выше 1 кВ. Во всех остальных случаях рабочее напряжение вторичных цепей должно быть не выше 500 В.

Исполнение присоединяемых аппаратов должно соответствовать условиям окружающей среды и требованиям безопасности.

3.4.3. На электростанциях и подстанциях для вторичных цепей следует применять контрольные кабели с алюминиевыми жилами из полутвердого алюминия. Контрольные кабели с медными жилами следует применять только во вторичных цепях:

1) электростанций с генераторами мощностью более 100 МВт; при этом на электростанциях для вторичной коммутации и освещения объектов химводоочистки, очистных, инженерно-бытовых и вспомогательных сооружений, механических мастерских и пусковых котельных следует применять контрольные кабели с алюминиевыми жилами;

2) РУ и подстанций с высшим напряжением 330 кВ и выше, а также РУ и подстанций, включаемых в межсистемные транзитные линии электропередачи;

3) дифференциальных защит шин и устройств резервирования отказа выключателей 110 – 220 кВ, а также средств системной противоаварийной автоматики;

4) технологических защит тепловых электростанций;

5) с рабочим напряжением не выше 60 В при диаметре жил кабелей и проводов до 1 мм (см. также 3.4.4);

6) размещаемых во взрывоопасных зонах классов В-I и В-Iа электростанций и подстанций.

На промышленных предприятиях для вторичных цепей следует применять контрольные кабели с алюмомедными или алюминиевыми жилами из полутвердого алюминия. Контрольные кабели с медными жилами следует применять только во вторичных цепях, размещаемых во взрывоопасных зонах классов В-I и В-Iа, во вторичных цепях механизмов доменных и конвертерных цехов, главной линии обжимных и непрерывных высокопроизводительных прокатных станов, электроприемников особой группы I категории, а также во вторичных цепях с рабочим напряжением не выше 60 В при диаметре жил кабелей и проводов до 1 мм (см. также 3.4.4).

3.4.4. По условию механической прочности:

1) жилы контрольных кабелей для присоединения под винт к зажимам панелей и аппаратов должны иметь сечения не менее 1,5 кв. мм (а при применении специальных зажимов – не менее 1,0 кв. мм) для меди и 2,5 кв. мм для алюминия; для токовых цепей – 2,5 кв. мм для меди и 4 кв. мм для алюминия; для неответственных вторичных цепей, для цепей контроля и сигнализации допускается присоединение под винт кабелей с медными жилами сечением 1 кв. мм;

2) в цепях с рабочим напряжением 100 В и выше сечение медных жил кабелей, присоединяемых пайкой, должно быть не менее 0,5 кв. мм;

3) в цепях с рабочим напряжением 60 В и ниже диаметр медных жил кабелей, присоединяемых пайкой, должен быть не менее 0,5 мм. В устройствах связи, телемеханики и им подобных линейные цепи следует присоединять к зажимам под винт.

Присоединение однопроволочных жил (под винт или пайкой) допускается осуществлять только к неподвижным элементам аппаратуры. Присоединение жил к подвижным или выемным элементам аппаратуры (втычным соединителям, выемным блокам и др.), а также к панелям и аппаратам, подверженным вибрации, следует выполнять гибкими (многопроволочными) жилами.

3.4.5. Сечение жил кабелей и проводов должно удовлетворять требованиям их защиты от КЗ без выдержки времени, допустимых длительных токов согласно гл. 1.3, термической стойкости (для цепей, идущих от трансформаторов тока), а также обеспечивать работу аппаратов в заданном классе точности. При этом должны быть соблюдены следующие условия:

1. Трансформаторы тока совместно с электрическими цепями должны работать в классе точности:

для расчетных счетчиков – по гл. 1,5;

для измерительных преобразователей мощности, используемых для ввода информации в вычислительные устройства, – по гл. 1.5, как для счетчиков технического учета;

для щитовых приборов и измерительных преобразователей тока и мощности, используемых для всех видов измерений, – не ниже класса точности 3;

для защиты, как правило, в пределах 10-процентной погрешности (см. также гл. 3.2).

2. Для цепей напряжения потери напряжения от трансформатора напряжения при условии включения всех защит и приборов должны составлять:

до расчетных счетчиков и измерительных преобразователей мощности, используемых для ввода информации в вычислительные устройства, – не более 0,5%;

до расчетных счетчиков межсистемных линий электропередачи – не более 0,25%;

до счетчиков технического учета – не более 1,5%;

до щитовых приборов и датчиков мощности, используемых для всех видов измерений, – не более 1,5%;

до панелей защиты и автоматики – не более 3% (см. также гл. 3.2).

При совместном питании указанных нагрузок по общим жилам их сечение должно быть выбрано по минимальной из допустимых норм потери напряжения.

3. Для цепей оперативного тока потери напряжения от источника питания должны составлять:

до панели устройства или до электромагнитов управления, не имеющих форсировки, – не более 10% при наибольшем токе нагрузки;

до электромагнитов управления, имеющих трехкратную и большую форсировку, – не более 25% при форсировочном значении тока.

4. Для цепей напряжения устройств АРВ потеря напряжения от трансформатора напряжения до измерительного органа должна составлять не более 1%.

3.4.6. В одном контрольном кабеле допускается объединение цепей управления, измерения, защиты и сигнализации постоянного и переменного тока, а также силовых цепей, питающих электроприемники небольшой мощности (например, электродвигатели задвижек).

Во избежание увеличения индуктивного сопротивления жил кабелей разводку вторичных цепей трансформаторов тока и напряжения необходимо выполнять так, чтобы сумма токов этих цепей в каждом кабеле была равна нулю в любых режимах.

Допускается применение общих кабелей для цепей разных присоединений, за исключением взаимно резервируемых.

3.4.7. Кабели, как правило, следует присоединять к сборкам зажимов. Присоединение двух медных жил кабеля под один винт не рекомендуется, а двух алюминиевых жил не допускается.

К выводам измерительных трансформаторов или отдельным аппаратам кабели допускается присоединять непосредственно.

Исполнение зажимов должно соответствовать материалу и сечению жил кабелей.

3.4.8. Соединение контрольных кабелей с целью увеличения их длины допускается, если длина трассы превышает строительную длину кабеля. Соединение кабелей, имеющих металлическую оболочку, следует осуществлять с установкой герметичных муфт.

Кабели с неметаллической оболочкой или с алюминиевыми жилами следует соединять на промежуточных рядах зажимов или с помощью специальных муфт, предназначенных для данного типа кабелей.

3.4.9. Кабели вторичных цепей, жилы кабелей и провода, присоединяемые к сборкам зажимов или аппаратам, должны иметь маркировку.

3.4.10. Типы проводов и кабелей для вторичных цепей, способы их прокладки и защиты следует выбирать с учетом требований гл. 2.1 – 2.3 и 3.1 в той части, в какой они не изменены настоящей главой. При прокладке проводов и кабелей по горячим поверхностям или в местах, где изоляция может подвергаться воздействию масел и других агрессивных сред, следует применять специальные провода и кабели (см. гл. 2.1).

Провода и жилы кабеля, имеющие несветостойкую изоляцию, должны быть защищены от воздействия света.

3.4.11. Кабели вторичных цепей трансформаторов напряжения 110 кВ и выше, прокладываемые от трансформатора напряжения до щита, должны иметь металлическую оболочку или броню, заземленную с обеих сторон. Кабели в цепях основных и дополнительных обмоток одного трансформатора напряжения 110 кВ и выше по всей длине трассы следует прокладывать рядом. Для цепей приборов и устройств, чувствительных к наводкам от других устройств или проходящих рядом цепей, должны быть применены экранированные провода, а также контрольные кабели с общим экраном или кабели с экранированными жилами.

3.4.12. Монтаж цепей постоянного и переменного тока в пределах щитовых устройств (панели, пульты, шкафы, ящики и т.п.), а также внутренние схемы соединений приводов выключателей, разъединителей и других устройств по условиям механической прочности должны быть выполнены проводами или кабелями с медными жилами сечением не менее:

для однопроволочных жил, присоединяемых винтовыми зажимами, 1,5 кв. мм;

для однопроволочных жил, присоединяемых пайкой, 0,5 кв. мм;

для многопроволочных жил, присоединяемых пайкой или под винт с помощью специальных наконечников, 0,35 кв. мм; в технически обоснованных случаях допускается применение проводов с многопроволочными медными жилами, присоединяемыми пайкой, сечением менее 0,35 кв. мм, но не менее 0,2 кв. мм;

для жил, присоединяемых пайкой в цепях напряжением не выше 60 В (диспетчерские щиты и пульты, устройства телемеханики и т.п.), – 0,197 кв. мм (диаметр – не менее 0,5 мм).

Присоединение однопроволочных жил (под винт или пайкой) допускается осуществлять только к неподвижным элементам аппаратуры. Присоединение жил к подвижным или выемным элементам аппаратуры (разъемным соединителям, выемным блокам и др.) следует выполнять гибкими (многопроволочными) жилами.

Механические нагрузки на места пайки проводов не допускаются.

Для переходов на дверцы устройств должны быть применены многопроволочные провода сечением не менее 0,5 кв. мм; допускается также применение проводов с однопроволочными жилами сечением не менее 1,5 кв. мм при условии, что жгут проводов работает только на кручение.

Сечение проводов на щитовых устройствах и других изделиях заводского изготовления определяется требованиями их защиты от КЗ без выдержки времени, допустимых токовых нагрузок согласно гл. 1.3, а для цепей, идущих от трансформаторов тока, кроме того, и термической стойкостью. Для монтажа следует применять провода и кабели с изоляцией, не поддерживающей горение.

Применение проводов и кабелей с алюминиевыми жилами для внутреннего монтажа щитовых устройств не допускается.

3.4.13. Соединения аппаратов между собой в пределах одной панели следует выполнять, как правило, непосредственно без выведения соединяющих проводов на промежуточные зажимы.

На зажимы или испытательные блоки должны быть выведены цепи, в которые требуется включать испытательные и проверочные аппараты и приборы. Рекомендуется также выводить на ряд зажимов цепи, переключение которых требуется для изменения режима работы устройства.

3.4.14. Промежуточные зажимы следует устанавливать только там, где:

провод переходит в кабель;

объединяются одноименные цепи (сборка зажимов цепей отключения, цепей напряжения и т.п.);

требуется включать переносные испытательные и измерительные аппараты, если нет испытательных блоков или аналогичных устройств;

несколько кабелей переходит в один кабель или перераспределяются цепи различных кабелей (см. также 3.4.8).

3.4.15. Зажимы, относящиеся к разным присоединениям или устройствам, должны быть выделены в отдельные сборки зажимов.

На рядах зажимов не должны находиться в непосредственной близости один от другого зажимы, случайное соединение которых может вызвать включение или отключение присоединения или КЗ в цепях оперативного тока или в цепях возбуждения.

При размещении на панели (в шкафу) аппаратуры, относящейся к разным видам защит или других устройств одного присоединения, подача питания от полюсов оперативного тока через сборки зажимов, а также разводка этих цепей по панели должны быть выполнены независимо для каждого вида защит или устройств. Если в цепях отключения от отдельных комплектов защит не предусматриваются накладки, то присоединение этих цепей к выходному реле защиты или цепям отключения выключателя следует осуществлять через отдельные зажимы сборки зажимов; при этом соединения по панели указанных цепей следует выполнять независимо для каждого вида защит.

3.4.16. Для проведения эксплуатационных проверок и испытаний в цепях защиты и автоматики следует предусматривать испытательные блоки или измерительные зажимы, обеспечивающие (за исключением случаев, оговоренных в 3.4.7) без отсоединения проводов и кабелей отключение от источника оперативного тока, трансформаторов напряжения и тока с возможностью предварительного закорачивания токовых цепей; присоединение испытательных аппаратов для проверки и наладки устройств.

Устройства релейной защиты и автоматики, периодически выводимые из работы по требованиям режима сети, условиям селективности, другим причинам, должны иметь специальные приспособления для вывода их из работы оперативным персоналом.

3.4.17. Сборки зажимов, вспомогательные контакты выключателей и разъединителей и аппараты должны устанавливаться, а заземляющие проводники монтироваться так, чтобы была обеспечена доступность и безопасность обслуживания сборок и аппаратов вторичных цепей без снятия напряжения с первичных цепей напряжением выше 1 кВ.

3.4.18. Изоляция аппаратуры, применяемой во вторичных цепях, должна соответствовать нормам, определяемым рабочим напряжением источника (или разделительного трансформатора), питающего данные цепи.

Контроль изоляции цепей оперативного постоянного и переменного тока следует предусматривать на каждом независимом источнике (включая разделительные трансформаторы), не имеющем заземления.

Устройство контроля изоляции должно обеспечивать подачу сигнала при снижении изоляции ниже установленного значения, а на постоянном токе – также измерение значения сопротивления изоляции полюсов. Контроль изоляции допускается не выполнять при неразветвленной сети оперативного тока.

3.4.19. Питание оперативным током вторичных цепей каждого присоединения следует осуществлять через отдельные предохранители или автоматические выключатели (применение последних предпочтительно).

Питание оперативным током цепей релейной защиты и управления выключателями каждого присоединения должно предусматриваться, как правило, через отдельные автоматические выключатели или предохранители, не связанные с другими цепями (сигнализация, электромагнитная блокировка и т.п.). Допускается совместное питание цепей управления и ламп сигнализации положения управляемого аппарата.

Для присоединений 220 кВ и выше, а также для генераторов (блоков) мощностью 60 МВт и более должно быть предусмотрено раздельное питание оперативным током (от разных предохранителей, автоматических выключателей) основных и резервных защит.

При последовательном включении автоматических выключателей и предохранителей последние должны быть установлены перед автоматическими выключателями (со стороны источника питания).

3.4.20. Устройства релейной защиты, автоматики и управления ответственных элементов должны иметь постоянно действующий контроль состояния цепей питания оперативным током. Контроль может осуществляться применением отдельных реле или ламп либо при помощи аппаратов, предусматриваемых для контроля исправности цепи последующей операции коммутационных аппаратов с дистанционным управлением.

Для менее ответственных устройств контроль питания может осуществляться подачей сигнала об отключенном положении автоматического выключателя в цепи оперативного тока.

Контроль исправности цепи последующей операции должен быть выполнен при наличии в ней вспомогательного контакта коммутационного аппарата. При этом контроль исправности цепи отключения должен быть выполнен во всех случаях, а контроль исправности цепи включения – на выключателях ответственных элементов, короткозамыкателей и на аппаратах, включаемых под действием устройств автоматического ввода резерва (АВР) или телеуправления.

Если параметры цепей включения привода не обеспечивают возможность контроля исправности этой цепи, контроль не выполняется.

3.4.21. В электроустановках, как правило, должна быть обеспечена автоматическая подача сигнала о нарушении нормального режима работы и о возникновении каких-либо неисправностей.

Проверка исправности этой сигнализации должна быть предусмотрена периодическим ее опробованием.

В электроустановках, работающих без постоянного дежурства персонала, должна быть обеспечена подача сигнала в пункт нахождения персонала.

3.4.22. Цепи оперативного тока, в которых возможна ложная работа различных устройств от перенапряжения при работе электромагнитов включения или других аппаратов, а также при замыканиях на землю, должны быть защищены.

3.4.23. Заземление во вторичных цепях трансформаторов тока следует предусматривать в одной точке на ближайшей от трансформаторов тока сборке зажимов или на зажимах трансформаторов тока.

Для защит, объединяющих несколько комплектов трансформаторов тока, заземление должно быть предусмотрено также в одной точке; в этом случае допускается заземление через пробивной предохранитель с пробивным напряжением не выше 1 кВ с шунтирующим сопротивлением 100 Ом для стекания статического заряда.

Вторичные обмотки промежуточных разделительных трансформаторов тока допускается не заземлять.

3.4.24. Вторичные обмотки трансформатора напряжения должны быть заземлены соединением нейтральной точки или одного из концов обмотки с заземляющим устройством.

Заземление вторичных обмоток трансформатора напряжения должно быть выполнено, как правило, на ближайшей от трансформатора напряжения сборке зажимов или на зажимах трансформатора напряжения.

Допускается объединение заземляемых вторичных цепей нескольких трансформаторов напряжения одного распределительного устройства общей заземляющей шинкой. Если указанные шинки относятся к разным распределительным устройствам и находятся в разных помещениях (например, релейные щиты распределительных устройств различных напряжений), то эти шинки, как правило, не следует соединять между собой.

Для трансформаторов напряжения, используемых в качестве источников оперативного переменного тока, если не предусматривается рабочее заземление одного из полюсов сети оперативного тока, защитное заземление вторичных обмоток трансформаторов напряжения должно быть осуществлено через пробивной предохранитель.

3.4.25. Трансформаторы напряжения должны быть защищены от КЗ во вторичных цепях автоматическими выключателями. Автоматические выключатели следует устанавливать во всех незаземленных проводниках после сборки зажимов, за исключением цепи нулевой последовательности (разомкнутого треугольника) трансформаторов напряжения в сетях с большими токами замыкания на землю.

Для неразветвленных цепей напряжения автоматические выключатели допускается не устанавливать.

Во вторичных цепях трансформатора напряжения должна быть обеспечена возможность создания видимого разрыва (рубильники, разъемные соединители и т.п.).

Установка устройств, которыми может быть создан разрыв проводников между трансформатором напряжения и местом заземления его вторичных цепей, не допускается.

3.4.26. На трансформаторах напряжения, установленных в сетях с малыми токами замыкания на землю без компенсации емкостных токов (например, на генераторном напряжении блока генератор – трансформатор, на напряжении собственных нужд электростанций и подстанций), при необходимости следует предусматривать защиту от перенапряжений при самопроизвольных смещениях нейтрали. Защита может быть осуществлена включением активных сопротивлений в цепь разомкнутого треугольника.

3.4.27. Во вторичных цепях линейных трансформаторов напряжения 220 кВ и выше должно быть предусмотрено резервирование от другого трансформатора напряжения.

Допускается выполнение взаимного резервирования между линейными трансформаторами напряжения при достаточной их мощности по вторичной нагрузке.

3.4.28. Трансформаторы напряжения должны иметь контроль исправности цепей напряжения.

Релейная защита, цепи которой питаются от трансформаторов напряжения, должна быть оборудована устройствами, указанными в 3.2.8.

Независимо от наличия или отсутствия в цепях защиты указанных устройств должны быть предусмотрены сигналы:

при отключении автоматических выключателей – с помощью их вспомогательных контактов;

при нарушениях работы реле-повторителей шинных разъединителей – с помощью устройств контроля обрыва цепей управления и релеповторителей;

для трансформаторов напряжения, в цепи обмоток высшего напряжения которых установлены предохранители, при нарушении целости предохранителей – с помощью центральных устройств.

3.4.29. В местах, подверженных сотрясениям и вибрациям, должны быть приняты меры против нарушения контактных соединений проводов, ложного срабатывания реле, а также против преждевременного износа аппаратов и приборов.

3.4.30. Панели должны иметь надписи с обслуживаемых сторон, указывающие присоединения, к которым относится панель, ее назначение, порядковый номер панели в щите, а установленная на панелях аппаратура должна иметь надписи или маркировку согласно схемам.

Как строятся

Монтаж вторичных цепей осуществляется с учетом ряда правил. Так, каждое устройство может быть подключено к 1 или нескольким источникам тока. Это определяют, принимая во внимание потребляемую мощность, нужную точность, протяженность.

Если речь идет о многообмоточном трансформаторе, вторичная цепь является независимым источником тока. Все вторичные приспособления, которые присоединяются к ТТ одной фазы, соединяют со вторичной обмоткой в определенном порядке. Приспособления и соединительные цепи должны составить замкнутую систему. Нельзя размыкать вторичную цепь трансформатора тока, если имеется ток в первичной. Поэтому в ней никогда не устанавливают автоматические выключатели, предохранители.

Подготовка и прокладка проводов.

Все вторичные устройства (панели и пульт-панели управления, защиты, сигнализации и автоматики, шкафы, сборки) поставляются заводами-изготовителями полностью смонтированными, включая монтаж вторичных цепей с аппаратами и приборами, прошедшими ревизию, регулировку и испытание.
Готовые элементы электропроводок вторичных цепей в пределах одного устройства (панели, шкафа и др.) заканчиваются наборами зажимов, предназначенными для подключения к ним жил соединительных проводов и контрольных кабелей. Проводки вторичных цепей являются ответственной частью электрической установки, поэтому при монтаже к ним предъявляют высокие требования по качеству работ, а также по надежности выполнения всех контактных соединений.

Вторичные цепи в пределах панелей щитов, релейных шкафов, камер КРУ выполняют изолированными проводами с алюминиевыми или медными жилами (разрешенными ПУЭ в отдельных случаях).

По условиям механической прочности алюминиевые жилы кабелей и проводов, присоединяемые к выводам приборов и аппаратов, должны иметь сечение не менее 2,5 мм2, медные — не менее 1,5 мм2. Для неответственных вторичных цепей в электроустановках напряжением до 1000 В, цепей контроля и сигнализации электроустановок промышленных предприятий допускается присоединение к выводам приборов и аппаратов медных жил сечением 1 мм2.

В цепях напряжением до 60 В диаметр медных жил кабелей, присоединяемых пайкой, должен быть не менее 0,5 мм. Внешние соединения вторичных цепей панелей, шкафов, камер друг с другом и с блокировочными, измерительными и сигнальными устройствами электрооборудования осуществляют контрольными кабелями. Реже эти соединения выполняют изолированными проводами, защищенными от механических повреждений стальными или иными трубами, коробами, лотками и т. д.

В последнее время для монтажа электропроводок вторичных цепей на щитах, пультах выпускают новые алюмо-медные провода АМПВ сечением 1,5—10 мм2 с поливинил хлоридной изоляцией, алюминиевой жилой с медной оболочкой. Разрешено использовать их временно для проверки проводов в условиях эксплуатации.

Монтаж вторичных цепей, как и других цепей и устройств, начинают с рассмотрения проектных чертежей и схем, их соответствия требованиям индустриального монтажа. Проектная документация содержит: пояснительную записку; схемы электрических соединений и подключений; принципиальные электрические схемы внешних и внутренних соединений электрических устройств; чертежи общего вида щитов, панелей, ячеек; рабочие чертежи кабельных разводок и кабельный журнал; перечни надписей и перечни элементов с указанием позиционных и буквенных обозначений наименований, типов, технических данных, номеров шкафов, щитов, пультов; заказные спецификации; ведомости изделий МЭЗ и чертежи нетиповых узлов и конструкций.

При подготовке монтажа в МЭЗ выполняют сборку узлов и пакетов проводов, изготовляют и комплектуют опорные и крепежные конструкции, изделия и детали для прокладки проводов и кабелей вторичных цепей. В процессе монтажа вторичных цепей применяют разные способы прокладки пакетов и потоков проводов: с жестким креплением к панели, свободно висящими пакетами без крепления к основанию, на струнах, в коробах, на лотках, перфорированных профилях, дорожках и «напрямую».

Рис. 1. Заготовка потока проводов с помощью универсального шаблона (а) и их изгибание на плоскость с помощью деревянной пластины (б) или алюминиевой скобы (в)

Пакеты и потоки проводов заготовляют и собирают в МЭЗ по эскизам замеров с использованием шаблонов. На рис. 1, а—в показаны заготовка потока проводов на деревянной плите с помощью универсальных шаблонов, их пакетировка и изгибание. С помощью таких шаблонов и перестановки шпилек можно заготавливать потоки и пакеты проводов по различным схемам. Для изготовления по одной и той же схеме нескольких одинаковых потоков или перемычек используют простые шаблоны, выполненные из электрокартона, фанеры или другого листового материала и представляющие собой макет части или всей монтируемой панели.

При формировании потоков проводов соблюдают требования инструкции: выдерживают радиус изгиба для гибких одно- и многопроволочных проводов не менее пяти диаметров, избегают перекрещивания проводов при ответвлениях, а при необходимости перекрещивают их на выходе из основного потока или непосредственно у прибора; выполняют повороты одинаково и под прямым углом; производят бандажирование проводов в потоках на прямолинейных участках с шагом 150—200 мм, а также во всех местах выхода проводов.

Рассмотрим наиболее часто применяемые способы прокладки проводов. Прокладку проводов свободно висящими пакетами (рис. 2, а) выполняют без крепления к панели, пакеты подвешивают на присоединительных зажимах приборов и аппаратов. Такой способ используют для данной панели при небольшой длине проводов и вертикальном расположении рядов наборных зажимов, что значительно упрощает прокладку и снижает трудоемкость монтажа. Однако присоединение жил контрольных кабелей в этом случае несколько усложняется. Провода свободно висящих пакетов прокладывают на расстоянии не менее 10 мм от поверхности.

Рис. 2. Прокладка проводов вторичных цепей: а — свободно висящими пакетами, б — на струне, в — «напрямую»; 1 — пакет проводов, 2 — изоляционная прокладка, 3 — полоска-пряжка, 4 — вывод аппарата, 5 — панель, 6 — аппарат

При монтаже на струне (рис. 2, б) провода вторичных цепей предварительно соединяют в один общий пучок. В середине пучка закладывают струну, представляющую собой выпрямленную стальную проволоку диаметром 5 мм с надетой на нее поливинилхлоридной трубкой. На одном конце проволока имеет резьбу. На пучок проводов через каждые 175—200 мм (для заготовок горизонтальной прокладки) и через 250—300 мм (для заготовок вертикальной прокладки) накладывают бандаж из перфорированной поливинилхлоридной ленты, закрепляемой полистирольной кнопкой или полоской-пряжкой. Заготовленные таким образом пучки провода переносят на панель и прикрепляют к предварительно приваренным к панели скобкам. Натяжение проволоки в струну и выравнивание пучка производят навертыванием гайки на одном конце проволоки, в то время как другой ее конец загнут на скобе. Жилы проводов присоединяют обычным способом. Струна может быть также из стальной полосы 2X20 мм с намотанной по всей длине поливинилхлоридной лентой.

Прокладку проводов с жестким креплением к панели применяют редко. Для крепления потоков проводов используют тонкие жестяные полоски-пряжки, привариваемые к стальным листам панелей точечной электросваркой. При разметке на панелях приваривают в двух точках полоски, длина которых должна быть немного больше двойной ширины потока закрепляемых проводов.

При прокладке проводов на панели наклеивают полосы злектрокартона или лакоткани вдоль трассы потока. Провода дополнительно изолируют от металлических полосок лакотканью или электрокартоном. Уложив поток, полоски отгибают к его центру, концы продевают в отверстия пряжек, стягивают плоскогубцами и слегка отгибают в разные стороны. Излишки полосок отрезают ножницами, оставшиеся концы отгибают до отказа деревянной оправкой, ударяя по ней легким молотком.

Расстояние между точками крепления потока проводов к панели на прямых участках принимается 175—200 мм по горизонтали и 250—300 мм по вертикали. Соединяют провода только в наборных зажимах или на выводах приборов и аппаратов (соединение проводов между зажимами не допускается). В пределах одной панели аппараты соединяют между собой без вывода соединяющих проводов на наборные зажимы. Не допускается соединять медный и алюминиевый провода в одном зажиме под один винт. Соединения между выводами аппаратов выполняют неразъемными перемычками, последовательно огибающими винты соединяемых выводов с помощью ограничивающих шайб-звездочек.

Прокладка проводов «напрямую» (рис. 2, в) сокращает трудоемкость монтажа и применяется для панелей, на которых установлены приборы, выполненные с передним присоединением. При этом способе прокладки провода не пересекаются у наборных зажимов и легко заменяются в случае повреждения или изменения схем; панели имеют красивый вид, так как узлы проводки расположены сзади и дополнительно закрыты декоративной крышкой. Условия обслуживания панелей облегчены, поскольку приборы и наборные зажимы смонтированы на фасадной стороне панели. В панелях на расстоянии 40 мм от каждого зажима просверливают отверстия диаметром 10 мм, в которые вставляют изоляционные втулки. Провода прокладывают «напрямую» по задней стороне панели, протягивая из отверстия в отверстие. Концы проводов протаскивают через изоляционные втулки на переднюю сторону панели, где их жилы присоединяют к зажимам. В местах пересечения провода стягивают бандажом из изоляционной ленты.

Этот способ требует установки всех приборов и аппаратов, предназначенных для переднего присоединения, на лицевой стороне панели, что не всегда возможно. Поэтому он не получил еще широкого распространения.

При большем числе проводов в потоке применяют для их монтажа короба и перфорированные лотки, которые соединяют между собой болтами или сваркой в непрерывную электрическую цепь и прикрепляют к панелям скобками на винтах (диаметром 4—5 мм) или приваркой. Короба и лотки должны иметь антикоррозионную окраску или покрытие. Провода в коробах прокладывают без крепления и дополнительной изоляции с коэффициентом заполнения короба 0,7. Провода в лотках на горизонтальных участках не закрепляют, а на вертикальных закрепляют через 1 м.

Для прокладки проводов вторичных цепей применяют также перфорированные основания на профилях и дорожках. Дорожки представляют собой металлическую ленту шириной 150—200 мм и толщиной 0,5—1 мм с перфорацией по длине. Провода закрепляют в один ряд по всей ширине профиля (дорожки).

Защита

Чтобы защитить персонал, когда образуются неисправности вторичной цепи, к примеру, когда перекрывается изоляция между первичной и вторичной структурой, устанавливают защитные заземления. Это делается в ближайших от ТТ точках, на зажимах. Изоляция вторичной цепи важна и в случае, когда между собой соединены несколько ТТ, и она фиксируется в одной точке. Заземление обеспечивают предохранителем-разрядником, чей показатель напряжения не превышает 1000 В.

Обязательно берут во внимание характеристики первичной системы, в частности, возможность питать обе линии 2 систем шин. По этой причине вторичные токи от ТТ, который подводят к реле и устройствам первичных соединений, складывают. Но при этом не берут в расчет дифференциальную защиту шин и УРОВ.

Если соединения на данный момент не функционируют, подлежат ремонту, то с испытательного блока снимают рабочую крышку. Это ведет к тому, что вторичные цепи трансформаторов тока замыкаются и заземляются. В то же время цепи, которые шли к защитным реле, подлежат разрыву.

Аппараты вторичных цепей. Релейная защита и элементы системной автоматики

Автоматические устройства, в частности релейная защита, необходимы там, где требуется быстрая реакция на изменение режима работы и немедленная команда на отключение или включение соответствующих цепей. Так, например, при КЗ, когда ток в ряде цепей резко увеличивается, необходимо немедленно отключить поврежденный участок системы, чтобы но возможности уменьшить размеры разрушения и не помешать работе смежных неповрежденных цепей. Такая команда может быть подана только автоматическим устройством, реагирующим на изменение тока, направление мощности и другие факторы и замыкающим цепи управления соответствующих выключателей.

Автоматическое отключение элементов системы, должно быть избирательным (селективным). Это означает, что в случае повреждения в любой цени отключению подлежит только поврежденная цепь ближайшими к месту повреждения выключателями. Работа остальной части системы не должна быть нарушена. Так, например, при замыкании в точке К1 (рис.2) ток проходит по цепям генераторов, повышающих трансформаторов, поврежденной и неповрежденной линий. Однако отключению подлежит только поврежденная линия с обеих сторон. Связь станции с системой сохранится по другой линии.

В случае повреждения генератора или трансформатора отключению подлежит только поврежденный элемент. На рис.2 участки системы, подлежащие отключению в случае их повреждения, разграничены пунктирными линиями. Каждый участок отключается одним или двумя выключателями. В случае повреждения выключателя отключению подлежат два смежных участка.

Рис.2. Электрическая схема станции и участка сети Пунктирные линии разграничивают участки станции и сети, подлежащие отключению в случае их повреждения

Избирательность релейной защиты обеспечивают различными способами, например соответствующим выбором времени или тока срабатывания защит смежных участков сети, применением реле, реагирующих на направление мощности, и др.

Время отключения цепи при КЗ слагается из времени срабатывания релейной защиты и времени отключения выключателя, исчисляемого от момента подачи команды на отключение до момента погасания дуги в разрывах выключателя.

Время отключения основных линий системы стремятся по возможности уменьшить, чтобы не нарушить устойчивости параллельной работы электростанций. Время отключения новейших выключателей составляет два периода и время релейной защиты еще 0,5 периода. Полное время отключения составляет таким образом 2,5 периода. Для распределительных сетей 2,5-периодное отключение не требуется. Здесь применяют более простые защиты и менее быстродействующие выключатели, стоимость которых значительно ниже. Полное время отключения составляет несколько десятых долей секунды и более.

Автоматическое повторное включение

Автоматические устройства для повторного включения (АПВ) воздушных линий после отключения их защитой имеют назначение быстро восстановить работу линии после отключения. Эффективность повторного включения воздушных линий основана на том, что большая часть замыканий связана с грозовыми разрядами и приводит к перекрытию изоляторов по поверхности. После автоматического отключения линии электрическая прочность воздушного промежутка быстро восстанавливается и при повторном включении линия остается в работе.

Первоначально команда на повторное включение подавалась вручную дежурным на щите управления. Позднее операцию включения стали автоматизировать. В настоящее время автоматическое повторное включение, однократное и двукратное, получило широкое применение. Оно способствует повышению надежности электроснабжения, в особенности при питании потребителей по одиночным линиям.

Полное время автоматического повторного включения исчисляется от подачи команды релейной защиты на отключение выключателя до повторного замыкания его контактов. Оно должно быть возможно малым, чтобы не нарушать работу потребителей, но в то же время достаточным для деионизации дугового промежутка в месте перекрытия. Время повторного включения зависит от напряжения сети и быстродействия выключателя. В устройствах двукратного повторного включения для первого включения выбирают минимальное время из условия деионизации дугового промежутка. Если первое включение оказывается неуспешным и линия отключается вновь, происходит второе включение с интервалом в несколько секунд.

Автоматический ввод резерва

Автоматические устройства для включении резервной цепи (АВР) должны автоматически включать резервный трансформатор или резервный агрегат взамен отключенного защитой, а также автоматически подключать секцию сборных шин (с соответствующей нагрузкой), потерявшую питание, к соседней секции, обеспеченной питанием, с целью быстрого восстановления электроснабжения. Перерыв в подаче энергии должен быть относительно невелик, не более 0,5 с, чтобы электродвигатели, потерявшие питание, не успели остановиться, а после восстановления питания могли быстро войти в нормальный режим работы.


О цепях напряжения

Цепи напряжения, которые идут от трансформаторов напряжения, применяют, чтобы питать:

  • Устройства для измерения, которые указывают и регистрируют данные – вольтметры, частотомеры, ваттметры.
  • Счетчики энергии, осциллографы, телеизмерительные приспособления.
  • Защитные системы реле – дистанционные, направленные и другие.
  • Автоматизированные устройства, противоаварийную автоматику, перетоки мощности, устройства блокировки.
  • Органы, которые контролируют наличие напряжения.

Также их применяют, чтобы питать выпрямительные приспособления, которые выступают источниками постоянного оперативного тока.

О заземлении

Заземление для защиты всегда вставляют во вторичную цепь. Делается это посредством объединения соответствующего устройства с одним из фазных проводов либо нулевой точкой вторичной системы. Заземление делают на точке, которая находится максимально близко к сборкам зажимов ТН либо рядом с его выводами.

В проводах на подвергшейся заземлению фазе на вторичной цепи работу по установке автоматических выключателей между ней и местом заземления рубильника не осуществляют. Выводы обмоток трансформатора напряжения, которые были заземлены, не соединяют. Жилы контрольных кабелей прокладывают до места назначения – к примеру, до шинок. Не соединяют и выводы, подвергшиеся заземлению на разных трансформаторах напряжения.

В процессе использования может повредиться трансформатор напряжения, вторичные цепи с защитой которого соединены с устройствами автоматики, измерений и так далее. Во избежание случаев повреждений осуществляют резервирование.

Если имеется схема, включающая двойную систему сборных шин, ТН резервируют друг друга взаимно, когда из работы выводится один из трансформаторов. Если в схеме имеется 2 системы сборных шин, в процессе переключения соединения с одной системы на вторую автоматически переключаются цепи напряжения.

Всегда исключают вероятность того, что заземленные цепи обоих трансформаторов соединятся. Это крайне важно. Практика доказывает, что если это произойдет, работа защитной релейной системы, автоматических устройств будет серьезно нарушена.

Необходимо всегда следить за тем, чтобы разъемные контакты находились в хорошем состоянии, а также за вторичными цепями напряжения, оперативного тока, которые отходят от них.

ПУЭ: Глава 3.4 Вторичные цепи

3.4.1. Настоящая глава Правил распространяется на вторичные цепи (цепи управления, сигнализации, контроля, автоматики и релейной защиты) электроустановок.

3.4.2. Рабочее напряжение вторичных цепей присоединения, которое не имеет связи с другими присоединениями и аппаратура которого расположена отдельно от аппаратуры других присоединений, должно быть не выше 1 кВ. Во всех остальных случаях рабочее напряжение вторичных цепей должно быть не выше 500 В.

Исполнение присоединяемых аппаратов должно соответствовать условиям окружающей среды и требованиям безопасности.

3.4.3. На электростанциях и подстанциях для вторичных цепей следует применять контрольные кабели с алюминиевыми жилами из полутвердого алюминия. Контрольные кабели с медными жилами следует применять только во вторичных цепях:

1) электростанций с генераторами мощностью более 100 МВт; при этом на электростанциях для вторичной коммутации и освещения объектов химводоочистки, очистных, инженерно-бытовых и вспомогательных сооружений, механических мастерских и пусковых котельных следует применять контрольные кабели с алюминиевыми жилами;

2) РУ и подстанций с высшим напряжением 330 кВ и выше, а также РУ и подстанций, включаемых в межсистемные транзитные линии электропередачи;

3) дифференциальных защит шин и устройств резервирования отказа выключателей 110-220 кВ, а также средств системной противоаварийной автоматики;

4) технологических защит тепловых электростанций;

5) с рабочим напряжением не выше 60 В при диаметре жил кабелей и проводов до 1 мм (см. также 3.4.4);

6) размещаемых во взрывоопасных зонах классов B-I и В-Iа электростанций и подстанций.

На промышленных предприятиях для вторичных цепей следует применять контрольные кабели с алюмомедными или алюминиевыми жилами из полутвердого алюминия. Контрольные кабели с медными жилами следует применять только во вторичных цепях, размещаемых во взрывоопасных зонах классов B-I и В-Iа, во вторичных цепях механизмов доменных и конвертерных цехов, главной линии обжимных и непрерывных высокопроизводительных прокатных станов, электроприемников особой группы I категории, а также во вторичных цепях с рабочим напряжением не выше 60 В при диаметре жил кабелей и проводов до 1 мм (см. также 3.4.4).

3.4.4. По условию механической прочности:

1) жилы контрольных кабелей для присоединения под винт к зажимам панелей и аппаратов должны иметь сечения не менее 1,5 мм2 (а при применении специальных зажимов — не менее 1,0 мм2 ) для меди и 2,5 мм2 для алюминия; для токовых цепей — 2,5 мм2 для меди и 4 мм2 для алюминия; для неответственных вторичных цепей, для цепей контроля и сигнализации допускается присоединение под винт кабелей с медными жилами сечением 1 мм2;

2) в цепях с рабочим напряжением 100 В и выше сечение медных жил кабелей, присоединяемых пайкой, должно быть не менее 0,5 мм2;

3) в цепях с рабочим напряжением 60 В и ниже диаметр медных жил кабелей, присоединяемых пайкой, должен быть не менее 0,5 мм. В устройствах связи, телемеханики и им подобных линейные цепи следует присоединять к зажимам под винт.

Присоединение однопроволочных жил (под винт или пайкой) допускается осуществлять только к неподвижным элементам аппаратуры. Присоединение жил к подвижным или выемным элементам аппаратуры (втычным соединителям, выемным блокам и др.), а также к панелям и аппаратам, подверженным вибрации, следует выполнять гибкими (многопроволочными) жилами.

3.4.5. Сечение жил кабелей и проводов должно удовлетворять требованиям их защиты от КЗ без выдержки времени, допустимых длительных токов согласно гл. 1.3, термической стойкости (для цепей, идущих от трансформаторов тока), а также обеспечивать работу аппаратов в заданном классе точности. При этом должны быть соблюдены следующие условия:

1. Трансформаторы тока совместно с электрическими цепями должны работать в классе точности:

для расчетных счетчиков — по гл. 1,5; для измерительных преобразователей мощности, используемых для ввода информации в вычислительные устройства, — по гл. 1.5, как для счетчиков технического учета; для щитовых приборов и измерительных преобразователей тока и мощности, используемых для всех видов измерений, — не ниже класса точности 3; для защиты, как правило, в пределах 10%-ной погрешности (см. также гл. 3.2.).

2. Для цепей напряжения потери напряжения от трансформатора напряжения при условии включения всех защит и приборов должны составлять:

до расчетных счетчиков и измерительных преобразователей мощности, используемых для ввода информации в вычислительные устройства, — не более 0,5%; до расчетных счетчиков межсистемных линий электропередачи — не более 0,25%; до счетчиков технического учета — не более 1,5%; до щитовых приборов и датчиков мощности, используемых для всех видов измерений, — не более 1,5%; до панелей защиты и автоматики — не более 3% (см. также гл. 3.2.).

При совместном питании указанных нагрузок по общим жилам их сечение должно быть выбрано по минимальной из допустимых норм потери напряжения.

3. Для цепей оперативного тока потери напряжения от источника питания должны составлять:

до панели устройства или до электромагнитов управления, не имеющих форсировки, — не более 10% при наибольшем токе нагрузки; до электромагнитов управления, имеющих трехкратную и большую форсировку, — не более 25% при форсировочном значении тока.

4. Для цепей напряжения устройств АРВ потеря напряжения от трансформатора напряжения до измерительного органа должна составлять не более 1%.

3.4.6. В одном контрольном кабеле допускается объединение цепей управления, измерения, защиты и сигнализации постоянного и переменного тока, а также силовых цепей, питающих электроприемники небольшой мощности (например, электродвигатели задвижек).

Во избежание увеличения индуктивного сопротивления жил кабелей разводку вторичных цепей трансформаторов тока и напряжения необходимо выполнять так, чтобы сумма токов этих цепей в каждом кабеле была равна нулю в любых режимах.

Допускается применение общих кабелей для цепей разных присоединений, за исключением взаимно резервируемых.

3.4.7. Кабели, как правило, следует присоединять к сборкам зажимов. Присоединение двух медных жил кабеля под один винт не рекомендуется, а двух алюминиевых жил не допускается.

К выводам измерительных трансформаторов или отдельным аппаратам кабели допускается присоединять непосредственно.

Исполнение зажимов должно соответствовать материалу и сечению жил кабелей.

3.4.8. Соединение контрольных кабелей с целью увеличения их длины допускается, если длина трассы превышает строительную длину кабеля. Соединение кабелей, имеющих металлическую оболочку, следует осуществлять с установкой герметичных муфт.

Кабели с неметаллической оболочкой или с алюминиевыми жилами следует соединять на промежуточных рядах зажимов или с помощью специальных муфт, предназначенных для данного типа кабелей.

3.4.9. Кабели вторичных цепей, жилы кабелей и провода, присоединяемые к сборкам зажимов или аппаратам, должны иметь маркировку.

3.4.10. Типы проводов и кабелей для вторичных цепей, способы их прокладки и защиты следует выбирать с учетом требований гл. 2.1-2.3 и 3.1 в той части, в какой они не изменены настоящей главой. При прокладке проводов и кабелей по горячим поверхностям или в местах, где изоляция может подвергаться воздействию масел и других агрессивных сред, следует применять специальные провода и кабели (см. гл. 2.1).

Провода и жилы кабеля, имеющие несветостойкую изоляцию, должны быть защищены от воздействия света.

3.4.11. Кабели вторичных цепей трансформаторов напряжения 110 кВ и выше, прокладываемые от трансформатора напряжения до щита, должны иметь металлическую оболочку или броню, заземленную с обеих сторон. Кабели в цепях основных и дополнительных обмоток одного трансформатора напряжения 110 кВ и выше по всей длине трассы следует прокладывать рядом. Для цепей приборов и устройств, чувствительных к наводкам от других устройств или проходящих рядом цепей, должны быть применены экранированные провода, а также контрольные кабели с общим экраном или кабели с экранированными жилами.

3.4.12. Монтаж цепей постоянного и переменного тока в пределах щитовых устройств (панели, пульты, шкафы, ящики и т. п.), а также внутренние схемы соединений приводов выключателей, разъединителей и других устройств по условиям механической прочности должны быть выполнены проводами или кабелями с медными жилами сечением не менее:

  • для однопроволочных жил, присоединяемых винтовыми зажимами, 1,5 мм2;
  • для однопроволочных жил, присоединяемых пайкой, 0,5 мм2;
  • для многопроволочных жил, присоединяемых пайкой или под винт с помощью специальных наконечников, 0,35 мм2; в технически обоснованных случаях допускается применение проводов с многопроволочными медными жилами, присоединяемыми пайкой, сечением менее 0,35 мм2, но не менее 0,2 мм2;
  • для жил, присоединяемых пайкой в цепях напряжением не выше 60 В (диспетчерские щиты и пульты, устройства телемеханики и т. п.), — 0,197 мм2 (диаметр — не менее 0,5 мм).

Присоединение однопроволочных жил (под винт или пайкой) допускается осуществлять только к неподвижным элементам аппаратуры. Присоединение жил к подвижным или выемным элементам аппаратуры (разъемным соединителям, выемным блокам и др.) следует выполнять гибкими (многопроволочными) жилами.

Механические нагрузки на места пайки проводов не допускаются.

Для переходов на дверцы устройств должны быть применены многопроволочные провода сечением не менее 0,5 мм2; допускается также применение проводов с однопроволочными жилами сечением не менее 1,5 мм2 при условии, что жгут проводов работает только на кручение.

Сечение проводов на щитовых устройствах и других изделиях заводского изготовления определяется требованиями их защиты от КЗ без выдержки времени, допустимых токовых нагрузок согласно гл. 1.3, а для цепей, идущих от трансформаторов тока, кроме того, и термической стойкостью. Для монтажа следует применять провода и кабели с изоляцией, не поддерживающей горение.

Применение проводов и кабелей с алюминиевыми жилами для внутреннего монтажа щитовых устройств не допускается.

3.4.13. Соединения аппаратов между собой в пределах одной панели следует выполнять, как правило, непосредственно без выведения соединяющих проводов на промежуточные зажимы.

На зажимы или испытательные блоки должны быть выведены цепи, в которые требуется включать испытательные и проверочные аппараты и приборы. Рекомендуется также выводить на ряд зажимов цепи, переключение которых требуется для изменения режима работы устройства.

3.4.14. Промежуточные зажимы следует устанавливать только там, где:

  • провод переходит в кабель;
  • объединяются одноименные цепи (сборка зажимов цепей отключения, цепей напряжения и т. п.);
  • требуется включать переносные испытательные и измерительные аппараты, если нет испытательных блоков или аналогичных устройств;
  • несколько кабелей переходит в один кабель или перераспределяются цепи различных кабелей (см. также 3.4.8).

3.4.15. Зажимы, относящиеся к разным присоединениям или устройствам, должны быть выделены в отдельные сборки зажимов.

На рядах зажимов не должны находиться в непосредственной близости один от другого зажимы, случайное соединение которых может вызвать включение или отключение присоединения или КЗ в цепях оперативного тока или в цепях возбуждения.

При размещении на панели (в шкафу) аппаратуры, относящейся к разным видам защит или других устройств одного присоединения, подача питания от полюсов оперативного тока через сборки зажимов, а также разводка этих цепей по панели должны быть выполнены независимо для каждого вида защит или устройств. Если в цепях отключения от отдельных комплектов защит не предусматриваются накладки, то присоединение этих цепей к выходному реле защиты или цепям отключения выключателя следует осуществлять через отдельные зажимы сборки зажимов; при этом соединения по панели указанных цепей следует выполнять независимо для каждого вида защит.

3.4.16. Для проведения эксплуатационных проверок и испытаний в цепях защиты и автоматики следует предусматривать испытательные блоки или измерительные зажимы, обеспечивающие (за исключением случаев, оговоренных в 3.4.7) без отсоединения проводов и кабелей отключение от источника оперативного тока, трансформаторов напряжения и тока с возможностью предварительного закорачивания токовых цепей; присоединение испытательных аппаратов для проверки и наладки устройств.

Устройства релейной защиты и автоматики, периодически выводимые из работы по требованиям режима сети, условиям селективности другим причинам, должны иметь специальные приспособления для вывода их из работы оперативным персоналом.

3.4.17. Сборки зажимов, вспомогательные контакты выключателей и разъединителей и аппараты должны устанавливаться, а заземляющие проводники монтироваться так, чтобы была обеспечена доступность и безопасность обслуживания сборок и аппаратов вторичных цепей без снятия напряжения с первичных цепей напряжением выше 1 кВ.

3.4.18. Изоляция аппаратуры, применяемой во вторичных цепях, должна соответствовать нормам, определяемым рабочим напряжением источника (или разделительного трансформатора), питающего данные цепи.

Контроль изоляции цепей оперативного постоянного и переменного тока следует предусматривать на каждом независимом источнике (включая разделительные трансформаторы), не имеющем заземления.

Устройство контроля изоляции должно обеспечивать подачу сигнала при снижении изоляции ниже установленного значения, а на постоянном токе — также измерение значения сопротивления изоляции полюсов. Контроль изоляции допускается не выполнять при неразветвленной сети оперативного тока.

3.4.19. Питание оперативным током вторичных цепей каждого присоединения следует осуществлять через отдельные предохранители или автоматические выключатели (применение последних предпочтительно).

Питание оперативным током цепей релейной защиты и управления выключателями каждого присоединения должно предусматриваться, как правило, через отдельные автоматические выключатели или предохранители, не связанные с другими цепями (сигнализация, электромагнитная блокировка и т. п.). Допускается совместное питание цепей управления и ламп сигнализации положения управляемого аппарата.

Для присоединений 220 кВ и выше, а также для генераторов (блоков) мощностью 60 МВт и более должно быть предусмотрено раздельное питание оперативным током (от разных предохранителей, автоматических выключателей) основных и резервных защит.

При последовательном включении автоматических выключателей и предохранителей последние должны быть установлены перед автоматическими выключателями (со стороны источника питания).

3.4.20. Устройства релейной защиты, автоматики и управления ответственных элементов должны иметь постоянно действующий контроль состояния цепей питания оперативным током. Контроль может осуществляться применением отдельных реле или ламп либо при помощи аппаратов, предусматриваемых для контроля исправности цепи последующей операции коммутационных аппаратов с дистанционным управлением.

Для менее ответственных устройств контроль питания может осуществляться подачей сигнала об отключенном положении автоматического выключателя в цепи оперативного тока.

Контроль исправности цепи последующей операции должен быть выполнен при наличии в ней вспомогательного контакта коммутационного аппарата. При этом контроль исправности цепи отключения должен быть выполнен во всех случаях, а контроль исправности цепи включения — на выключателях ответственных элементов, короткозамыкателей и на аппаратах, включаемых под действием устройств автоматического ввода резерва (АВР) или телеуправления.

Если параметры цепей включения привода не обеспечивают возможность контроля исправности этой цепи, контроль не выполняется.

3.4.21. В электроустановках, как правило, должна быть обеспечена автоматическая подача сигнала о нарушении нормального режима работы и о возникновении каких-либо неисправностей.

Проверка исправности этой сигнализации должна быть предусмотрена периодическим ее опробованием.

В электроустановках, работающих без постоянного дежурства персонала, должна быть обеспечена подача сигнала в пункт нахождения персонала.

3.4.22. Цепи оперативного тока, в которых возможна ложная работа различных устройств от перенапряжения при работе электромагнитов включения или других аппаратов, а также при замыканиях на землю, должны быть защищены.

3.4.23. Заземление во вторичных цепях трансформаторов тока следует предусматривать в одной точке на ближайшей от трансформаторов тока сборке зажимов или на зажимах трансформаторов тока.

Для защит, объединяющих несколько комплектов трансформаторов тока, заземление должно быть предусмотрено также в одной точке; в этом случае допускается заземление через пробивной предохранитель с пробивным напряжением не выше 1 кВ с шунтирующим сопротивлением 100 Ом для стекания статического заряда.

Вторичные обмотки промежуточных разделительных трансформаторов тока допускается не заземлять.

3.4.24. Вторичные обмотки трансформатора напряжения должны быть заземлены соединением нейтральной точки или одного из концов обмотки с заземляющим устройством.

Заземление вторичных обмоток трансформатора напряжения должно быть выполнено, как правило, на ближайшей от трансформатора напряжения сборке зажимов или на зажимах трансформатора напряжения.

Допускается объединение заземляемых вторичных цепей нескольких трансформаторов напряжения одного распределительного устройства общей заземляющей шинкой. Если указанные шинки относятся к разным распределительным устройствам и находятся в разных помещениях (например, релейные щиты распределительных устройств различных напряжений), то эти шинки, как правило, не следует соединять между собой.

Для трансформаторов напряжения, используемых в качестве источников оперативного переменного тока, если не предусматривается рабочее заземление одного из полюсов сети оперативного тока, защитное заземление вторичных обмоток трансформаторов напряжения должно быть осуществлено через пробивной предохранитель.

3.4.25. Трансформаторы напряжения должны быть защищены от КЗ во вторичных цепях автоматическими выключателями. Автоматические выключатели следует устанавливать во всех незаземленных проводниках после сборки зажимов, за исключением цепи нулевой последовательности (разомкнутого треугольника) трансформаторов напряжения в сетях с большими токами замыкания на землю.

Для неразветвленных цепей напряжения автоматические выключатели допускается не устанавливать.

Во вторичных цепях трансформатора напряжения должна быть обеспечена возможность создания видимого разрыва (рубильники, разъемные соединители и т. п.).

Установка устройств, которыми может быть создан разрыв проводников между трансформатором напряжения и местом заземления его вторичных цепей, не допускается.

3.4.26. На трансформаторах напряжения, установленных в сетях с малыми токами замыкания на землю без компенсации емкостных токов (например, на генераторном напряжении блока генератор — трансформатор, на напряжении собственных нужд электростанций и подстанций), при необходимости следует предусматривать защиту от перенапряжений при самопроизвольных смещениях нейтрали. Защита может быть осуществлена включением активных сопротивлений в цепь разомкнутого треугольника.

3.4.27. Во вторичных цепях линейных трансформаторов напряжения 220 кВ и выше должно быть предусмотрено резервирование от другого трансформатора напряжения.

Допускается выполнение взаимного резервирования между линейными трансформаторами напряжения при достаточной их мощности по вторичной нагрузке.

3.4.28. Трансформаторы напряжения должны иметь контроль исправности цепей напряжения.

Релейная защита, цепи которой питаются от трансформаторов напряжения, должна быть оборудована устройствами, указанными в 3.2.8.

Независимо от наличия или отсутствия в цепях защиты указанных устройств должны быть предусмотрены сигналы:

  • при отключении автоматических выключателей — с помощью их вспомогательных контактов;
  • при нарушениях работы реле-повторителей шинных разъединителей — с помощью устройств контроля обрыва цепей управления и реле-повторителей;
  • для трансформаторов напряжения, в цепи обмоток высшего напряжения которых установлены предохранители, при нарушении целости предохранителей — с помощью центральных устройств.

3.4.29. В местах, подверженных сотрясениям и вибрациям, должны быть приняты меры против нарушения контактных соединений проводов, ложного срабатывания реле, а также против преждевременного износа аппаратов и приборов.

3.4.30. Панели должны иметь надписи с обслуживаемых сторон, указывающие присоединения, к которым относится панель, ее назначение, порядковый номер панели в щите, а установленная на панелях аппаратура должна иметь надписи или маркировку согласно схемам.

Оперативный ток

На данный момент нередко используют оперативный ток в электроустановках. При построении его цепей обязательно защищают их от токов КЗ. С этой целью используют ряд отдельных предохранителей либо выключателей, в которых есть дополнительные контакты для сигнализации, они и питают оперативным током устройства вторичных цепей. Лучше всего использовать автоматические выключатели вместо традиционных предохранителей. Они с данной ролью справляются эффективнее, как показывает практика.

Подводят оперативный ток к защитным системам реле и управлению выключателями посредством отдельных автоматических выключателей. Это никогда не осуществляют вместе с цепями сигнализации и блокировки.

На линиях электропередачи, трансформаторах напряжения от 220 кВ фиксируют выключатели на основные и резервные защитные системы.

Цепь с оперативным постоянным током всегда обладает приспособлениями, контролирующими изоляцию, а также помогающими обеспечить появление предупреждающих сигналов, когда сопротивление изоляции снижается. В цепях с постоянным током сопротивление изоляции измеряют на всех полюсах.

Чтобы работа устройств была надежной, нужно осуществлять контроль за правильным питанием цепи с оперативным током на каждом присоединении. Лучше всего делать это, применяя реле, дающие предупредительный сигнал, когда напряжение падает.

ПРЕДИСЛОВИЕ

Электромонтажные работы занимают важное место в строительстве, вводе и освоении новых мощностей в народном хозяйстве. Монтаж аппаратуры и проводов вторичных цепей является трудоемким процессом, требующим от электромонтажников: умения быстро и правильно «читать» вторичные схемы; знаний принципа действия и устройства применяемых в них приборов и аппаратов; знания и умения применять широкую номенклатуру материалов, монтажных изделий, инструментов и приспособлений; умения правильно организовать и выполнять технологию монтажных работ. К вторичным схемам электрических соединений относятся цепи и устройства, предназначенные для управления, сигнализации и блокировки коммутационной аппаратуры; измерения электрических параметров в первичных схемах; защиты, автоматики и регулирующих режимов работы. Вторичные цепи по назначению подразделяются на токовые и напряжения, включаемые через измерительные трансформаторы тока и напряжения, преобразующие первичный ток и напряжение до стандартных значений (например, до 5А и 100 В),и оперативные с постоянным, выпрямленным или переменным напряжением, использующие оперативный ток для воздействия на катушки включения и отключения масляных выключателей (MB), автоматических выключателей, магнитных пускателей, для подачи звуковых и световых сигналов и подачи команд управления от ключей управления или защиты. Вопросы монтажа и испытания устройств вторичных цепей электроустановок нашли отражение в данной работе на основе действующих технических норм и правил с учетом опыта, накопленного в электромонтажных организациях. Особенностью книги является то, что в ней обобщены разрозненные материалы и дополнены новыми необходимыми в электромонтажном производстве сведениями по транспортировке кабелей, соединению цепей полупроводниковой и телефонной технике.

О термине

Техническая литература нередко по-разному выражает понятие «вторичные цепи электропередачи». Так, у него есть и синонимы. Часто то же явление называют цепями вторичной коммутации. Однако многие специалисты считают такую замену неудачной. Все дело в том, что цепь вторичной коммутации скорее относится к процессам переключения электрических цепей, ведь термин «коммутация» является наименованием действия.

Важно различать между собой и ряд иных понятий. Электрическая энергия передается по первичным цепям. Вторичные цепи чаще всего применяются с источниками оперативного питания. Их напряжение составляет 220 В либо 110 В, нередко отмечается использование комбинированных источников питания.

Понятие «вторичные цепи электропередачи» может включает в себя несколько их разновидностей:

  • с постоянным током;
  • с переменным током;
  • в трансформаторах тока;
  • в трансформаторах напряжения.

В него включают и несколько шинок с различным назначением. Чтобы различать вторичные цепи электропередачи от разных их участков, применяют ряд особых обозначений.

Нумеруют их, учитывая полярности цепей. Так, области вторичных цепей электропередачи с положительной полярностью обозначают нечетными числами. Если же полярность отрицательная – применяют четные.

Если речь идет о вторичной электрической цепи с переменным током, то их обозначают числами по порядку, не деля по признаку четности. Иногда наряду с числовыми обозначениями используют и буквы.

Подключение счетчика через трансформаторы

В закладки

  • 3. Подключение счетчика через трансформаторы тока и напряжения
    1. Общие требования

    Схемы подключения счетчиков через измерительные трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

    При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

    При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

    Счетчик трансформаторного включения имеет 10 либо 11 выводов:

    Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.

    В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

    Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм2 по меди и не менее 4 мм2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

    Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

    Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

    ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.

    Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

    1. Подключения счетчика через трансформаторы тока

    Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

    Примечание: Расчет трансформатора тока можно произвести с помощью нашего онлайн калькулятора.

    Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

    2.1 Десятипроводная схема

    Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

    Фактически десятипроводная схема будет иметь следующий вид:

    Преимущества десятипроводной схемы:

    1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
    2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
    3. Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.

    Недостатки десятипроводной схемы:

    1. Большой расход проводника, для сборки вторичных цепей учета.

    2.2 Семипроводная схема

    Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:

    Фактически семипроводная схема будет иметь следующий вид:

    Примечание: Обратите внимание в принципиальной схеме закорочены и заземлены выводы «И2» трансформаторов тока, в то время как в фактической семипроводной схеме закорочены и заземлены выводы «И1». Для правильной работы схемы учета не имеет значения какую группу выводов заземлять (И1 или И2), главное что бы заземлены они были только с одной стороны, поэтому оба варианта схем верны.

    Преимущества семипроводной схемы:

    1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
    2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
    3. Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.

    Недостатки семипроводной схемы:

    1. Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.

    2.3 Схема с совмещенными цепями

    Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.

    При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту И1.

    Фактически схема с совмещенными цепями будет иметь следующий вид:

    Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.

    Подключение счетчика через трансформаторы тока и напряжения

    В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    ↑ Наверх

    5

    https://elektroshkola.ru/uchet-elektroenergii/podklyuchenie-schetchika-cherez-transformatory/

    Особенности

    В трансформаторах напряжения, которые помещают на электростанции либо подстанции с рядом распределительных устройств, размещают релейные щиты и щиты управления достаточно далеко друг от друга, заземляя их в месте, удаленном от трансформатора напряжения. Из-за такой особенности невозможно установить автоматические выключатели, которые бы защищали трансформатор в случае замыкания цепи.

    Вторичная цепь, питание которой осуществляется с помощью аккумулятора, обладает некоторыми нюансами. Их всегда учитывают, выбирая предохранители.

    Понятие «вторичные цепи» относится к проводам и кабелям, в том числе объединяющим оборудование, предназначенное для измерения величин в первичной цепи.

    Их применяют в заливочных и разливочных кранах, которые работают с жидкими металлами. Также используются и в быстроходных кранах. В обоих случаях цепи представлены проводами с медными жилами, а также с термостойкой изоляцией.

    Важно учитывать, что предохранители должны быть открыты для того чтобы без труда их осматривать и ремонтировать, не понижая напряжения на всей сборке.

    Цепь состоит из изолированных проводов, объединенных в потоки. Если в одном потоке проводов больше 25 штук, то работа с ними становится чрезмерно сложной.

    Каждый поток кладут по самому короткому пути, помещая его в горизонтальном либо вертикальном направлении. Допустимо отклонять их от этих положений лишь на 6 мм в каждом метре длины. Формируя потоки, провода никогда не скрещивают. Каждое ответвление проводится под прямыми углами. Важно чтобы ряды их были ровными. Обычно на поток берется 10-15 проводов. В нижних рядах находятся самые длинные провода, а в верхних – с наименьшей длиной.

    Если вторичная цепь в шкафах и панелях включает медные провода, то во внешних соединениях – между шкафами и панелями – контрольные кабели. Иногда внешнее соединение реализуется с применением проводов в стальных трубах.

    Устройство и обслуживание вторичных цепей — Цепи напряжения вторичных цепей

    Страница 5 из 32

    Цепи напряжения (идущие от трансформаторов напряжения) служат для питания: измерительных приборов (показывающих и регистрирующих) — вольтметров, частотомеров, ваттметров, варметров; счетчиков активной и реактивной энергии, осциллографов, телеизмерительных устройств и др.;


    Рис 2.6. Организация вторичных цепей напряжения в ОРУ 330 или 500 кВ с полуторной схемой соединения: 1 — к защите, измерительным приборам я другим устройствам автотрансформатора: 2 — к защите, измерительным приборам и другим устройствам линии W2, 3 — к защите, измерительным приборам и другим устройствам II системы шин; 4 — к РУ 110 или 230 кВ, 5 — к резервному трансформатору СН 6 или 10 кВ, б — к цепям синхронизации и ЗУ, 7 — к защите, измерительным приборам и другим устройствам блока GTI; 8 —к устройствам АРВ и группового управления возбуждения (ГУВ); 9— к реле контроля напряжения на линии

    органов напряжения релейной защиты — дистанционной, направленной, максимальной токовой с пуском по напряжению и др.; автоматических устройств АПВ, АВР, АРВ, противоаварийной автоматики, автоматической частотной разгрузки (АЧР), регулирования частоты и мощности в энергосистеме, регулирования напряжения силовых трансформаторов под нагрузкой, блокировочных устройств и др.; органов контроля наличия напряжения; устройств синхронизации (ручной и автоматической); устройств, преобразующих переменный ток в выпрямленный и применяемых в качестве источников оперативного тока.

    Пример организации вторичных цепей напряжения дан на рис. 2,6, где показаны две цепи полуторной схемы электрических соединений РУ 500 кВ: к одной подключены блок GT1 (генератор — трансформатор) и автотрансформатор 77 связи РУ 500 кВ с РУ среднего (110—220 кВ) и низшего (6—10 кВ) напряжений, к другой — воздушные линии W1 и W2 500 кВ. Из рисунка видно, что в полуторной схеме ТН установлены на всех присоединениях — на линиях и источниках электроэнергии (автотрансформаторах или генераторах) и на обеих системах шин. У каждого из ТН имеются две вторичные обмотки — основная и дополнительная. Они имеют разные схемы соединений. Основные обмотки соединяются в звезду и используются для питания цепей защиты, измерений и синхронизации. У генераторов они используются также для питания цепей АРВ. От них выводятся три фазные и один нулевой провод, обозначенные соответственно А, В, С, N. Дополнительные обмотки соединены по схеме разомкнутого треугольника. От них выводятся четыре провода, обозначенные Н, U, К, F. Провода Н, К предназначаются для выведения напряжения нулевой последовательности, используемого для питания цепей защиты от замыкания на землю. Провод U используется для снятия векторных диаграмм при проверках рабочим током защит от замыканий на землю, получающих питание от цепей. Напряжение фазы В дополнительных обмоток ТН 110 кВ и выше используется также для синхронизации, для чего от этой фазы выводится провод F. Кроме того, все выводы от основных и дополнительных обмоток ТН используются для питания устройств блокировок неисправностей цепей напряжения защит линий 330 кВ и выше. Учитывая разветвленность нагрузки вторичных обмоток ТН и установку реле и приборов, получающих питание от цепей напряжения, на разных панелях одного релейного щита над панелями защиты и автоматики прокладывают шинки напряжения. Шинки создают удобства для подключения к цепям напряжения реле и приборов, а также уменьшают кабельные связи между панелями. Шинки каждого ТН получают питание от шкафа трансформатора напряжения, устанавливаемого около ТН. На рис. 2.6 условно обозначены: EVT1 — шинки напряжения ТН автотрансформатора; EVG1— ТН блока генератор-трансформатор; EVW2 — ТН на линии; EV2 — ТН на II системе шин. Шинки EVT1 и EVG1 создаются для питания цепей синхронизации и АПВ выключателей QGT1 и QGTT1. Например, чтобы включить выключатель QGT1 с контролем синхронизма, надо сравнить напряжение ближайших ТН: TV6II системы шин и TV3 блока GT1, не отделенных другими выключателями от синхронизируемого выключателя. При этом для синхронизации используются шинки EV2 и EVG1. Но если блок GT1 не работает, напряжение II системы шин можно сравнить с напряжением автотрансформатора Т1 на стороне высшего напряжения, т. е. ТН TV4. В этом случае необходимо контролировать включенное состояние первичной цепи от синхронизируемого выключателя до точки включения ТН. В нашем примере — это цепь выключателя QGTT1 и его разъединителей. Реле контроля включенного состояния этой цепи KLS1 замыкает свои контакты в цепях подачи напряжения от шинок EVT1 к шинкам EVG1, куда подключены цепи синхронизации выключателя QGT1. Реле KLS2 контролирует включенное состояние цепи выключателя QGT1 и при синхронизации на выключателе QGTTI и отключенном блоке GT1 подает на шинки EVG1 напряжение от ТН II системы шин TV6. Реле- повторитель KQQS1 фиксирует включенное состояние разъединителя QS1 блока и своими размыкающими контактами отключает от шинок EVG1 цепи напряжения других ТН. Размыкающие контакты KLS1 и KLS2 участвуют в схеме для исключения возможности параллельного включения двух ТН со стороны вторичного напряжения после включения выключателя, на котором проводилась синхронизация. Питание расчетных счетчиков на генераторах и линиях для соблюдения точности их показаний осуществляется отдельными контрольными кабелями, специально рассчитанными для этой цели по допустимым потерям напряжения. Это выполняется в том случае, если при питании общими кабелями для обеспечения допустимых потерь напряжения до счетчиков приходится чрезмерно завышать сечение жил кабеля от ТН. Дополнительные обмотки ТН, соединенные в разомкнутый треугольник, используются для питания цепей защиты от КЗ на землю в сетях с заземленной нейтралью и для сигнализации замыканий на землю в сетях 6—35 кВ, работающих с изолированной нейтралью. При КЗ на землю в одной из фаз сети с заземленной нейтралью нарушается симметрия фазных напряжений сети и на выводах разомкнутого треугольника ТН появляется напряжение 3U, которое подается на реагирующий орган защиты или, если ток КЗ на землю недостаточен для срабатывания защиты (замыкание через переходное сопротивление), на реле сигнализации замыкания на землю. При замыкании на землю в одной из фаз сети 6—35 кВ с изолированной нейтралью КЗ не возникает и симметрия фазных напряжений сети не нарушается. Для обеспечения действия реле сигнализации замыкания на землю, включаемого на выводы разомкнутого треугольника ТН, общая точка первичных обмоток ТН должна быть заземлена. Тогда, например, при металлическом замыкании на землю фазы А первичная обмотка фазы А ТН оказывается замкнутой накоротко и напряжение на ней становится равным нулю. Нарушается симметрия фазных и линейных напряжений в обмотках ТН и на выводах разомкнутого треугольника, появляется напряжение 3U0, от которого срабатывает реле сигнализации замыкания на землю. Для определения фазы, на которой произошло замыкание на землю, используется шинный вольтметр с переключателем, позволяющим включать его на любое фазное или междуфазное напряжение. Напряжение на выходе обмоток, соединенных в разомкнутый треугольник, может возникать не только при замыканиях на землю в сети, но и при перегорании одного из предохранителей при их наличии в цепях первичных обмоток ТН. Для исключения ложной сигнализации о замыкании на землю в этом случае предусматривается блокирование действия реле сигнализации замыканий на землю устройством контроля предохранителей. Сигнализация о замыкании на землю выполняется с выдержкой времени для отстройки от сигналов, связанных с повреждениями, отключаемыми защитой. Защита от повреждений в первичных цепях ТН на напряжение 35 кВ и выше не предусматривается. В цепях ТН на шинах 6—10 кВ защита осуществляется с помощью предохранителей, но в тех случаях, когда возникновение КЗ в цепи первичной обмотки ТН 6—10 кВ маловероятно, предохранители на стороне высшего напряжения ТН не устанавливаются. Так, в комплектных токопроводах мощных генераторов ТН включаются без предохранителей, поскольку при этом разделение отдельных фаз практически исключает возникновение междуфазных КЗ на этом участке. Трансформаторы напряжения должны защищаться от всех видов КЗ во вторичных цепях автоматическими выключателями, имеющими контакты для сигнализации их отключения. Предохранители для защиты цепей вторичных обмоток ТН не используются из-за относительно большого времени их действия. Применение быстродействующих автоматических выключателей необходимо для обеспечения действия блокировок, предотвращающих неправильные действия защит при обрыве цепей напряжения. При этом суммарное время отключения автоматических выключателей и действия устройств блокировки должно быть меньше времени срабатывания защит. Автоматические выключатели устанавливаются в шкафу у ТН. Защита цепей основных вторичных обмоток, соединенных в звезду, осуществляется одним трехполюсным автоматическим выключателем в проводах А, С, N. Если вторичные цепи разветвлены незначительно и вероятность повреждений в них мала, защитный автоматический выключатель в этих цепях допускается не устанавливать. Например, защитные автоматические выключатели допускается не устанавливать в цепи 3U0 ТН шин и ТН стороны низшего напряжения автотрансформаторов (трансформаторов), установленных в шкафах КРУ 6—10 кВ. Цепи напряжения счетчиков, проложенные отдельным кабелем, защищаются отдельным автоматическим выключателем. В сетях с большим током замыкания на землю во вторичных цепях обмоток ТН, соединенных в разомкнутый треугольник, автоматические выключатели также не предусматриваются, так как при возникновении повреждений в таких сетях поврежденные участки быстро отключаются защитами сети и соответственно быстро снижается напряжение 3U0. Поэтому з цепях, идущих от выводов Н и К ТН автотрансформатора, линии и шин 500 кВ, автоматических выключателей нет. Наоборот, в сетях с малым током замыкания на землю у ТН между выводами Н и К может длительно существовать 3Uo, при замыкании на землю в первичной цепи и при КЗ во вторичных цепях ТН он может повредиться. Поэтому здесь необходимо устанавливать защитные автоматические выключатели. Так, например, в схеме блока GT1 (с малым током замыкания на землю) в цепи Н (нулевой последовательности — 3U0) установлен однополюсный автоматический выключатель; в цепи К (заземленной) автоматический выключатель не установлен. Для защиты цепей напряжения, прокладываемых от неразомкнутых вершин треугольника (U, F), предусматривается отдельный автоматический выключатель. Кроме того, в цепях всех выводов от вторичных обмоток ТН предусматривается установка рубильников для создания в них видимого разрыва, что необходимо для обеспечения безопасного ведения ремонтных работ на ТН (исключается подача напряжения на вторичные обмотки ТН от постороннего источника тока). В КРУ в схеме ТН, устанавливаемого на тележке (например, ТН на шинах РУ СН 6—10 кВ), рубильники не устанавливаются, так как видимый разрыв обеспечивается при выкатывании тележки с ТН из шкафа КРУ. Необходимо предусматривать контроль исправности цепей трансформаторов напряжения. Контроль целости предохранителей в схемах ТН 6—10 кВ выполняется при помощи реле напряжения обратной последовательности типа РНФ-1М и реле минимального напряжения основных обмоток ТН. При перегорании предохранителей в одной или двух фазах нарушается симметрия линейных напряжений и реле РНФ-1М срабатывает и подает сигнал о неисправности ТН. В случае исчезновения напряжения всех трех фаз, когда реле РНФ-1М не действует, сигнализация неисправности цепей напряжения обеспечивается с помощью реле PH, включенного на линейное напряжение. Вторичные обмотки и вторичные цепи ТН должны иметь защитное заземление. Оно выполняется путем соединения с заземляющим устройством одного из фазных проводов или нулевой точки вторичных обмоток. Заземление вторичных обмоток ТН выполняется на ближайшей от ТН сборке зажимов, либо на зажимах самого ТН. В заземленных проводах между вторичной обмоткой ТН и местом заземления его вторичных цепей установка рубильников, переключателей, автоматических выключателей и других аппаратов не допускается. Заземленные выводы обмоток ТН не должны объединяться, а при переходе в контрольный кабель наряду с другими проводами должны проводиться отдельными жилами до места своего назначения, например до своих шинок. Допускается объединение заземляемых вторичных цепей нескольких трансформаторов напряжения одного РУ общей заземляемой шинкой (ПУЭ, п. 3.4.24). На щите управления и релейном щите для возможности отыскания мест повреждения и проверок в цепях напряжения применяются разъединительные зажимы. В эксплуатации возможны случаи повреждения или вывода в ремонт ТН, вторичные цепи которых подключены к устройствам защиты, измерения, автоматики, учета и др. Чтобы не допускать нарушения их работы, применяется ручное резервирование от другого ТН. В полуторной схеме (рис. 2.6) в случае вывода ТН на линиях резервирование осуществляется от ТН той системы шин, с которой данная линия связана через один выключатель — с помощью переключателя SN1 для цепей, идущих от основной обмотки, соединенной в звезду, и переключателя SN2 — для цепей разомкнутого треугольника. При рабочем положении переключателей цепи напряжения защиты и измерения линии питаются от линейного ТН. При выходе его из строя переключатели вручную переводятся в положение «резерв» и питание цепей напряжения линии осуществляется от ТН шин. Для главных схем электрических соединений на напряжении 330—500 кВ (треугольник, четырехугольник) резервирование осуществляется от ТН другой линии, для схемы автотрансформатор — шины — от ТН соответствующей системы шин. Рис. 2.7. Схема ручного переключения вторичных цепей ТН в РУ с двумя системами шин 1 — шинки напряжения системы шин; 2 — шинки напряжения II системы шин; 3— к измерительным приборам и другим устройствам I системы шин на ЦЩУ (или ГЩУ). 4 — к измерительным приборам и другим устройствам II системы шин на ЦЩУ (или ГЩУ)

    Для линии 750—1150 кВ в целях резервирования предусматривается установка двух комплектов ТН на каждой линии. От других ТН резервирование не предусматривается. В схемах с двумя системами сборных шин трансформаторы напряжения должны взаимно резервировать друг друга при выводе из работы одного из ТН с помощью переключателей SN1—SN4 (рис. 2.7). При этом шиносоединительный выключатель QK1 должен быть включен.


    Рис. 2.8. Схема автоматического переключения вторичных цепей шинных ТН с помощью вспомогательных контактов разъединителей в ГРУ 6—10 кВ

    В РУ, имеющих две системы сборных шин, нередко производится перевод отдельных присоединений с одной системы шин на другую. Для предупреждения возможных нарушений и ошибок и сокращения времени на производство оперативных переключении (в частности, во вторичных цепях) в схемах предусматривается автоматическое переключение цепей напряжения присоединения с одной системы шин на другую. Переключение производится в закрытых распределительных устройствах (ГРУ) 6— 10 кВ вспомогательными контактами шинных разъединителей, как это показано на рис. 2.8. Например, при включенном разъединителе QS2 линии W1 цепи напряжения защиты и приборов через вспомогательные контакты этого разъединителя подключены к шинкам напряжения II системы шин. При переводе линии W1 на I систему шин включается разъединитель QS1, а разъединитель QS2 отключается. Таким образом, не прерывается питание цепей напряжения при переключении линии W1 с одной системы шин на другую. То же имеет место и при оперативных переключениях линии W2 и др. На линиях 110 кВ и выше, подключенных к двойной системе сборных шин, переключение цепей напряжения производится с помощью контактов реле-повторителей положения шинных разъединителей, как это видно из рис. 2.9. В схеме участвуют четыре реле-повторителя: KQS1 и KQS11 — положения разъединителя QS1 I системы шин; KQS2 и KQS12 — положения разъединителя QS2 II системы шин. Реле-повторители работают следующим образом (при переводе линии со 2 системы шин на I). При включении разъединителя QS1 линии на I систему шин его вспомогательные контакты замыкаются. При последующем отключении разъединителя QS2 от II системы шин реле-повторитель контактов этого разъединителя KQS12 теряет питание и его размыкающие контакты замыкаются. На обмотку реле-повторителя KQS1 подается напряжение постоянного тока, реле KQSI срабатывает и замыкает свои контакты. Тем самым цепи напряжения линии подключаются к шинкам EV1.A, EV1.B, EV1.C, EV1.N (эти шинки питаются от основной обмотки ТН). Кроме того, при замыкании контакта KQS1 срабатывает реле-повторитель KQS11, подключающее через свои контакты цепи напряжения линии также к шинкам, питаемым от дополнительной обмотки ТН: EV1.H, EV1.K, EV1.U той же I системы шин. Размыкающие контакты KQSI1 и KQS12 включены в цепи обмоток реле-повторителей во избежание недопустимого объединения вторичных цепей ТН I и II систем шин. При переводе переключаются все цепи напряжения, в том числе и заземленные цепи основных и дополнительных обмоток. При этом исключается возможность объединения заземленных цепей двух ТН. Это обстоятельство является важным. Как показал опыт эксплуатации, объединение заземленных точек разных ТН может привести к нарушению нормальной работы релейной защиты и устройств автоматики и поэтому не может быть допущено. Разводку вторичных цепей ТН необходимо выполнять таким образом, чтобы сумма токов этих цепей в каждом кабеле была равна нулю в любых режимах при любом характере нагрузок. Для выполнения этой задачи предусматривается прокладка в одном кабеле трех фазных и нулевого проводов от основных обмоток ТН, соединенных в звезду, до релейного щита и прокладка в одном кабеле проводов от дополнительных обмоток ТН, соединенных в разомкнутый треугольник, до релейного щита. Использование разных кабелей для прокладки цепей от основной и дополнительных обмоток ТН обусловлено необходимостью применения кабелей со значительным сечением жил. Для прокладки вторичных цепей напряжения должны использоваться четырехжильные кабели в металлической оболочке, при этом оболочка должна заземляться с обоих концов каждого кабеля. Использование изолированной металлической оболочки в качестве одного из проводов вторичной цепи напряжения по соображениям надежности не допускается. Кабели в цепях основных и дополнительных обмоток ТН по всей длине от шкафа ТН до релейного щита должны прокладываться рядом.

    Ряс 2 9 Схема автоматического переключения вторичных цепей шинных ТН в установках 35 кВ и выше с помощью реле-повторителей.

    Рассмотрим подключение к цепям ТН цепей синхронизации генераторов, синхронных компенсаторов, отдельных частей энергосистемы (между собой или с электрической сетью и т.д.). Для выключателя любого присоединения с двусторонним питанием (линии, трансформатора и т. д.) в схеме управления должна быть предусмотрена возможность его включения с контролем синхронизма тех объектов, которые объединяются включением рассматриваемого выключателя. В процессе синхронизации производится сравнение напряжений по величине, фазе и частоте с двух сторон от включаемого выключателя. Для контроля напряжения по указанным факторам используются ТН с двух сторон от включаемого выключателя. Например, при включении генератора на сборные шины, на которых уже объединены на параллельную работу другие генераторы и трансформаторы связи с системой, используются ТН генераторов и ТН сборных шин, от шинок напряжения которых через переключатели синхронизации SS1—SS3 подается напряжение на шинки синхронизации (рис. 2.10). К этим шинкам подключены вольтметры и частотомеры, а также синхроноскоп через ключ SVJ. Включение может производиться разными способами. Способ точной синхронизации требует, чтобы в момент включения на параллельную работу в электрической сети и у включаемого генератора (или у обеих систем шин) были равенство частот, напряжений и совпадение фаз напряжений. Для ручной синхронизации на щите управления монтируется панель или щиток синхронизации. С помощью установленных на них частотомеров PF и вольтметров PV сети и подключаемого генератора производятся подгонка и уравнивание частот и напряжений, а по синхроноскопу персонал улавливает момент достижения синхронизма и производит выключателем включение на параллельную работу. На рис. 2.10 показана схема синхронизации применительно к электростанции с двумя системами сборных шин. Жирными линиями показаны первичные цепи, тонкими линиями — вторичные цепи. На схеме условно объединены заземленные шинки фаз В разных ТН. В действительности их подключение к шинкам синхронизации должно выполняться так же, как и для фаз А и С. На генераторных и шиносоединительных выключателях Q1, Q2 и QK1 переключатели SS имеют на данном щите управления только одну общую для них съемную рукоятку. Эта рукоятка может сниматься только в горизонтальном положении, что соответствует положению отключено О. Благодаря этому исключается возможность одновременного нахождения во включенном положении нескольких переключателей SS, а следовательно, к шинам и приборам синхронизации будут подключаться цепи только синхронизируемого генератора (или синхронизируемых шин). Ключ SV1 необходим для того, чтобы ограничить время работы синхроноскопа PS1. Персонал включает синхроноскоп только тогда, когда достигнуты примерно равные значения напряжения и частоты в работающей системе и у подключаемого (синхронизируемого) элемента (генератора). Рис. 2.11. Цепи напряжения в шкафу ТН КРУ 6 кВ: 1 — цепи напряжения защиты и других устройств резервного трансформатора СН 6 кВ: 2 — цепь сигнала «Отключение автоматического выключателя ТН»; 3 — шкаф КРУ трансформатора напряжения


    Рис. 2.10. Схема синхронизации Вторичные цепи подключаются к шинкам напряжения через контакты разъединителей для выбора шинок напряжения той системы шин, к которой подключается синхронизируемый элемент. Кроме того, через переключатели (условно не показаны вторые контакты переключателей между ключами SA1—5А3 и электромагнитами YAC1— YAC3) подается оперативный постоянный ток, с помощью которого ключами SA1 — SA3 производится включение выключателя. Это исключает возможность включения десинхронизируемого генератора поскольку все переключатели имеют только одну общую рукоятку. Другие способы синхронизации (с помощью автосинхронизатора, полуавтоматической и автоматической самосинхронизации) и необходимые для этого переключатели и некоторые другие связанные с этим устройства (блокировка от неправильной синхронизации и т. д.) здесь не рассматриваются. На рис. 2.11 показаны цепи напряжения в шкафу трансформатора напряжения КРУ 6 кВ СН. Здесь обмотки двух однофазных ТН соединены по схеме неполного треугольника. Трансформатор напряжения со стороны высшего напряжения подключается только через разъемные контакты, а со стороны низшего — через разъемные контакты и автоматический выключатель SF1, от вспомогательных контактов которого предусматривается подача сигнала на щит управления о его отключении. Разъемные контакты выполняют роль разъединителя в первичных и рубильников во вторичных цепях. В эксплуатации очень важно осуществлять тщательный контроль за надежным состоянием разъемных контактов в шкафах КРУ и КРУН и отходящих от них вторичных цепей (токовых, напряжения, оперативного тока).

    • Назад
    • Вперед

    В двигателях

    Нередко вопросы, касающиеся вторичной цепи зажигания, возникают у автомобилистов. Система зажигания в автомобиле воспламеняет горючую смесь в двигателе в нужный момент времени. Она помогает менять момент зажигания, учитывая нагрузку на двигатель.

    Система катушечного зажигания состоит из первичной и вторичной цепи катушки зажигания.

    Порой у владельца автомобиля появляется необходимость проверить катушку зажигания. Она обеспечивает работу целой системы, создавая искру между свечами. Во многих двигателях есть лишь одна катушка, но порой их бывает две.

    Именно катушка является трансформатором напряжения, превращая его в тысячи вольт. Вторичным напряжением образуется искра в зазоре электродов свечи. Его показатель определяется зазором, электрическим сопротивлением свечи зажигания, проводов, составом топлива, нагрузкой на двигатель. Максимальный показатель напряжения – 40000 В, оно часто меняется.

    Принцип работы

    Катушка располагает 2 обмотками, намотанными на сердечник из металла. Первичную с сотнями витков и 2 внешних контакта катушки соединяют между собой. Положительный вывод ее подсоединяют к АКБ, а отрицательный – к модулю зажигания и массе кузова.

    Во вторичной цепи находятся тысячи витков, ее подключают положительным полюсом к первичной, а отрицательным – к выводу в центре катушки.

    Количество витков в других цепях укладывается в пропорцию 80:1. С увеличением пропорции увеличивается и напряжение катушки на выходе. Обладающие наивысшей мощностью катушки обладают самой значительной пропорцией витков.

    Когда первичную обмотку замкнут на «массу», пускают электрический ток. Так, посредством появившегося магнитного поля, заряжается катушка.

    Далее модули зажигания размыкают первичную цепь. Тогда поле внезапно исчезает. В катушке остается много энергии, и она передает ток вторичной цепи. Напряжение может увеличиться более чем в сто раз. В этот момент «пробегает» искра.

    Неисправности

    Катушки зажигания являются надежными, прочными устройствами. Но порой встречаются и их неисправности. Так, среди причин для появления дефектов выделяют перегревы, вибрации. Это ведет к повреждению обмоток, нарушению изоляции, в результате чего происходит короткое замыкание, а цепи прерываются. Самой большой опасностью для них становятся перегрузки, которые вызываются повреждениями свеч либо высоковольтных проводов.

    В случаях когда свечи зажигания повреждаются, в них возникает слишком высокое сопротивление. Напряжение в катушке может повыситься вплоть до образования пробоев в изоляции.

    Изоляция может повредиться из-за достижения напряжения в 35000 В. Когда достигнут такой показатель, напряжение уменьшается, образуется пропуск зажигания под нагрузками, катушка не будет давать достаточного напряжения, чтобы работал двигатель.

    Когда к ее положительному контакту присоединена АКБ, а при замыкании на «массу» не создается искра — это верный признак того, что катушка окончательно вышла из строя и теперь подлежит замене.

    Монтаж гибких соединений.

    При монтаже приборов или аппаратов на дверях камер или шкафов в месте перехода проводов по оси шарниров с неподвижной части на подвижную делается вставка из медных проводов с многопроволочными гибкими жилами, называемая гибким компенсатором.

    Рис. 3. Устройство гибких компенсаторов: а — с установкой наборных зажимов, б — с прижимными планками, в — работающих на скручивание, г — петлевого типа

    Гибкие компенсаторы (рис. 3) выполняют различными способами. Если можно установить наборные зажимы, компенсаторы монтируют так, как показано на рис. 3, а, при этом гибкими проводами соединяют лишь ряды зажимов (длина перемычки гибкого соединения должна быть не более 250 мм). При использовании прижимных планок (рис. 3, б) все цепи собирают из гибких проводов. Компенсаторы можно выполнять проводами с однопроволочными жилами (рис. 3, в, г), когда не надо часто открывать двери, поскольку провода в этом случае работают не на изгибание, а на скручивание. Пучки проводов компенсаторов, работающих на скручивание, рекомендуется защищать металлорукавом или поливинилхлоридной трубкой. Место выхода провода из металлорукавов или трубок обматывают несколькими слоями изоляционной ленты. Гибкое соединение в виде жгута, выполняемое петлей, должно иметь длину не менее 550 мм.

    При монтаже вторичных цепей на панелях необходимо выполнять следующие требования:

    • подводить провода к месту присоединения кратчайшим путем;
    • стремиться к наименьшему числу перекрещиваний между потоками проводов;
    • следить, чтобы потоки проводов не закрывали доступ к наборным зажимам, выводам приборов и аппаратов и не мешали их замене;
    • объединять по возможности в один поток провода, относящиеся к одному или группе однородных аппаратов;
    • укладывать в нижний слой при многослойных потоках провода, наиболее удаленные от наборных зажимов аппаратов и приборов;
    • собирать в одном ряду провода, наиболее близкие друг к другу в местах присоединения к аппаратам;
    • соблюдать однотипность крепления и формирования потоков проводов;
    • осматривать провода до укладки потока, выправлять вытяжкой и протирать ветошью, пропитанной стеарином или парафином;
    • устранять при формировании и прокладке потоков волнистость проводов, образующуюся в результате сильной перетяжки бандажей; укладывать провода в потоке плотно и строго параллельно друг другу; выравнивать потоки проводов после каждого крепления;
    • соблюдать горизонтальность и вертикальность потоков и отдельных проводов (отклонения допускаются не более 6 мм на 1 м длины потока);
    • выполнять перекрещивания и ответвления проводов от основного потока, а также повороты одинаково и под прямым углом; уделять особое внимание изгибу первого провода, так как по нему будет формироваться поворот всего потока.

    Диагностика

    Когда проблема появляется в системе зажигания, которую относят к распределительному виду, то это влияет на все цилиндры двигателя. Его запуск превращается в весьма трудную задачу. Когда двигатель работает, но пропускает порой зажигание, и при этом загорается лампа «Проверить двигатель», то пришла пора применения диагностического сканера. С его помощью проверяют код, который связан с пропуском зажигания.

    Тем не менее такая проблема может быть связана со сбоями в подаче топлива, по этой причине нельзя сразу точно диагностировать неисправность в катушке, свечах либо высоковольтных проводах.

    И тут важно знание первичных и вторичных цепей. Если отсутствует соответствующий кол, то обязательно измеряют сопротивление в цепях. Для этого используют цифровой мультиметр. Важно посмотреть, в каком состоянии находятся свечи зажигания, каков зазор между контактами. Нередко на неисправности указывает цвет нагара на свечах. Вероятно, пропуск появился по причине наличия масляных отложений, сильного нагара. Важно осмотреть высоковольтные провода, чтобы удостовериться в том, что сопротивление в них находится в пределах установленной нормы.

    Когда установлено, что катушка, ее цепи в норме, то можно предположить, что топливная форсунка загрязнилась либо повредилась. Поэтому обязательно проверяют ее. Когда вероятность ее неисправности исключена, то проверкам подвергают компрессию, клапаны, смотрят, не произошла ли утечка прокладки головки блока цилиндров.

    Но если двигатель прокручивается, а искры нет, то, вероятно, неисправность находится в цепи управления. Проверку осуществляют руководствуясь рядом строгих правил.

    Токовые цепи воздушной ЛЭП-110 кВ

    Для контроля и управления процессов передачи электроэнергии по концам ВЛ на подходе к шинам подстанции монтируются трансформаторы тока (ТТ).

    Они в каждой фазе имеют первичную обмотку для подключения силовых цепей и несколько вторичных обмоток, обеспечивающих работу защит, автоматики и измерений.

    Рассмотрим типовую схему работы токовых цепей. При монтаже важно соблюдать ориентацию подключения их к первичной и, соответственно, вторичной схеме для каждой фазы.

    С этой целью завод маркирует контактные площадки для подключения проводов к обмоткам. Первичные выводы клеймят символами “Л1” и “Л2”, обозначающими вход и выход электроэнергии через трансформатор (их на практике определяют по направлению к линии или шинам), а вторичные — “И1” и “И2” в каждом керне.

    Под термином «керн», здесь понимается собственная изолированная цепь, работающая автономно от других со своими индивидуальными характеристиками. Любой трансформатор имеет определенный коэффициент трансформации, например 600/5 и класс точности.

    Цифры в нашем примере обозначают, что при прохождении номинального тока 600 А по первичной обмотке во вторичных цепях будет величина 5 А.

    Каждая вторичная обмотка трансформатора на схеме и в обозначениях подсоединяемых кончиков маркируется индексом “ТТ” c подстановкой перед ним цифры, придающей номер керну и буквы, указывающей на фазу сети.

    Маркировка “И2 3ТТВ” обозначает вывод вторичной обмотки И2 у 2-го керна цепей измерения фазы B, подключаемого в нашем случае к клемме 260 панели № 91 через клемму 56 РШ. (см. ниже схему подключения токовых цепей приборов и устройств измерений).

    Схема подключения обмоток “звезда” у каждого керна повторяет соединения первичных фаз линии. Это сделано с той целью, чтобы любые процессы, происходящие на линии, полностью повторялись при работе во вторичной схеме.

    Фазный провод “ноль” звезды всегда собирается на клеммниках распределительного шкафа ТТ (РШ) и выводится в схему отдельным проводником.

    Маркировка токовых цепей однотипная, позволяет определять фазу с ее принадлежностью к керну. Например, обозначение 0421 читается как фазный провод нуля “звезды” керна 421 в цепях защит.

    Токовые цепи на ВЛ-110 кВ используются для работы схем:

    — измерения; — защит; — ДЗШТ, на старом оборудовании можно увидеть ДЗШ.

    Токовые цепи измерения

    . Главная задача данного керна: точное воспроизведение параметров первичных токов при нормальном режиме с регистрацией аварийных процессов в случаях неисправностей и коротких замыканий.

    С этой целью конструкция магнитопровода выполнена более тонкой (меньшей площадью поперечого сечения), чем у других кернов. Она обеспечивает более высокий класс измерения от 0,5 и выше.

    На представленной схеме видно, что выводы “И1” на каждой фазе ТТ объединены в ноль, подаются жилой кабеля с клеммы 58 РШ на клеммы 262, 263 панели 91, где заземляются и следуют на клемму 9 панели 11у. Выводы “И2” всех других фаз подключаются подобным образом к соответствующим им клеммам панели.

    На представленной схеме видно, что выводы “И1” на каждой фазе ТТ объединены в ноль, подаются жилой кабеля с клеммы 58 РШ на клеммы 262, 263 панели 91, где заземляются и следуют на клемму 9 панели 11у. Выводы “И2” всех других фаз подключаются подобным образом к соответствующим им клеммам панели.

    Полярность подключения амперметра А с электромагнитной системой в фазу “В411” не критична. Но все остальные приборы: ваттметр W, варметр Wvar, измерительный преобразователь 1ИП для передачи показаний мощности по цепям телекоммуникаций, счетчик учета мощности Wh со счетчиком потерь W и фиксирующий прибор ФИП требуют строгого соблюдения полярности.

    На выходе схемы токовые цепи обязательно закорачиваются. Это выполнено на клеммах 8?13 панели 81.

    Для оперативного обслуживания измерительных приборов в схеме, находящейся в работе, применяются клеммники специальной конструкции с винтовыми перемычками в виде накладок либо испытательные блоки БИ.

    Они позволяют безопасно выполнять коммутации цепи без ее разрыва. Такое подключение использовано для измерительного преобразователя 1ИП через испытательный блок 3БИ на панели № 97.

    Токовые цепи защит комплекта 1636

    . В нормальном режиме эксплуатации ВЛ защиты просто отслеживают параметры ее схемы. При аварийном режиме они отключают выключатели с обеих сторон линии, чем предупреждают развитие неисправностей.

    С учетом этого, магнитопроводы кернов выполняют утолщенной конструкцией поперечного сечения, позволяющей защитам более надежно работать при любых перегрузках первичной схемы большими токами коротких замыканий.

    В обычных номинальных условиях точность работы кернов для защит по метрологическим показателям маркируется классом 10Р.

    Принципиальное подключение токовых цепей (421) к панели защит ЭПЗ 1636 показано на схеме.

    Трехфазные токовые реле 1РТ и 2 РТ подключены в схеме устройств резервирования отказа выключателей “УРОВ”.

    Комплекты КРС, ДЗ и КРБ используют значения векторов токов в алгоритме работы дистанционной защиты.

    Комплект 1РКЗ используется для токовой отсечки, а 2РКЗ — для направленной 4-х ступенчатой защиты нулевой последовательности “НТЗНП”.

    Подключаемые блоком БИ на панели № 91 поляризованное реле РТ и реле с насыщающимся трансформатором РТН работают в схеме высокочастотной блокировки ВЧБ.

    Особенность конструкции магнитопроводов ТТ для защитных устройств определила необходимость подключения к ним измерительных комплексов, отслеживающих и записывающих неисправности при завышенных токах.

    Микропроцессорный фиксатор аварийных событий “Пума” подключен испытательным блоком 1БИ на панели 92, а регистратор аварийных процессов “Парма” обрабатывает токовые цепи на панели №28Р.

    Токовые цепи ДЗШТ

    . Цепи тока ДЗШТ (431) выполняются так же, как и предшествующие схемы. Их главная особенность состоит в том, что вектора вторичных токов, поступающих с ТТ линии, по направлению специально выворачиваются до подачи на сравнительное устройство защит шин.

    Пример такого конструктивного исполнения в РШ показан на схеме ниже изменением подключения полярности выводов обмоток “И1” и “И2”.

    Обязательное заземление токовых цепей через нулевой провод в схеме ДЗШТ выполняется в распределительном шкафу. В цепях защит и измерений заземление, как демонстрирует схема, выполнено на панелях.

    Предупреждение

    Ни в коем случае нельзя заниматься отсоединением высоковольтных проводов от свечей зажигания либо катушек, чтобы проверить наличие искр. Угроза пострадать от электрического тока крайне высока. Помимо этого, есть шанс того, что вторичное напряжение сильно повредит устройство. Поэтому при возникновении необходимости в этой процедуре используют тестеры для свечей, а также щуп.

    Если в катушке есть проблема, то измеряют сопротивление в обоих обмотках, пользуясь омметром. Когда выявляются отклонения от нормальных показателей, катушку заменяют. Также ее проверяют, пользуясь омметром с 10 МОм входного сопротивления.

    Чтобы ее протестировать, подключают провода для измерений к контактам в первичной цепи. Чаще всего сопротивление колеблется в пределах 0,4 — 2 Ом. Если был выявлен нулевой уровень, то это верный признак того, что в катушке произошло короткое замыкание. Если же сопротивление оказалось высоким, то цепь оборвалась.

    Вторичное сопротивление измеряют между положительными контактами и выводами с высоким напряжением. Современные устройства чаще всего обладают сопротивлением 6000-8000 Ом, но иногда встречается и показатель в 15000 Ом.

    В другой разновидности катушек первичный контакт может располагаться в разъемах или быть спрятанным.

    СХЕМЫ ВТОРИЧНЫХ СОЕДИНЕНИЙ

    При горизонтальном расположении цепей в схеме обозначения цепей проставляются над участками проводников. Прямые линии — это проводки или дорожки на печатной плате, которые соединяют элементы схемы и по которым будем двигаться электрический ток.


    Релейная часть выглядит несколько сложнее, но если рассматривать её по частям и так же, двигаясь последовательно, шаг за шагом, то нетрудно понять логику её работы.


    Возможно, вы уже заметили, что эти резисторы имеют особое позиционное обозначение R4.


    Возле буквенных обозначений расположены еще и цифры.


    Такая проверка легко осуществляется с помощью индивидуальных, на каждое присоединение или на систему вторичных соединений комплексного устройства защитных устройств [55] предохранителей или лучше автоматических выключателей со вспомогательными контактами для сигнализации об их срабатывании. В системах сигнализации вместе с лампочками применяются акустические устройства — электросирены, электрозвонки, электрогудки и другие аналогичные приборы.


    В связи с этим очень часто возникает вопрос, как научится читат ь электрические схемы, где все составляющие отображаются в виде условных графических обозначений. Основание подвижной части указывается как незаштрихованная точка; выключатели — их основанию соответствует точка, а для автоматических выключателей прорисовывается категория расцепителя.


    Допускается опускать буквенный индекс перед цифровым обозначением в случаях, когда не требуется указания фазы например, цепи управления на переменном оперативном токе. Как прочитать принципиальную схему задвижки

    Опасность

    Если не применить полученные знания и оставить катушку неисправной, она однажды повредит весь блок РСМ. Все дело в том, что пониженное сопротивление первичной цепи ведет к повышению тока в катушке. Поэтому шансы того, что сломается блок РСМ, возрастают.

    Также может понизиться вторичное напряжение, а искрообразование – ослабеть, запуск двигателя будет сопровождаться множеством сложностей, пропуски зажигания будут возникать снова и снова.

    Повышенное сопротивление вторичной обмотки провоцирует ослабление искр в цилиндрах, сильную самоиндукцию в первичной цепи.

    Назначение электрического оборудования первичных цепей

    Назначение аппаратов и других элементов РУ удобно рассмотреть применительно к схеме конкретной установки (рис.1). Как видно из схемы, в каждом присоединении предусмотрены выключатели и соответствующие разъединители.

    Выключатели

    Выключатели Q являются важнейшими коммутационными аппаратами. Они предназначены для включения, отключения и повторного включения электрических присоединений. Эти операции выключатели должны совершать в нормальном режиме, а также при коротких замыканиях (КЗ), когда ток превосходит нормальное значение в десятки и сотни раз. Выключатели снабжены приводами для неавтоматического и автоматического управления. Под неавтоматической операцией включения или отключения понимают операцию, совершаемую человеком, который замыкает цепь управления привода выключателя особым ключом обычно на расстоянии, т.е. дистанционно. Автоматическое включение и отключение происходит без вмешательства человека с помощью автоматических устройств, замыкающих те же цепи управления.

    Выключатели предусмотрены также в сборных шинах. Эти выключатели называют секционными QB. В РУ станций секционные выключатели при нормальной работе обычно замкнуты. Они должны автоматически размыкаться только в случае повреждения в зоне сборных шин. Вместе с ними должны размыкаться и другие выключатели поврежденной секции. Таким образом поврежденная часть РУ будет отключена, а остальная часть останется в работе.

    При наличии достаточного резерва в источниках энергии и линиях электроснабжение не будет нарушено.

    Разъединители

    Разъединители QS имеют основное назначение — изолировать (отделять) на время ремонта в целях безопасности электрические машины, трансформаторы, линии, аппараты и другие элементы системы от смежных частей, находящихся под напряжением. Разъединители способны размыкать электрическую цепь только при отсутствии в ней тока или при весьма малом токе, например токе намагничивания небольшого трансформатора или емкостном токе непротяженной линии.

    В отличие от выключателей разъединители в отключенном положении образуют видимый разрыв цепи. Как правило, их снабжают приводами для ручного управления. Операции с разъединителями и выключателями должны производиться в строго определенном порядке. При отключении цепи необходимо сначала отключить выключатель и после этого отключить разъединители, предварительно убедившись в том, что выключатель отключен. При включении цепи операции с выключателем и разъединителями должны быть выполнены в обратном порядке. Таким образом, замыкание и размыкание цепи с током совершает выключатель. Разъединители образуют дополнительные изолирующие промежутки в цепи, предварительно отключенной выключателем.

    Разъединители размещают так, чтобы любой аппарат или любая часть РУ могли быть изолированы для безопасного доступа и ремонта. Так, например, в каждой линейной цепи должны быть предусмотрены два разъединителя — шинный или линейный, с помощью которых выключатели могут быть изолированы от сборных шин и от сети. В цепи генератора достаточно иметь только шинный разъединитель, обеспечивающий безопасный ремонт генератора и выключателя; при этом генератор должен быть отключен и остановлен. Для ремонта двухобмоточных трансформаторов и соответствующих выключателей достаточно иметь шинные разъединители со стороны высшего и низшего напряжений.

    Заземляющие устройства

    Для безопасной работы в РУ и в сети недостаточно изолировать рабочее место от смежных частей, находящихся под напряжением. Необходимо также заземлить участок системы, подлежащий ремонту. Для этого у разъединителей предусматривают заземляющие ножи, с помощью которых участок, изолированный для ремонта, может быть заземлен с обеих сторон, т.е. соединен с заземляющим устройством установки, потенциал которого близок к нулю. Заземляющие ножи снабжают отдельными приводами. Нормально заземляющие ножи отключены. Их включают при подготовке рабочего места для ремонта после отключения выключателей и разъединителей и проверки отсутствия напряжения.

    Использование разъединителей не ограничивается изоляцией отключенных частей системы в целях безопасности при ремонтах. В РУ с двумя системами сборных шин разъединители используют также для переключений присоединений с одной системы сборных шин на другую без разрыва тока в цепях.

    Токоограничивающие реакторы

    Токоограничивающие реакторы LR представляют собой индуктивные сопротивления, предназначенные для ограничения тока КЗ в защищаемой зоне. В зависимости от места включения различают реакторы линейные и секционные.

    Измерительные трансформаторы тока

    Измерительные трансформаторы тока ТА предназначены для преобразования тока до значений, удобных для измерений. В присоединениях генераторов, силовых трансформаторов, линий со сложными видами защиты необходимы два-три комплекта трансформаторов тока.

    Измерительные трансформаторы напряжения

    Измерительные трансформаторы напряжения TV предназначены для преобразования напряжения до значений, удобных для измерений. Трансформаторы напряжения присоединяют к сборным шинам станций; их предусматривают также в присоединениях генераторов, трансформаторов и линий.

    На принципиальных схемах измерительные трансформаторы обычно не показывают.

    Вентильные разрядники

    Вентильные разрядники F, а также ограничители перенапряжений предназначены для защиты изоляции электрического оборудования от атмосферных перенапряжений. Они должны быть установлены у трансформаторов, а также у вводов воздушных линий в РУ.

    Токопроводы

    Токопроводы представляют собой относительно короткие электрические линии (как правило, от нескольких метров до нескольких сотен метров) с жесткими или гибкими проводниками, укрепленными на опорных или подвесных изоляторах, предназначенные для соединения электрических машин, трансформаторов и электрических аппаратов в пределах станции, подстанции, распределительного устройства.

    Требования, предъявляемые к электрическому оборудованию и токопроводам

    Требования, предъявляемые к электрическому оборудованию и токопроводам, заключаются в следующем.

    • Изоляция оборудования должна обладать достаточной электрической прочностью, чтобы противостоять наибольшему рабочему напряжению, а также коммутационным и атмосферным перенапряжениям.
    • Оборудование и проводники должны: проводить в течение неограниченного времени наибольшие рабочие токи соответствующих присоединений; при этом температура в наиболее нагретых точках не должна превышать нормированные значения для продолжительного режима;
    • выдерживать тепловое и механическое действия токов КЗ, т.е. обладать достаточной термической и электродинамической стойкостью;
    • быть экономичными и надежными в эксплуатации, т.е. вероятность повреждений должна быть мала, а требования к уходу и ремонту минимальными;
    • быть безопасными для лиц, обслуживающих установку.

    Кроме перечисленных общих требований, к электрическому оборудованию предъявляют ряд частных требований в соответствии с назначением и условиями работы оборудования.

    Номинальные параметры электрического оборудования — это параметры, определяющие свойства электрического оборудования, например номинальное напряжение, номинальный ток и многие другие. Номинальные параметры назначают заводы-изготовители. Они указываются в каталогах, справочниках, на щитках оборудования. При проектировании установки и выборе оборудования номинальные параметры сопоставляют с соответствующими расчетными значениями напряжений и токов, чтобы убедиться в пригодности оборудования для работы в нормальных и анормальных условиях. Ограничимся здесь лишь определением понятия номинального напряжения электрической сети и электрического оборудования.

    Номинальное напряжение — это базисное напряжение из стандартизованного ряда напряжений, определяющее уровень изоляции сети и электрического оборудования. Действительные напряжения в различных точках системы могут несколько отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения, установленные для продолжительной работы:

    Номинальное междуфазное напряжение, действующее значение, кВ… 3..6..10..20..35..110

    Наибольшее рабочее напряжение, действующее значение, кВ… 3,5..6,9..11,5..23..40,5

    Номинальное междуфазное напряжение. действующее значение, кВ… 150..220..330..500..750..1150

    Наибольшее рабочее напряжение, действующее значение, кВ… 172..252..363..525..787..1210

    Для сетей с номинальным напряжением 220 кВ включительно наибольшее рабочее напряжение принято равным 1,15 номинального; для сетей с номинальным напряжением 330 кВ — 1,1 номинального и для сетей 500 кВ и выше — 1,05 номинального. Электрическое оборудование должно быть рассчитано на продолжительную работу при указанных напряжениях.

    Изоляция электрического оборудования должна также противостоять перенапряжениям, т.е. кратковременному действию напряжений, превышающих наибольшее рабочее напряжение. Различают перенапряжения коммутационные и атмосферные.

    Замена

    Катушку можно заменить только аналогичной в случаях, когда в планах нет совершенствования системы зажигания. Обязательно каждый контакт и соединение в ней предварительно очищают, смотрят, не проявилось ли на ней следов коррозии, проверяют, насколько надежны подключения. Все дело в том, что коррозийные процессы ведут к повышению сопротивления в электрическом проводнике, неустойчивости соединения, обрыву. Все это значительно уменьшает время службы катушки. Чтобы понизить вероятность пробоев в условиях повышенной влажности, пользуются диэлектрической свечной смазкой на контактах катушки.

    Когда в двигателе появилась проблема, катушка служит в жесточайших условиях. Неисправность провоцирует высокое вторичное сопротивление. Так, могут износиться свечи либо образоваться слишком большой зазор между электродами.

    Если пробег достаточно большой, то одновременно с новой катушкой производят и установку новых свечей.

    Как же проверяется работа сигнализации, защиты, и т.д.?

    Хотелось бы отметить, что данная схема, как и составление электропроекта электроснабжения коттеджа, продуманы, как говорится, «от и до»: сама работа схем защиты проверяется при помощи имитации как форс-мажорных обстоятельств, так и нестандартных, аварийных режимов работы оборудования.

    Есть немало способов проверить работоспособность системы, но чаще всего функционирование проверяется при помощи имитации замыкания либо технологических датчиков, либо контактов реле защиты. Не исключено и то, что во время проверки схем вторичной коммутации под напряжением могут возникать случаи отказа в работе либо узлов самой схемы, либо отдельных элементов.

    Несмотря на то что существует великое множество видов нарушения и повреждения в схемах, следует отметить несколько основных видов:

    • короткое замыкание (самый опасный из всех существующих);
    • наличие обходной цепи;
    • обрыв цепи;
    • неисправность каких-либо аппаратов, которые входят в систему, либо же банальная «несостыковка» с требованиями схемы параметров;
    • замыкание на землю.

    Хотелось бы отметить также и то, что какой бы дефект ни имела схема, обнаруживается он не сразу, что может иметь самые различные последствия, которые строго зависят от особенностей самой системы. Услугу данной проверки, а также поиск неисправностей в электрических схемах проводит наша электролаборатория.

    Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

    Монтаж вторичной цепи

    Чтобы провести данную операцию, нужно ознакомиться со многими особенностями компоновки потоков. Необходим опыт, чтобы выполнять монтаж вторичной цепи грамотно. Конечный результат будет во многом зависеть от правильности раскладки, исполнения потоков.

    Перед началом монтажа специалист знакомится с монтажной, а иногда и принципиальной схемами. Тогда он определяет, каким методом будет осуществлять прокладку, компоновать потоки проводов. В этой процедуре существует ряд правил. Так, провода, которые относятся к 1 монтажной единице, соединяют в одном потоке.

    Также помнят о том, что большое количество проводов потребует больше работы над ними. Никогда не прокладывают провода таким образом, что они прикрывают контакты устройств, часть крепежных деталей.

    Прокладывая много слоев потоков, в одном ряду не укладывают больше 10 проводов сразу. Провода одного ряда соединяют с соседними контактами устройств либо зажимов. Провода, которые кладут между присоединениями, всегда целые. Ни в коем случае нельзя заниматься их сращиванием.

    Внешний вид каждого потока будет зависеть от того, как подготовлены провода. Если объем работы небольшой, то подготовка провода будет заключаться в том, чтобы разрезать его на нужную длину и подровнять.

    ЭЛЕКТРИЧЕСКИЕ СХЕМЫ ВТОРИЧНЫХ ЦЕПЕЙ ЭЛЕКТРОУСТАНОВОК

    Типы электрических схем и условные обозначения вторичных цепей. Монтаж всех вторичных цепей и аппаратуры осуществляется по чертежам-схемам вторичных цепей. Электрические схемы в зависимости от основного назначения подразделяются на: структурные, изображающие все основные функциональные части электроустановок и основные взаимосвязи между ними. Структурной схемой пользуются обычно при эксплуатации и монтаже для общего ознакомления с электроустановкой; принципиальные (полные), изображающие все электрические аппараты и связи между ними и, как правило, дающие детальное представление о принципах работы электроустановки. Принципиальной схемой пользуются для изучения работы электроустановок при монтаже, наладке и эксплуатации; монтажные, изображающие соединения составных частей электроустановки и показывающие провода, кабели, жгуты, шины, которыми осуществляются эти соединения, а также места их присоединения и ввода (зажимы, соединители и т. д.). Монтажной схемой пользуются в основном для осуществления монтажа вторичных цепей, а также для наладки и эксплуатации электроустановок; схемы подключения, изображающие внешние подключения щитов, панелей и зажимов устройств электроустановок. Схемой подключения пользуются для монтажа электроустановок и при их эксплуатации; схемы расположения, изображающие относительное расположение составных частей электроустановки, а при необходимости также проводов, жгутов и кабелей. Схемой расположения пользуются при монтаже электроустановок. Назначение схемы записывается обычно в угловом штампе чертежа и имеет шифр Э (электрическая) и цифры, обозначающие тип схемы: 1 — структурная; 3 — принципиальная; 4 — монтажная; 5 — подключения; 7— расположения. Например, схема принципиальная электрическая имеет обозначение Э-3. Иногда само название типа схемы приводится в названии чертежа, например, принципиальная электрическая схема управления и сигнализации выключателя. Все схемы выполняются без соблюдения масштаба, компактно, но без ущерба для ясности и удобства их чтения. На электрических схемах элементы вторичных цепей, аппаратуру и провода, соединяющие их, изображают при помощи условных обозначений. Условные обозначения вторичных цепей приведены в ГОСТ 2727-68, 2728-74, 2729-68, 2755-74, 2756-76, 2751-73. Все обозначения в ГОСТ приведены для устройств, находящихся в отключенном положении, т. е. при отсутствии тока и воздействия внешних сил. На схемах помещают также спецификацию аппаратов и элементов схемы с техническими данными, диаграммы и таблицы (например, таблицы замыкания контактов переключателя) и текстовые указания о специфических требованиях к монтажу и наладке. Во всех схемах одного комплекта документации (принципиальных, монтажных, расположения и т. д.) должны применяться одинаковые позиционные обозначения, шифры и номера, чтобы обеспечить возможность отыскания одних и тех же элементов и соединений на всех схемах данного комплекта.

    Чтение схем вторичных цепей.

    Прочитать схему электрических соединений вторичных цепей — это значит получить все данные об аппаратах, реле, проводах и кабелях, составляющих данную схему, определить назначение и порядок их работы. Для чтения схем необходимо знать условные обозначения элементов схем вторичных цепей, принципы маркировки схем, назначение и принципы работы элементов, а также правила выполнения различных видов принципиальных и монтажных схем. Маркировка вторичных цепей. Система условных обозначений — буквенных и цифровых, применяемых в первичных и вторичных цепях электрических схем, называется маркировкой. Маркировка служит для правильной ориентации во взаимосвязанных чертежах и цепях, помогает установить место, характер и назначение приборов, аппаратов, их контактов и цепей без чертежа. Маркировке подлежат все элементы вторичных схем: приборы, аппараты и их выводы; наборные ряды зажимов; провода, соединяющие аппараты и приборы между собой и с рядами зажимов; контрольные кабели и их жилы. Маркировка производится проектной организацией на стадии составления принципиальных схем, а затем переносится на монтажные и другие схемы. Система маркировки имеет следующие принципы: каждый элемент вторичной схемы должен иметь буквенное обозначение, составленное из начальных или характерных слов наименования элементов схемы (например, Р — реле; MB — масляный выключатель; РВ — реле времени и т. д.), а в случае наличия однотипных аппаратов и приборов различаются порядковым номером (цифрой), которая ставится после буквы (например, С/, С2 или Rl, R2 и т. д.); силовые цепи переменного тока должны иметь маркировку, обозначающую фазу буквами с последовательными числами (А, В, С и N или А2, В2, С2 и т. д.); силовые цепи постоянного тока должны иметь маркировку участков цепей положительной полярности — нечетными числами (1, 3, 5), а участков цепей отрицательной полярности — четными числами (2, 4, б); цепи измерения, управления, защиты, сигнализации и автоматики должны иметь маркировку последовательными цифрами в пределах схемы; участки цепи, разделенные контактами аппаратов, обмотками реле, приборов, машин, резисторами и другими элементами, должны иметь разную маркировку; участки цепи, проходящие через неразъемные, разборные контактные соединения или сходящиеся в одной точке схемы, должны иметь одинаковую маркировку; последовательность маркировки должна быть от источника питания к ее потребителю; разветвляющиеся участки схемы маркируют сверху вниз в направлении слева направо; все цепи одной схемы должны иметь различные обозначения — марки, а маркировка аналогичных схем должна выполняться одинаково. Маркировка вторичных цепей выполняется обычно сквозной или встречной. При сквозной маркировке (рис. 1,а) у каждого места подключения провода или кабеля проставляется цифра маркировки в соответствии с принципиальной схемой. Иногда, особенно в монтажных схемах, на конце марки в скобках ставится номер зажима, к которому подключается конец жилы проводника (рис. 1, б). Встречная маркировка (рис. 1, в), которая применяется в монтажных схемах, на одном конце проводника, кроме своей основной марки — цифры, имеет еще наименование аппарата или узла, к которому подсоединен противоположный конец провода, так называемый встречный адрес. Маркировка по встречному принципу широко применяется различными заводами при изготовлении своих изделий. Маркировка рядов зажимов на панелях и шкафах осуществляется от маркировочной колодки для каждой монтажной единицы отдельно. Ряды зажимов нумеруются сверху вниз (вертикальное расположение) или слева направо (горизонтальное расположение) порядковыми номерами, начиная с единицы (рис. 1). Условные обозначения маркировки контрольных кабелей должны содержать принадлежность кабеля к определенной группе, показывать направление кабеля и его порядковый номер.


    Рис. 1. Маркировка приборов, проводов и жил кабеля на панели: а — сквозная маркировка; б — сквозная маркировка с добавлением номера зажима; в —встречная маркировка Существует несколько видов маркировки кабелей. Мы рассмотрим одну из них, которая разработана Мосэнергопроектом. Маркировка групп контрольных кабелей осуществляется по их направлениям, каждое направление имеет определенную группу чисел. Например, 100—- 139 — кабели, идущие от релейных щитов до распределительных устройств (РУ); 140—169 —кабели, идущие на центральный щит; 170—189 — кабельные перемычки релейных шкафов; 190—269 — кабельные перемычки РУ; 300—329 — кабели управления, сигнализации, идущие от РУ на щиты и т. д. Таким образом, маркировка во вторичных цепях электрических схем позволяет быстро определить и проследить любую цепь и облегчает чтение монтажной схемы по принципиальной. Принципиальные схемы вторичных цепей бывают полные (совмещенные) и разнесенные (развернутые). В полной схеме реле, автоматические выключатели и другие устройства, имеющие контактные элементы, располагают обычно так, чтобы над обмотками (катушками) реле, автоматических выключателей и других устройств находились их контакты, т. е. так, как эти элементы расположены в натуре. При разнесенном способе условные графические изображения составных частей элементов расположены в различных местах схемы исходя из порядка прохождения по ним тока, чтобы работа отдельных частей элементов схем выглядела более наглядно. На рис. 2 изображена схема максимальной направленной защиты в двух видах: совмещенном (рис. 2, а) и развернутом (рис. 2, б). На разнесенных схемах отдельно выделяют цепи тока (верхняя левая часть рис. 2, б), цепи напряжения (нижняя левая часть рис. 2, б) и цепи оперативного тока (правая часть рис. 2, б), которые обычно разделяют на оперативные цепи управления, автоматики и сигнализации. Токовые цепи, подключенные к трансформаторам тока ТТ, используются для питания релейной защиты (реле РТ и РМ), измерительных приборов (амперметров, ваттметров, счетчиков), автоматики [автоматическое повторное включение (АПВ), автоматический ввод резерва (АВР) и т. д.], устройства блокировки и сигнализации. Цепи напряжения, подключенные к трансформаторам напряжения (на схеме не показаны, указаны выводы их вторичных обмоток Uab, Use, Vac) используются для питания релейной защиты (реле РМ), измерительных приборов, контроля наличия напряжения и синхронизации. Цепи оперативного тока, подключенные к источнику постоянного тока, используются для управления коммутационными аппаратами (электромагнит отключения ЭО привода MB), создания с помощью релейной аппаратуры (реле РВ) сигналов для воздействия на привод MB (ЭО привода MB) и осуществления всех видов сигнализации. Обычно в развернутых схемах рядом дают таблицу с надписями, поясняющую назначение отдельных цепей, а для ясности каждую располагают напротив своей цепи и отделяют от других цепей линиями. На принципиальной схеме также имеется перечень элементов с условными обозначениями и расшифровкой их технических характеристик (частота, напряжение, сила тока, сопротивление и т. д.). Как мы видим, принципиальные схемы дают детальное представление о работе вторичных цепей и аппаратуры, позволяют увидеть их взаимодействие, определить тип и параметры аппаратуры и другие необходимые данные при монтаже, наладке и эксплуатации электроустановок.


    Рис. 2. Схема максимально направленной защиты: а — совмещенная схема; б — развернутые (разнесенные) схемы вторичных цепей

    Рейтинг
    ( 2 оценки, среднее 4.5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]