Токоизмерительные клещи: назначение, принцип работы, как пользоваться

Любой человек, который хоть сколько-нибудь заинтересован в домашних делах и в ведении быта, имеет представление о том, зачем дома иметь паяльник, дрель, строительный миксер или лобзик. Но прибор, о котором пойдет речь далее, найдется далеко не у каждого дома, ведь этот девайс — клещи электрика. Несмотря на это, они могут сослужить прекрасную службу любому. Использовать их очень просто, к сожалею просто не все знаю о их существовании. Этот компактный прибор — не только незаменимый помощник, но и надежный друг любого хозяина.

Что это такое

Непосредственно электроклещи служат специалистам для оперативного и достоверного измерения различных параметров электрического тока: его напряжения, мощности и других. При этом разрывать цепь или нарушать ее работу нет никакой необходимости. В зависимости от того, какие величины необходимо измерить, выделяют следующие клещи:

  • Амперметр;
  • Ампервольтметр;
  • Ваттметр;
  • Фазометр.


Токовые клещи
Этот измерительный прибор в любой комплектации — от самой простейшей до самой профессиональной — состоит из магнитопровода, кнопки, фиксирующей данные измерений, переключателя (для выбора диапазона измерений и необходимых дополнительных функций девайса), различных разъемов для дополнительного подключения щупов и небольшого встроенного монитора/дисплея.


Клещи токоизмерительные

Самыми популярными, а также легко применимыми являются клещи-амперметры, используемые для получения параметров и характеристик переменного тока, их также еще окрестили токоизмерительными. Давайте разберемся, для чего нужны токовые клещи.

Электроизмерительные клещи без труда позволяют:

  • Определять и контролировать фактические нагрузки в электросетях;
  • Измерять мощности всевозможных электроприборов;
  • Контролировать работу приборов учета электроэнергии и ее потребления (например, для сверки показаний электрических счетчиков).

Такие токовые клещи можно применять при напряжении до 10 киловольт.

Преимущества применения

К достоинствам клещей измеряющих ток можно отнести:

  • Возможность измерять электроток без разъединения цепи;
  • Небольшие размеры устройства;
  • Простота замера в высоковольтных цепях.


Ещё благодаря токовым клещам возможно фиксировать токи весьма большой силы. До того как приобрести этот электрический прибор нужно внимательно познакомиться с его характеристиками.

Лучше на инструменте не экономить, а приобретать только качественные устройства, опираясь не на стоимость, а на популярность торговой марки.

Что измеряют токоизмерительными клещами?

Перед приобретением этого прибора нужно определиться, для каких целей предназначены электроизмерительные клещи.

Они представляют собой трансформатор с подключенным амперметром. Непосредственно устройство — первичная обмотка трансформатора. Размещение внутри нее проводника способствует индуцированию электротока на обмотку из-за возникающего электромагнитного поля. Затем он попадает на вторичную обмотку катушки, показания с которой считываются амперметром. Показания этого прибора пересчитывают с поправкой на коэффициент трансформации, указываемый на нем. Трансформатор с постоянным током не работает, поэтому описанные токовые клещи — для переменного тока.

Электроизмерительные клещи, изготовляемые сегодня, используются для значений, измеряемых при постоянном токе. На место амперметра помещается датчик Холла, улавливающий наличие и напряжение электромагнитного поля.

Используя эти приборы, производят следующие замеры:

  • нагрузку сети, имеющуюся в наличии по факту;
  • точность показаний различного оборудования, предназначенного для учета электроэнергии, сравнивая показания на них с показаниями, полученными при измерении клещами;
  • мощности бытовых и использующихся в профессиональной деятельности электроприборов.

Токовые клещи для постоянного тока дороже своих аналогов для переменного вида, но более точные и имеют повышенные показатели качества. Инструмент, использующийся совместно с цифровым мультиметром, позволяет избавить пользователя от вычислений искомой величины, поскольку прибор имеет встроенный калькулятор.

Выводы

Все три прибора работают, все заявленные характеристики соответствуют реальным.

ICartool IC-200A

подойдет тем, у кого есть мультиметр, но не хватает функции проверки потребления электроприборов. Достоинства – компактность и цена. К недостаткам можно отнести невысокое качество пайки.

ICartool IC-206В

– прибор со сбалансированными характеристиками. Имея такой прибор дома, мультиметр уже и не обязателен. По большому счету, для того чтобы стать универсальным, ему не хватает только функции измерения тока. Но для этого случая существует другая модель.

ICartool IC-206D

– универсальный прибор. Достоинства — измеряет все. Недостатки – странное поведение в измерениях скважности.

Достоинства всех трех приборов

– хорошие корпуса. Достаточно точные измерения. Богатый функционал старших моделей.

Недостатки всех трех

– не вполне удобный режим прозвонки и экран, который виден не со всех ракурсов.
Тема: Токовые клещи

Принцип работы измерительных клещей

Принцип работы электроизмерительных клещей во многом похож на работу подстанции – имеется измерительный трансформатор и прибор для замера электрических параметров: тока, напряжения и т.п. Как вы знаете, любой, в том числе и измерительный, трансформатор состоит из двух и более обмоток.

В электроизмерительных щипцах первой обмоткой является проводник, измерение силы тока которого мы производим. Вторая обмотка с большим количеством витков находится в самих щипцах. Прибор анализирует ток во вторичной обмотке и с учетом известного коэффициента трансформации высчитывает величину электротока в проводнике.

На рисунке ниже можно наглядно посмотреть принцип работы этого измерительного устройства.


Стоит отметить, что измерения тока электроизмерительными щипцами не сложное и очень удобное занятие. Нужно всего лишь установить на рукоятке необходимую величину, разомкнуть рукоятки, пропустить в клещи проводник и отпустить одну рукоятку.

Конструкция клещей Дитце

Любые токоизмерительные клещи отличаются друг от друга дизайном и цветовой гаммой, при этом их основная конструкция остается неизменной. Ведь все они выполнены по принципу, в основе которого лежит идентичная схема. В обязательном порядке клещи для измерения тока состоят из магнитопровода, скобы, регулятора диапазона и кнопки для фиксации показаний. Клещи Дитце могут быть так же оснащены экраном, а более современные или технически улучшенные модели обладают внутренним трансформатором с диодным мостом. Клещи-магнитопровод не что иное, как вторичная обмотка, а сами клещи является разъемным элементом.

Виды токовых клещей

Разновидности клещей зависят от внешнего вида, схемы исполнения и типа вывода результатов. Обычно их подразделяют на следующие категории:

  • Аналоговые или стрелочные. Они состоят из трансформатора с одним витком и измерительным аппаратом, подсоединенным к вторичной обмотке. Такие приборы более дешевые и наглядные, но обладают повышенной чувствительностью к механическим воздействиям и колебаниям. Аналоговые измерители, как правило, рассчитаны на определенную частоту;
  • Цифровые или электронные. В них показания выводятся на цифровой дисплей с помощью расчетов микропроцессора, и может быть настроен на показ различных величин;
  • Мультиметр. Это универсальное средство для измерения всех параметров электричества. В нем клещи могут быть встроены прямо в корпус. Функции и характеристики мультиметра определяются его ценой и моделью. Часто в них имеется тот самый датчик Холла;
  • Клещи для высоковольтных сетей. Основное их предназначение — замер параметров силы тока в сетях, напряжение которых превышает 1 кВ. Этот вид имеет повышенную защиту и изоляцию и может крепиться к диэлектрическим штангам, чтобы электрик не приближался к сети слишком близко.


Схема подключения мультиметра для замера электротока

Правила использования

В связи с тем, что такая работа выполняется без снятия напряжения, существует угроза поражения персонала электрическим током, при любых манипуляциях изолирующими клещами работники должны соблюдать определенные правила. Так, работы в устройствах с питающим напряжением более 1 кВ обязывают применять диэлектрические перчатки. Которые выступают в роли дополнительного средства, предотвращающего поражение током в случае пробоя изоляции, или других неисправностей технических средств, ошибок самих работников и т.д.


Рисунок 3: Меры безопасности при эксплуатации изолирующих клещей

Также в цепях более 1 кВ при работе изолирующими клещами обязательно необходимо осуществлять защиту органов зрения от мелких раскаленных частиц. Которые могут отлетать в результате разогрева металла при горении дуги и способны нанести травму. С этой целью персонал обязан надевать лицевые щитки или очки из негорючих материалов. При работе в устройствах до 1 кВ защита глаз не требуется, но может использоваться в разрезе требований каких-либо местных или отраслевых инструкций.

При проведении каких-либо манипуляций изолирующие клещи должны применяться только на вытянутую руку, не зависимо от класса напряжения. Касаться или браться руками выше ограничительных упоров категорически запрещается. Так как клещи в таком случае не способны обеспечивать заявленный норматив электрической прочности для данного класса напряжения, что может привести к электротравме.

Категорически запрещается использовать изолирующие клещи в случае выполнения работ под дождем, в условиях густого тумана, выпадения каких-либо осадков. То же самое касается помещений с повышенной влажностью, где на изолирующих элементах может образоваться проводящий слой влаги. В таких ситуациях переключения или другие операции должны выполняться только со снятым напряжением после обязательного заземления стационарными устройствами или переносными заземлениями при помощи оперативных штанг.

Перед началом работы ответственный работник обязательно производит осмотр изолирующих клещей на предмет каких-либо повреждений, загрязнителей и прочих факторов, снижающих защитные свойства. Обязательно проверяются сроки испытаний, ни в коем разе не допускается применять в работе клещи, с просроченной датой испытания. Также он должен осмотреть губки на целостность.

Режимы измерений

Применяют 2 метода определения силы тока:

  • прямое;
  • непрямое (индуктивное) измерение.

Первый способ производится при подсоединении амперметра к разрыву электрической цепи. Электроток проходит через прибор, на дисплее появляется информация о значении величины I.

Достоинства этого метода:

  • точность измерения, зависящая от класса оборудования;
  • легкость и доступность выполнения замеров.

Недостатки:

  • невозможно измерять из-за особенностей конструкции большие величины электротоков;
  • без разрыва нельзя замерить параметры цепи;
  • замеры выполняются только в той цепи, которая подключена к прибору.

Как измерить ток, используя трансформатор

При пропускании проводника через зажимы прибора, ток проходит через эти зажимы, выполняя роль железного сердечника силового трансформатора. Далее ток поступает во вторичную обмотку, которая подключена через шунт входа измерителя. Из-за соотношения количества вторичных обмоток к числу первичных обмоток, намотанных вокруг сердечника, ток, поступающий на вход, намного меньше. Обычно первичную обмотку представляет один проводник, вокруг которого зажаты губки.

Если вторичная обмотка будет, например, иметь 1000 витков, то ток вторичной обмотки будет в 1000 раз меньше того, что протекает по первичной обмотке. Таким образом, 1 ампер в измеряемом проводнике будет производить только 1 миллиампер на входе прибора. Увеличив число витков во вторичной обмотке, можно легко измерить мощные токи.

Как измерить постоянный ток, ведь он протекает через проводники с фиксированной полярностью? Здесь магнитное поле вокруг проводника не изменяется, и обычным способом зарегистрировать соответствующие показания невозможно. Поэтому клещи вокруг такого проводника замыкают с некоторым зазором (смотреть рисунок 2).

Новинки продукции

Выпущены токовые клещи, позволяющие измерять силу переменного и постоянного токов – бесконтактным методом, благодаря ферритовым вставкам и электромагнитной индукции.

Прибор получил востребованность в авто сервисах, при электромонтажных работах и в силовой энергетике.

Например, цифровые изделия токоизмерительных клещей UNI -T UTM1230C, токоизмерительные модели клещей Accta AT-1000A, цифровые трёхфазные токоизмерительные клещи UNI-T, клещи Mastech M266F, прибор UNI-T UT203.

Измерение клещами постоянного и переменного тока

Для измерения разных типов тока посредством клещей используется совершенно одинаковая методика. Главное – предварительно выбрать необходимый режим работы.

Перед тем, как пользоваться устройством, необходимо убедиться в том, что на прибор не влияют никакие посторонние источники напряжения.

К примеру, результаты устройства могут исказить некоторые асинхронные электрические двигатели, определенные виды трансформатора, аппараты для сварки, а также блоки питания (импульсные). Все они могут реализовать большие поля с электромагнитными волнами, что могут индуцировать наведенную ЭДС в магнитопроводе.

Для измерения тока при помощи клещей нужно:

  1. Постановка ручки переключателя в необходимое положение.
  2. Ввод проводника в пространство магнитопровода.
  3. Считывание результатов из дисплея прибора.

Таким образом, никаких особых навыков или же знаний для работы с клещами не нужно. На более новых моделях есть особый датчик IFLex, что применяется для замеров в весьма стесненных условиях.

Если начать анализировать два проводника вместе, их магнитные потоки должны сложиться вместе. На дисплее будет отображен общий результат. К примеру, токи в фазе и нуле без наличия утечек являются равными по величине и противоположными по значению.

В таких ситуациях прибор должен показать нулевой результат. Если он имеет какое-то значение, можно говорить о серьезных проблемах в сети электричества.

ICartool IC-M206B

Функционал этого прибора заметно превосходит младшую модель. Проще сказать, чем она отличается от старшей модели линейки. Только измерением переменного тока. Все остальное как у флагмана. А именно, прибор может измерять:

  • Переменный ток до 600 А.
  • Частоту до 10 МГц.
  • Коэффициент заполнения ШИМ.
  • Температуру до 1000 °C (так заявлено).
  • Напряжение на pn-переходе диодов.
  • Емкость конденсаторов.

Плюс ко всему, имеются дополнительные функции низкочастотного фильтра, низкоомного вольтметра и бесконтактного определения напряжения, которые мы, конечно же, тоже проверим. Да, и еще фонарик!

Коробка аналогична младшей модели, но размер немного крупнее.

В коробке чехол. Да, это уже совсем другой ценовой уровень, можно сказать – комплектация «люкс». Чехол было бы удобно переносить за ремешок, но он немного коротковат. Инструкция в кармашке, щупы, термопара, батарейки и сам прибор.

Щупы

тут посерьезнее, чем у IC‑200A.

Маркировка третьей категории, допуск до 600 вольт. На кончиках «носочки» для измерений в местах, где можно случайно коротнуть.

Измеряем сопротивление

:

Ток 2 А, падение напряжения на паре щупов 0,271 В. Сопротивление пары 0,136 Ом. В пять раз меньше, чем у IC‑200A. Такие щупы уже можно использовать для измерения токов.

Перейдем непосредственно к прибору. Он выполнен в том же стиле, что и IC‑200A, но немного крупнее. Пластик красный и черный. Белые надписи на черном пластике читаются лучше. Программное колесо с рукояткой, так что вращать его можно как рукой, которая держит прибор, так и другой рукой. По этой же рукоятке удобно определять выбранный режим измерений. Было бы совсем хорошо, если бы на рукоятке была контрастная стрелка, но и так уже лучше, чем на IC‑200A.

Клавиша нажимается достаточно туго, но хорошее смыкание необходимо для точности измерений, так что приходится мириться с этим. Раскрытие челюстей такое, что в зев войдет любой проводник разумных размеров. На одной челюсти есть «клювик», которым удобно раздвигать провода и выделять нужный провод среди прочих. Прямо внутрь челюстей светит фонарь. Хват достаточно удобный. И клавиша, и переключатель режимов оказываются прямо под нужными пальцами.

А вот экран тоже, как и в IC‑200A, имеет свои «мертвые углы».

И подсветка, разрази ее гром, снова отключается сама. Это, пожалуй, два самых серьезных недостатка, которые бросаются в глаза еще до начала тестирования прибора.

Постоянное напряжение измеряется с автоматическим определением диапазона. Уровни ИОНа определяются так.

2,5 В:

5,0 В:

7,5 В:

10 В:

Как можно убедиться, все уровни измерены с погрешностью в пределах 0,1 вольта, что более чем достаточно для бытового прибора.

Прозвонка.

Поведение в этом режиме немного странное. Вот видео:

При соединении щупов зуммер звучит практически сразу – задержка в пределах 1/60 секунды. Сигнал длится 0,5 секунды, к концу этого интервала экран показывает уже какое-то значение сопротивления. После наступает тишина, и в течение следующей секунды значение измеренного сопротивления снижается и приближается к реальному. Через 1,25 секунды тишины оно опускается ниже 30 Ом, тотчас экран подсвечивается янтарным цветом и возобновляется зуммер. Схема с такими паузами не очень удобна для восприятия, но, надо признать, информативная.

Измерение частоты работает только для сигнала с нулевым средним значением. Если у вас не такой, постоянную составляющую придется гасить развязывающим конденсатором.

До полутора мегагерц показания хорошо соответствуют реальным, дальше проверять не стал.

Коэффициент заполнения проверен на частотах 100 Гц и 1 КГц.

Везде прибор точно находил искомую величину, вплоть до 99%, что очень хорошо.

Емкость

прибор измеряет в очень широком диапазоне: до 0,1 Ф. Маленькие значения измеряются достаточно быстро.

А вот над крупными электролитиками прибору приходится потрудиться:

Над этим экземпляром он задумался на 8,2 секунды.

Сопротивление прибор измеряет куда быстрее емкости.

Этот мощный резистор покорился менее чем за 2,5 секунды.

Причем время обратно пропорционально номиналу сопротивления.

Мегаомный резистор определился менее, чем за секунду.

Все эти измерения вполне комфортны для пользователя и соответствуют номиналам с заявленной в инструкции точностью.

LowZ

– интересная функция, которая встречается не в каждом приборе. Прежде я расскажу об одной проблеме, знакомой электрикам. Берем трехжильный шнур – фаза, ноль и зануление. Вставляем его в розетку без контакта зануления. Таким образом, два провода у нас под сетевым напряжением, а третий висит в воздухе, потому что не подключен с обоих концов. Там же у нас 0 вольт, получается? Можно касаться руками, не ударит? Смотрим:

Ого! Между одним контактом и занулением 70 вольт.

А между занулением и другим – того больше – 82 вольта! Прибор даже подсветил экран, предупреждая о высоком напряжении. Откуда оно? Это наводки от соседних проводов. У клещей такой высокий импеданс, что заряд не стекает на ноль, а закономерно влияет на показания вольтметра. А теперь переводим прибор в режим LowZ

. Он как раз для таких случаев.

3,1 вольт между занулением и одним рабочим контактом.

3,6 вольт между занулением и другим контактом.

Теперь ясно, что то, что мы видели в режиме обычного вольтметра – наводки, не способные причинить вред человеку. Это мы проверяли на шнуре длиной полтора метра и без токовой нагрузки. А при обследовании протяженных цепей этот режим, что называется, «маст хэв».

Измерение показало, что в режиме обычного вольтметра прибор имеет входное сопротивление 11 МОм, в то время как в режиме LowZ

входное сопротивление всего 293 КОм.

Тестирование диодов заключается в определении падения напряжения на p-n переходе. Наиболее показательна разница при проверке светодиодов. Разность потенциалов на аноде и катоде при открытии диода напрямую зависит от излучаемой длины волны. Некоторые считают, что квантовая физика – какая-то абстракция. На самом деле она вокруг нас повсюду, даже в простом светодиоде. Макс Планк предложил зависимость между длиной волны и энергией. Чем шире запретная зона в полупроводнике, тем больше энергия фотона и меньше длина волны. Проверим.

Ура! Физика работает! Первый светодиод, с самым низким падением напряжения – инфракрасный. Мы вообще не видим его свет. А последний – ультрафиолетовый. У него самая высокая энергия волны и самое большое падение напряжения.

Фонарь.

Здесь все просто. Долгое нажатие кнопки включения света – он включается. Второе долгое нажатие – выключается. Либо можно выключить весь прибор – включение фонаря не запоминается. Светит фонарь прямо между челюстями клещей, чуть выше середины по высоте. Свет белый, со слегка синим оттенком. Не очень яркий, но достаточный, чтобы было видно, куда лезешь. В жизни подсветка выглядит примерно так:

Измерение температуры

производится термопарой K типа, которая поставляется в комплекте. Из имеющихся у меня термопар эта имеет самый мягкий провод. С ней приятно работать, нет «пружинистости», с которой приходилось бороться, измеряя температуру другими приборами. Показания температуры правдоподобны на точках 36 и 220 градусов, остальной диапазон не измерял.

Бесконтактное определение напряжения

работает. Нельзя сказать, что это такой уж точный метод – даже в описании оговаривается, что его показаний недостаточно, чтобы спокойно хвататься за оголенные провода. Но он поможет быстро определить, в каких розетках есть электричество, а в каких нет, или имеется ли под напольным покрытием теплый пол. Даст приблизительное представление о том, где в стене проложен провод.

Вскрытие.

Два самореза, один виден с обратной стороны невооруженным глазом, второй доступен из батарейного отсека.

Лабиринт по периметру. Контакты батарей соединяются с платой пружинками. Основная микросхема здесь в корпусном исполнении, а не в капле.

Это все я перечисляю преимущества. Прибор сделан на контроллере DM1106EN. Продвинутая современная версия хорошо себя зарекомендовавшего чипа DTM0660. На нем собрано много отличных мультиметров и есть надежда, что этот будет не хуже. Качество пайки хорошее, но флюс кое-где смыт не вполне. Термисторы на входе уже не наваливаются друг на друга угрожающим образом. Предохранителей нет, но у прибора достаточно высокое входное сопротивление, так что термисторов для защиты вполне достаточно. На плате много нераспаянных элементов. Должно быть, плата унифицирована со старшей моделью.

Как повысить точность измерения

При измерении небольшой силы тока, намотайте проводник (в котором измеряется ток) несколько раз на магнитопровод. В этом случае суммарный магнитный поток увеличивается пропорционально количеству витков и также возрастает показание на дисплее. Величину отсчета разделите на количество витков и получите точное значение даже для маленьких токов.

Рекомендации по выбору

Чтобы никто из работающих впоследствии не стал жертвой поражения током и виновником аварии на электроустановке, придерживайтесь следующих рекомендаций.

  • За покупкой тококлещей обратитесь в специализированный магазин электротехники и электроники, где опытные консультанты вам подскажут, какие именно клещи подойдут для решения конкретных задач. Их опыт может предотвратить ошибки, последствия которых могут оказаться плачевными.
  • В первую очередь определитесь, с каким именно током вы будете работать. Маркеры AC/DC указывают на то, что инструмент – универсальный, DC – только для постоянного тока на линии, AC – только для переменного.
  • Определитесь, в каком диапазоне мощности вам предстоит работать. Возможно, ваш выбор – в цепях и на линиях с максимальной мощностью, скажем, до 25 кВт, тогда вам вряд ли понадобятся токовые клещи на мощность в 500 кВт, если в продаже есть изделие на 50-100 кВт.
  • Определитесь, каков диаметр проводов, на которых замеряется мощность. Возможно, вы будете работать на проводах с сечением до 15 мм2, тогда вам ни к чему увеличенные клещи, где размер сечения достигает 50-100 мм2, если на имеющихся в продаже указан размер в 15-25 мм2.
  • Если речь идёт о цифровых клещах или о модели устройства для постоянного тока, определитесь, как вам удобнее считать измеряемый ток: по показанию в миллиамперах, милливольтах или вольтах.
  • Убедитесь, что материалы изолирующих ручек, покрытия клещей не проводят ток. Это должен быть высококачественный пластик, резина или композит.
  • Проверьте гарантийный срок службы клещей, убедитесь, что в инструкции производитель указал параметры, диапазоны значений которых включают те, что вам нужны для безопасной и безаварийной работы.
  • Воздержитесь от приобретения клещей по слишком высокой цене – не все их функции вам могут пригодиться.
  • Если работа в основном производится в гаражно-бытовых условиях, а не на производстве, то отдайте предпочтение недорогим клещам, от которых требуется лишь успешное решение ваших конкретных задач. Клещи невысокого ценового диапазона оснащены функцией прозвонки линий и участков цепей.
  • Избегайте дешёвых китайских подделок, в которых пластик сильно «запашит». В некоторых участках таких же клещей могут быть лишние щели и трещины в диэлектрическом покрытии.
  • Если продавец имеет возможность протестировать прибор с токовыми клещами – убедитесь, что тот не превышает заявленную погрешность замеряемого тока, напряжения и сопротивления в тестовой линии.
  • Если вам предстоит производить замеры и испытания в электроустановках, вокруг которых присутствует излишняя влажность, повышенная или излишне заниженная температура, выберите изделие, которое соответствует конкретным запросам.
  • Ориентируйтесь на отзывы от реальных покупателей. Если вы подозреваете, что положительные отзывы могли быть написаны по заказу самого производителя с целью накрутить рейтинг изделия, ищите отзывы от других пользователей на похожих сайтах. Даже маркетплейс, на котором вы закажете такие клещи, не даст 100%-ю гарантию защиты от нереальных отзывов.
  • Для тонких проводов применяются облегчённые клещи. Если ваша работа не предполагает контакт прибора с напряжением более чем 220 вольт, а потребляемые токи едва ли превышают 20 А, то воспользуйтесь облегчёнными клещами, по сечению провода припаянного к клешням, равным шунту амперметра в обычном мультиметре.
  • Убедитесь, что в цифровом приборе батарейки (для питания мультитестера) заменяются легко и быстро.

ICartool IC-M206D

Упаковка, комплектация, корпус подобны предыдущей модели до степени смешения:

Да и по функционалу эти клещи очень близки к модели IC-M206D, поэтому я остановлюсь только на различиях. Прежде всего, это их главная функция:

Измерение постоянного тока.

В качестве референсных значений будем использовать показания амперметра в лабораторном блоке питания и мультиметра iCartool IC‑M118A. Разумеется, начинаем с обнуления значений в клещах, разместив их именно так, как они будут измерять ток при его прохождении по проводу. Это нужно делать перед всяким измерением постоянного тока.

Я решил не истязать блок питания и мультиметр большими токами, а намотать несколько витков провода на клещи. Магнитный поток через рамку и показания клещей в таком случае увеличиваются пропорционально числу витков. У меня было 20 витков.

Таблица результатов:

Ток, А 0,5 1,0 1,5 2 5 10 20 30 40 60 80 100 120 140 160 180 200
Измерение прибором 0,51 1,02 1,54 2.02 5,3 10,4 20,5 30,7 40,9 60,9 81,3 101,5 121,8 142,2 162,4 182,7 202,9

Средняя ошибка: 0,0155.

Она укладывается с запасом в заявленную точность в 2,5% плюс пять единиц младшего разряда.

Дальнейшие тесты прибор выполнил аналогично ICartool IC-M206B, за исключением некоторых особенностей:

Коэффициент заполнения измеряется прибором несколько хуже, чем это делает модель IC‑M206B.

На частоте 100 Гц валидные коэффициент заполнения измеряется верно до 79%. С ошибкой — до 81%, а выше 81% не определяется.

На частоте 1 КГц начиная с 93% прибор показывает коэффициент заполнения 99,9%. С повышением частоты до 5 КГц предел правильного отображения отодвигается до 97%, а при 10 КГц прибор распознает уже 98% заполнение.

Не исключено, что это проблема конкретно моего экземпляра, но факт остается фактом.

Потребление тока от элементов питания у трех приборов в разных режимах оказалось различным.

Отличия младшей модели от старшей в потреблении составило более 15 раз.

Чтобы не утомлять однообразными фотографиями, я свел результаты измерений в таблицу.

IC-200A IC-206B IC-206D
Измерение тока 0,7 мА 1,4 мА 11,9 мА
Измерение + подсветка экрана 8,9 мА 18,0 мА 22,9 мА
Измерение + фонарь 11,2 мА 19,8 мА
Измерение+фонарь+подсветка 25,4 мА 29,3 мА

Самый простой прибор победил предсказуемо. А вот то, что датчик Холла увеличивает потребление тока прибором так сильно, стало неожиданностью. Повлияет ли это на срок службы батареек? Едва ли. При таких малых токах время работы батареи не может быть подсчитано банальным делением емкости на ток – зависимость там не линейна. При домашнем использовании прибора скорее время хранения будет определяющим фактором остаточной емкости батарей.

Разборка прибора аналогична IC-206B, но внутри мы видим более богатое оснащение платы:

Чип все тот же. Датчик Холла соединен с платой не проводами, а шлейфом. А вот варистор на входе, судя по обозначениям на плате вверху фотографии, поставить постеснялись. Но пайка качественная, все аккуратно.

Распаяна дополнительная микросхема памяти, есть подстроечный реостат.

Практическое применение токовых клещей.

Как ни крути, но основное назначение токоизмерительных клещей – измерять ток. Займемся же этим делом. В качестве нагрузки воспользуемся стиральной машиной. Во-первых, у нее несколько разных режимов потребления. Во-вторых, в ней работает электродвигатель и мы вправе ожидать не только активной нагрузки от нагревателя, но и реактивной нагрузки от электродвигателя. Итак:

Измерение переменного тока

Из видео можно понять, что показания приборов более-менее соответствуют друг другу. Различается частота обновления показаний. У IC‑200A она порядка 1 в секунду. А у IC‑206B и IC‑206D порядка 3 раз в секунду.

Можно заметить, что у IC‑206В присутствует ненулевое значение тока при реальном отсутствии тока нагрузки. Это может быть вызвано измерением паразитных токов высокой частоты. Чтобы отфильтровать их, в приборе есть специальный режим.

LPF (Low Pass Filter). Этот фильтр срезает высокие гармоники и показания становятся более правдоподобными. Включаем:

Ну вот, теперь все хорошо. Посмотрим полосу пропускания фильтра.

На 50 Гц приборы адекватно показывают среднеквадратичное значение напряжения:

На 1 КГц показания укладываются в заявленную погрешность.

Начиная а 2 КГц напряжение уже не может быть измерено с достаточной точностью.

На 5 КГц ошибка более чем вдвое. Далее проверять не имеет смысла.

Фильтр очевидно работает, и его амплитудно-частотная характеристика плавно ниспадает в интервале 1‑10 КГц.

Любопытно заметить, что включение фильтрации частот потребовалось лишь модели датчиком тока имени Фарадея. Клещи Ампера-Холла не требовали никаких фильтров, чтоб валидно распознать ноль.

Для второго измерения в качестве референсных приборов я установил клещи MT‑87 и Mustool MT866. Это приборы попроще старших моделей от ICartool. У них нет фильтра нижних частот, результат — ненулевые значения при отсутствии нагрузки.

Показания всех совпадают с точностью, достаточной для практического применения.

Для измерений больших токов

был задействован трансформатор от точечной сварки. С кабелями на выходе он выдает ток до трехсот ампер. Попробуем подогреть гвоздь:

Как видно, гвоздь греется, а показания совпадают с точностью, достаточной для практического применения.

Переменное напряжение

все приборы тоже превосходно измеряют.

Измерение постоянного тока

наиболее интересно применительно к автомобилю. Аккумулятор легкового автомобиля способен выдать ток до 600 ампер. Обычно такой ток требуется лишь доли секунды, для запуска холодного мотора зимой. Но это те самые доли секунды, которые отделяют запуск от незапуска, поездку по делам от снятия аккумулятора для зарядки, движение в теплом автомобиле от размахивания проводами для прикуривания. Хотя бы пару раз в год, в сезонное обслуживание автомобиля, полезно протестировать аккумулятор на предмет, протянет он еще сезон или пора в утиль. В принципе, для этого можно использовать нагрузочную вилку. Она показывает проседание напряжения под нагрузкой. Но вот беда – нагрузка там абстрактная, так что мы измеряем ресурс аккумулятора «в попугаях». Лучшая тестовая нагрузка для любого аккумулятора – стартер той машины, где он установлен. Для эксперимента нам потребуется любой мультиметр с функцией определения минимального напряжения и токовые клещи с функцией определения максимального тока. В моем случае это
ICartool IC‑M118A
и
ICartool IC‑206D
соответственно.

Сначала измеряем ЭДС аккумулятора – напряжение при выключенных потребителях.

12,26 В.

Затем выбираем режим фиксирования минимальных значений напряжения и максимальных тока. В моем случае ток идет в клещах «задом наперед», так что будут отрицательные показания, а выбираю я минимальное значение. Пришло время запускать мотор.

По цепи стартера тек ток в 209,8 ампер. Напряжение на выводах аккумулятора при этом падало до 10,47 вольт.

(12,26-10,47)/209.8 = 0,0085 (Ом.)

8,5 мОм – таково внутреннее сопротивление батареи. Это много, норма 4-6.

Но наш метод не идеален. Мы не знаем частоту измерений в приборах, так что реальные значения внутреннего сопротивления могут быть как больше (если мы не поймали пик тока), так и меньше (если мы не поймали истинное минимальное напряжение). Но как грубая оценка состояния аккумулятора годится и такой метод.

Функция минимальных и максимальных значений для таких измерений совершенно необходима – глазом и даже видеокамерой скоротечные процессы не заметить. Хорошо, что при активации этой функции клещи запоминают и минимум, и максимум. После измерений нажатием кнопки можно переключать на экране зафиксированные значения сколько угодно раз. Это очень удобно.

Устройство

Как уже упоминалось ранее, механизм функционирования клещей базируется на принципах тока трансформатора, который состоит из первичной (как правило, шины или провода) и вторичной обмоток. Измеритель подключается ко вторичной обмотке, которая должна находиться на разъемном магнитопроводе. Провод, около которого замкнуты клещи, создает вокруг переменное магнитное поле, невидимое человеческому глазу, которое измеряет прибор.

Исходя из конструкции, существует 2 вида тококлещей: простые (а) — их функционирование базируется на принципе работы одновиткового трансформатора; сложные (б) — они имеют в своем функционале выпрямитель, и их работа также основана на одновитковом трансформаторе.


Конструкция устройства

Стоит обратить особое внимание на картинку-схему: на ней изображены и отмечены составные части тококлещей. Так, под номером 1 на ней обозначен непосредственно провод, который измеряют; номер 2 — это разъемные сердечники (клещи); под номером 3 обозначена обмотка (вторичная); номер 4 — это встроенный выпрямитель; номер 5 — это изображение измерительной рамки; номер 6 — чертёж шнурирующего сопротивления; под номером 7 обозначает тумблер/переключатель режимов; номер 8 — это скоба (рычаг).

Эта схема представила очень детальное внутреннее строение электроизмерительных клещей. Однако, можно сказать, что тококлещи фактически состоят из трех частей:

  • Рабочей: непосредственно сами клещи и магнитопровод.
  • Изолирующей: пространство между рукояткой и рабочей части.
  • Корпуса-рукояти.

Вам это будет интересно Особенности компаратора напряжения

Где используется

Благодаря широкому спектру модификаций токовых клещей на рынке и в магазинах, они стали очень популярным электроинструментом и применяются везде — от среднестатистического дома, до огромной строительной площадки.

Существует два основных вида электроклещей: для измерения переменного тока и для измерения постоянного тока. Первые, по сути, являются универсальным инструментом и отлично подходят для снятия показаний на линиях и с постоянным напряжением.

Итак, рассмотрим следующую ситуацию: Галина и Иван Петровы стали замечать, что счета за электроэнергию становятся все больше и больше каждый месяц. Они стали разбираться, как такое возможно, и пришли к выводу о том, что, возможно, кто-то из соседей подключился к их сети и ворует электричество. Иван сходил в магазин и приобрел тококлещи. Затем, предварительно отключив все электроприборы в квартире, Петровы с помощью клещей измерили ток в отдельном фазном проводнике и зафиксировали показание выше нуля. Это значит, что их подозрение оказалось верным. Теперь осталось найти место несанкционированного подключения.

Для примера можно привести еще одну ситуацию. У Ивана Петрова есть автомобиль. Но вот незадача: аккумулятор стал разряжаться очень быстро. При этом он не устанавливал никаких дополнительных устройств типа автомагнитолы. Значит, где-то происходит утечка.


Применение электроклещей в автомобиле

Для этого клещами обхватывают плюсовой провод, идущий от аккумулятора. После этого последовательно нужно начать извлекать предохранители и отключать всевозможные потребители электроэнергии до тех пор, пока причина утечки не будет найдена.

ICartool IC-M200A

Эта модель измеряет только переменный ток. Кроме него, можно измерить AC и DC напряжение, сопротивление, есть прозвонка.

Внутри только самое необходимое – прибор, щупы, батарейки и описание на русском языке.

Обозначения на корпусе: соответствие стандартам Европейского Союза, наличие двойной изоляции, допуск к работам III категории и напряжению до 600 вольт. Значит, с помощью этого прибора можно ремонтировать все, что подключается к вводному электрощиту в здании, но не сам этот электрощит. Пластик хорошего качества, никаких утяжин и облоя нет, корпус не скрипит и ничем не пахнет.

Программное колесо рассчитано только на вращение сбоку, большим пальцем правой руки, а левшам придется вращать указательным пальцем. Выбранный режим работы можно определить по стрелке на колесе.

С обратной стороны мы видим крышку батарейного отсека, наклейку ОТК производителя и наклейку о соответствии нормам таможенного союза. Начнем с установки батареек. К прибору прилагаются 2 батарейки AAA, их и поставим.

Крышка батарейного отсека крепится одним винтом, который вворачивается в резьбовую втулку.

Щупы. Длина 85 см. Кончики прикрыты колпачками.

Измерим сопротивление:

При токе в 2 А падение напряжения на одном щупе 0,76 В, на другом – 0,68 В. Сопротивление пары получается 0,72 Ома. Это многовато. Но не будем забывать, что прибор измеряет ток только клещами, щупы служат для измерения напряжения и сопротивления. Для этих задач сопротивление щупов несущественно. Но надо учитывать, что эти щупы только для измерения напряжения, комплектовать ими какой-нибудь другой мультиметр не стоит.

Экран.

Достаточно контрастный, но с углами обзора дело обстоит не очень хорошо. При взгляде сверху, со стороны челюстей, изображение в какой-то момент исчезает. Выглядит это так:

Есть и сильные стороны – у экрана приятная голубоватая подсветка

. А при превышении определенных значений тока и напряжения она становится янтарной.

К сожалению, голубая подсветка автоматически отключается через несколько секунд работы. Сам прибор тоже автоматически отключается через несколько минут простоя. Но его автоотключение можно отключить, если включать с нажатой кнопкой «Func»

. Убедиться, что функция автоотключения отключена можно по исчезновению пиктограммы с часиками в углу экрана.

Вскрытие.

Корпус собран на двух саморезах. Первый доступен из батарейного отсека, второй прячется под наклейкой с серийным номером. Контакты батареек подключены к плате через пружинки. Это упрощает разборку корпуса – половинка корпуса не болтается на проводах. По периметру корпуса выполнен двойной паз, что затрудняет попадание пыли и влаги внутрь.

Пайка не без огрехов. Кое-где висят сопли припоя. Некоторые провода не продеты в отверстия платы, а прихвачены каплей припоя к поверхности.

Контроллер прибора в капле компаунда. С одной стороны, такое решение считается неремонтопригодным. Но с другой – экономический эффект ремонта прибора этого ценового диапазона неочевиден.

Обращает на себя внимание странное расположение термисторов на входе. Длинные, причудливо изогнутые ноги полупроводниковых приборов находятся в опасной близости друг от друга. При этом, на них приходится полное напряжение, до 600 вольт! Судя по шелкографии, проектировщики задумали установить термисторы на разных сторонах платы (на фото снизу место PTC2).

Но сборщики решили иначе.

Флюс кое-где не смыт – обратите внимание на пайку проводов внизу кадра на последней фотографии.

Так что впечатления от внутренностей прибора неоднозначные. Задумано хорошо. Реализовано на троечку. Но относительно легко может быть доведено до ума при помощи паяльника и спирта.

Измерение постоянного напряжения.

Тут у нас одна шкала с пределом в 600 вольт и разрешением в один знак после запятой. А заявленная погрешность ±0,5% от показаний плюс 5 единиц младшего разряда. Для десяти вольт это и будет 0,5 В. Но мы для тестов задействуем источник опорного напряжения на микросхеме AD584LH с точностью в 100 раз выше – 0,005 В.

Тестируем 2,5 В.

Немного занижает, но в пределах заявленной погрешности измерений.

5 В:

Аналогично.

7,5 В:

Похоже, небольшая ошибка постоянна.

10.0 В:

Для практического применения такая точность вполне достаточна. Вряд ли с помощью клещей на 200 ампер кто-то будет ремонтировать прецизионную аппаратуру.

Измерение сопротивления.

Предусмотрено два диапазона: до 2 КОм и до 20 КОм. Благодаря тому, что прибор не имеет автоматического определения диапазона, измерения проходят максимально быстро.
Если внимательно рассмотреть запись, то между касаниями контактов и появлением показаний на экране умещается 30 кадров. При частоте кадров 60 в секунду получается 0,5 сек. Точность показаний соответствует заявленной.
Прозвонка.

Здесь скорость особенно важна. Аналогично, смотрим покадрово:

Странно, но задержка включения зуммера зависит от паузы между измерениями. Чем она меньше – тем меньше и задержка.

Если «на холодную», то через 0,3 сек экран показывает значение сопротивления, и только через секунду зажигается красный светодиод и включается зуммер. Если следующее измерение делать сразу же, то и показания, и зуммер, и светодиод включаются одновременно с задержкой 0,3 сек. Все это немного сбивает с толку, конечно.

Как пользоваться токоизмерительными клещами

Если вы хотите измерить и узнать значение потребляемой электроэнергии в сетях 220 В (в квартире, доме), то можно расчитать по формуле:

P = A ⋅ V ⋅ cosφ

где, cosφ = 1

Пример: Вам нужно измерить нагрузку потребляемой электроэнергии вашей квартиры, дома или какого-нибудь электроприбора. Переключатель диапазонов ставим в положение АСА 200. Раскройте клещи и охватите один провод из дух (желательно фазу). Через мгновение прибор покажет какое то значение, например, 8 А.

По формуле вычисляем потребляемую мощность:

P = 8 ⋅ 220 ⋅ 1 = 1760 Вт = 1,76 кВт

Токоизмерительные клещи – это удобный специализированные устройства, которые позволяют быстро и легко осуществить замеры тока. На большинстве устройств имеется кнопка, которая отвечает за фиксацию полученного результата. Это упрощает работу в стесненных местах, где невозможно постоянно следить за дисплеем прибора.

Как замерить ток

Измерять ток в цепи несложно: нажав на рычаг, нужно открыть клещи и пропустить в них измеряемый провод, а затем зафиксировать измерение, появившееся на экране.

Прежде всего нужно помнить о технике безопасности. Важно, чтобы во время проведения измерения не возникло короткое замыкание и человека не поразило электрическим током. Конечно, с этой целью сами клещи покрыты изолирующей оболочкой. Поэтому бояться поражения током не стоит, но также не нужно забывать о том, что устройство должно быть полностью сухое.

Выше разобрано для чего же предназначены электроизмерительные клещи. Эти девайсы применяются, чтобы максимально быстро и точно измерить, как правило, переменный ток. В зависимости от конструкции, это нехитрое устройство может служить также термометром, использоваться как датчик напряжения или частоты. В надежных руках этот прибор может стать настоящим и незаменимым оружием.

Конструкция и напряжение

В зависимости от напряжения электрических сетей, в которых токовые клещи применяют для замеров, конструкция этих устройств может быть адаптирована соответствующим образом. Так, в электросетях до 1000 вольт используются электроизмерительные клещи с управлением «челюстями» одной рукой.

Но в электрических сетях до 10 000 вольт применяют токоизмерительные клещи для двух рук. Это вызвано необходимостью удаления кистей рук на безопасное расстояние (начиная с 38 см и больше) от токоведущих частей, которые находятся под высоким напряжением. Такие «челюсти» — это уже не мультиметр, а просто амперметр. Причем, во многих моделях применен аналоговый стрелочный прибор. Работа с электроизмерительными клещами при высоком напряжении связана с повышенным риском поражения электрическим током.

Меры безопасности при работе

Взаимодействие с любыми приборами, контактирующими с электричеством, требует соблюдения некоторых мер безопасности. Не являются исключением и рассматриваемые клещи. Во время активных действий, проводимых ими, запрещается:

  • при их подключении к токоведущим элементам дотрагиваться до открытых разъемов;
  • при работе под напряжением измерять сопротивление;
  • переключать диапазоны при нахождении проводника в инструменте;
  • превышать максимумы перегрузочной способности инструмента для некоторого диапазона.

С профессиональным инструментом в электроустановках с напряжением выше 1000 В работу проводят 2 работника: 1 с III группой и 1 — с IV.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]