4 февраля 2015
Bournsстатья
В номенклатуру энкодеров, выпускаемых компанией Bourns, входят изделия, изготовленные по трем существующим технологиям: контактные механические (для бытовых применений, а также для неответственных лабораторных и промышленных приложений), бесконтактные оптические (для аудиотехники, прецизионной измерительной, авиационной и медицинской техники, ответственных промышленных применений), бесконтактные магнитные (для сервоприводов, робототехники и точных станков).
Энкодеры – электромеханические устройства, позволяющие преобразовывать характеристики механического движения в удобную для обработки форму электрических сигналов. Они используются для определения таких параметров как угловое положение, направление, скорость и частота вращения.
Рис. 1. Номенклатура энкодеров Bourns
Области применения энкодеров обширны: от промышленных систем до медицинских приборов. Каждое конкретное приложение выдвигает вполне определенные требования к используемым энкодерам. Компания Bourns выпускает широкий спектр энкодеров с различными характеристиками, которые отвечают самым взыскательным запросам (рисунок 1):
- контактные механические, бесконтактные оптические, бесконтактные магнитные;
- квадратурные, с выходами типа «направление/шаг», абсолютные цифровые, абсолютные с ШИМ-выходом;
- со сроком службы до сотен миллионов оборотов;
- с разрешением до 1024 состояний на оборот;
- с максимальной частотой до 10 000 оборотов в секунду;
- с уровнем пыле- и влагозащищенности до IP65;
- для создания взаимодействия «пользователь-машина» (HM Interface) и «машина-машина» (MMI);
- для монтажа в отверстия, для поверхностного монтажа, монтажа на блок с дополнительным гибким кабелем.
Наиболее популярными сериями поворотных энкодеров производства компании Bourns являются PEC11, PEC12, PEC16, PEL12, ECW, EAW, EPS, EMS22, EM14, EN (рисунок 2).
Рис. 2. Внешний вид наиболее популярных серий энкодеров Bourns
Достоинства и недостатки энкодеров в значительной степени зависят от принципа их действия. В общем случае энкодеры делят на два типа: механические контактные и бесконтактные. Бесконтактные бывают двух видов: оптические и магнитные.
Компания Bourns производит энкодеры всех трех типов:
- механические контактные: PEC11, PEC12, PEC16, PEL12, ECW, EAW, EPS;
- бесконтактные оптические: EM14, ;
- бесконтактные магнитные: EMS22.
Рассмотрим коротко принцип действия каждого из них.
Механические контактные энкодеры по принципу функционирования напоминают галетные переключатели. Основными составными частями таких энкодеров являются кодирующий элемент и скользящие контакты.
Кодирующий элемент представляет собой общий контакт сложной формы. При повороте вала энкодера скользящие контакты перемещаются, периодически замыкаясь на кодирующий элемент (общий контакт).
Контактные квадратурные энкодеры имеют пару скользящих контактов (A и B). Они выполнены таким образом, что диаграммы их замыкания на кодирующий элемент оказываются сдвинутыми на 90° (рисунок 3). По порядку следования сигналов определяется направление вращения. По числу импульсов можно судить о частоте оборотов.
Рис. 3. Диаграммы сигналов квадратурного энкодера
Квадратурный энкодер может быть достаточно просто реализован с помощью оптических схем.
Бесконтактные оптические энкодеры. Конструкция приборов данного типа подразумевает использование нескольких основных элементов (рисунок 4): источников света, кодирующего диска, фотоприемников.
Рис. 4. Структура оптического энкодера
Кодовый диск имеет просветы (окна), через которые может проникать световой поток, создаваемый источниками света (ИК-светодиодами). Если свет прошел через окно на диске, то он фиксируется фотоприемником. Если свет не попадает в окно – то он отражается от диска и не фиксируется приемником.
При вращении вала световой поток периодически прерывается диском и формирует переменный выходной сигнал приемника. Частота сигнала пропорциональна частоте вращения вала.
В оптических энкодерах производства Bourns фотоприемники входят в состав специальной интегральной схемы ASIC (Application-specific integrated circuit). Эта ИС преобразует сигнал приемников в электрические выходные сигналы (рисунок 4).
В случае квадратурного энкодера формируются два сигнала, сдвинутых на 90°.
Бесконтактные магнитные энкодеры. Приборы этого типа используют эффект Холла, который заключается в образовании разности потенциалов на поверхности проводящего материала при протекании через него тока при наличии внешнего магнитного поля. Этот эффект был открыт Эдвином Холлом в 1879 году. Рассмотрим его более подробно.
Как известно, на электрический заряд, движущийся в магнитном поле, действует сила Лоренца, смещающая заряд в направлении, перпендикулярном направлению тока (рисунок 5).
Рис. 5. Принцип действия магнитных энкодеров
Если поместить в магнитное поле проводящую или полупроводниковую пластину и пропустить через нее ток, то под действием силы Лоренца электроны начнут смещаться и скапливаться на одной из поверхностей пластины. Дырки будут скапливаться на противоположной поверхности. Возникнет разность потенциалов.
В энкодерах вращение вала приводит к изменению магнитного поля и соответствующему изменению напряжения датчика Холла. При постоянном вращении возникает синусоидальное напряжение. Электронная схема усиливает и преобразует этот сигнал в удобную для обработки форму. На базе датчиков Холла строят инкрементальные абсолютные ШИМ-энкодеры.
Использование того или иного принципа функционирования во многом определяет значения эксплуатационных характеристик энкодеров.
Что такое энкодер?
Энкодер – это электронный датчик, который механически крепится на какой-либо вращающейся детали. Обычно корпус энкодера остается неподвижным, а вращается только его вал. Это позволяет с необходимой точностью измерять разные параметры :
- скорость вращения,
- расстояние (длину),
- направление вращения,
- угловое положение по отношению к нулевой метке.
Энкодер является самым распространенным «измерительным инструментом» в современном промышленном оборудовании. Фактически энкодер является датчиком обратной связи, на выходе которого цифровой сигнал меняется в зависимости от его вращения или от угла его поворота. Этот сигнал обрабатывается в счетчике или контроллере, который выдает команды на устройство индикации или привод.
Этикетка инкрементного энкодера Sick, установленного на валу двигателя постоянного тока. Основной параметр – 1024 импульса на оборот
Энкодеру найдено множество применений, учитывая возможности последующей обработки его сигнала. Например – измерение погонной длины какого-либо материала, измерение угла открытия/закрытия задвижки, точное позиционирование деталей при перемещении и обработке. Конкретные примеры будут ниже.
Энкодеры, о которых идёт речь в статье, в некоторых источниках называются датчиками углового перемещения, датчиками угла поворота, и даже “N-кодером”.
А вообще энкодер – это любое устройство, которое преобразовывает или декодирует какой-то сигнал или информацию.
Общие плюсы и минусы
Прежде, чем рассмотреть разные типы энкодеров, стоит сказать об общих преимуществах и недостатках этих датчиков.
Преимущества:
- Доступная цена.
- Простой монтаж и использование.
- Высокая точность измерений.
- Универсальность — возможность применения на широком спектре приборов и оборудования.
- Возможность определить направление вращения объекта.
Недостатки:
- Возможные ошибки в измерениях, если выбран прибор неправильного типа или нарушена технология установки.
- Схема подключения зависит от типа и сферы применения.
- В некоторых видах энкодеров нужно постоянно преобразовывать код Грея.
- Ограниченная разрешающая способность. Чтобы повысить точность измерений, нужно добавлять дополнительные каналы.
Принципы работы и устройство энкодеров
Существует два вида энкодеров по конструкции и виду выходного сигнала – инкрементальный (инкрементный) и абсолютный.
Инкрементальный энкодер устроен проще сравнению с абсолютным, и используется в большинстве случаев. Такой энкодер можно представить как диск с прорезями, который просвечивается оптическим датчиком. При вращении этого диска датчик будет активироваться или деактивироваться зависимости от своего положения над прорезью. В результате на выходе энкодера формируется последовательность дискретных импульсов, частота которых зависит от разрешения энкодера и его частоты вращения.
Типичный пример в цифрах – одному полному обороту энкодера соответствует 1000 дискретных изменений уровня сигнала, которые говорят об его угловом положении. В инструкции к такому энкодеру будет написано: “Разрешение – 1000 импульсов на оборот”. В более совершенных моделях на один оборот приходится 2000, 4000 и более импульсов. Бывают и программируемые энкодеры, разрешение которых пользователь может менять в очень широких пределах – например, от 1 до 65536 импульсов на оборот.
Например, если энкодер закреплен на валу асинхронного двигателя, который вращается с частотой 1500 оборотов в минуту, то при разрешении энкодера 1000 импульсов на оборот частота выходных импульсов будет равна 25 кГц.
Разрешение и максимальная частота вращения обратнозависимы – ведь не может же частота выходных импульсов исчисляться гигагерцами. Обычно выходная частота ограничена значением около 500 кГц. Да и не всякий контроллер “скушает” такую частоту. Делаем вывод: энкодер с разрешением 1000 имп/оборот (наиболее распространенный) не может крутиться с частотой выше 500 Гц или 30000 об/мин. Но такие скорости в механике я лично не встречал. Делаем второй вывод: высокое разрешение не всегда хорошо.
Пример, поясняющий работу энкодера:
Конструкция, поясняющая работу оптического энкодера
На фото – не энкодер, но данная конструкция в первом приближении прекрасно иллюстрирует работу и устройство инкрементального оптического энкодера. Про щелевой оптический датчик я писал в статье про оптические датчики, там подробнее.
Бич подобных конструкций – при механической поломке, связанной со смещением диска (или другого активатора), датчик легко ломается… В энкодере такого не может быть – там всё надёжно закреплено и защищено.
Основной минус инкрементального энкодера – необходимость непрерывной обработки его выходного сигнала. Кроме того, чтобы узнать положение инкрементального энкодера после подачи на него питания, необходимо провести инициализацию для поиска нуль-метки (что это такое – расскажу позже) либо для поиска нулевого положения механизма.
Абсолютный энкодер имеет более сложное устройство, но он позволяет определить угол поворота в любой момент времени, даже в неподвижном состоянии механизма сразу после включения питания. Говоря простыми словами, выходной сигнал у него – это параллельный код (например, 8-разрядный, имеющий 256 значений), который соответствует углу поворота. Соответствующую конфигурацию имеют и прорези в диске энкодера.
Абсолютные энкодеры работают в сложном оборудовании – там, где в любой момент времени (в том числе, в момент подачи питания) нужно знать точное положение объекта. Но сейчас, с появлением дешевых контроллеров с энергонезависимой памятью, в 99% используются инкрементальные энкодеры. Тем более учитывая, что их цена в несколько раз ниже, чем у абсолютных. Да и обрабатывать последовательные импульсы гораздо проще, чем параллельный код.
Использовать абсолютный энкодер для определения скорости вращения – всё равно, что использовать мощный настольный компьютер только для прослушивания музыки в ВК.
Бывают энкодеры не оптического принципа работы. Но я про них ничего рассказывать не буду, поскольку не имел с ними дела..
Взаимодействие абсолютного кодировщика с Raspberry Pi
Хотя подключение абсолютного энкодера к Raspberry Pi может быть простым, программа для правильного чтения входов может немного усложниться в зависимости от типа датчика. Давайте посмотрим, как взаимодействовать с абсолютным энкодером с последовательным выходом (ЭМС22А) с Raspberry Pi.
Подключение датчика
Датчик имеет следующий формат подключения:
Подключите провода датчика к Raspberry Pi следующим образом:
- Контакт 2 (CLK) -> контакт 2 RPi
- Контакт 4 (DO) -> контакт 3 RPi (при использовании более одного датчика подключите контакт данных второго датчика к контакту 14)
- Контакт 6 (CS) -> контакт 4 RPi
- VCC -> контакт RPi + 5V
- GND -> контакт RPi GND
Пример кода
Чтобы получить информацию от датчика, следующий пример кода, написанный ХарешКарнан может быть использован. При выполнении он распечатает показания подключенного датчика.
import
time
import
RPi.GPIO
as
GPIOGPIO.setmode(GPIO.BCM) PIN_CLK = 2PIN_DAT = [3,14] PIN_CS = 4delay = 0.0000005ns = 2 # number of sensors attached# totally 10 bits to be extracted from SSI signalbitcount = 16# pin setup done here
try
: GPIO.setup(PIN_CLK,GPIO.OUT) GPIO.setup(PIN_DAT[:],GPIO.IN) GPIO.setup(PIN_CS,GPIO.OUT) GPIO.output(PIN_CS,1) GPIO.output(PIN_CLK,1)
except
:
print
«ERROR. Unable to setup the configuration requested» #wait some time to starttime.sleep(0.5)
print
«GPIO configuration enabled»
defclockup
(): GPIO.output(PIN_CLK,1)
defclockdown
(): GPIO.output(PIN_CLK,0)
defMSB
(): # Most Significant Bit clockdown()
defreadpos
(): GPIO.output(PIN_CS,0) time.sleep(delay*2) MSB() data = [0]*ns
for
i
in
range(0,bitcount):
if
i<10: #print i clockup()
for
j
in
range(0,ns): data[j]<<=1 data[j]|=GPIO.input(PIN_DAT[j]) clockdown()
else
:
for
k
in
range(0,6): clockup() clockdown() GPIO.output(PIN_CS,1)
return
data
try
:
while
(1):
print
readpos() time.sleep(0.001) #break
finally
:
print
«cleaning up GPIO» GPIO.cleanup()
Подключение энкодера
Энкодер никогда не работает сам по себе. Он всегда подключается к устройству обработки сигналов, с помощью которого можно переварить и проанализировать импульсы на его выходах. Подключить энкодер легко – ведь это фактически датчик с транзисторными выходами. В простейшем случае, выход энкодера можно подключить ко входу счетчика, и запрограммировать его на измерение скорости или длины.
Но чаще всего выходные сигналы энкодера обрабатываются в контроллере. А далее путем расчетов можно получить информацию о скорости, направлении вращения, ускорении, положении объекта.
Энкодеры подключают не только к контроллеру. Он также может подключаться к преобразователю частоты, питающему электродвигатель. Таким образом , появляется возможность точного позиционирования, а также поддержания нужной скорости и момента вращения двигателя без использования контроллера. Это называется векторным управлением.
Конструктивные особенности
Конструктивной особенностью данной разновидности можно считать наличие следующих элементов:
- источник света;
- специальный диск с нанесенными на нем отметками;
- фототранзисторная сборка;
- схемы для обрабатывания сигналов.
Метки, нанесенные на диск, распределяются определенным образом – их число будет определяться числом импульсов, осуществленных в рамках одного оборота. К примеру, если диск разделяется на 1000 меток, то в продолжение 250 импульсов вал будет повернут под прямым углом.
Сигналы и выходы инкрементального энкодера
В принципе, простейший энкодер, кроме проводов питания, может иметь один дискретный выход, импульсы на котором будут однозначно говорить о скорости вращения вала, на котором он закреплён:
Импульсы на выходе энкодера – один канал
Период Т – величина, обратная частоте, а про частоту мы говорили выше. Уровень “Н” – это напряжение, почти равное напряжению питания (обычно 5, 12, или 24 В). Уровень “L” – около нуля.
Само собой, реальные импульсы не столь идеальны – у них может гулять скважность и будут завалены фронты.
Что может рассказать нам такой энкодер? Только о скорости и погонных метрах. Например, его можно применять для определения частоты вращения двигателя, или длины материала после нажатия кнопки “Сброс”. Неплохо, но хочется большего!
Если будет два выхода, импульсы на которых (оптическим способом) сдвинуты на четверть периода, мы сможем узнать направление вращения:
Импульсы каналов А и В с фазовым сдвигом
Такие выходы со сдвигом фаз на четверть периода называются квадратурными каналами. Этот приём широко применяется в радиотехнике и электронике не только для определения направления вращения, но и для определения знака рассогласования частот (больше или меньше опорной частоты?).
Если сдвиг фаз положительный (фаза В отстает), можно условиться о прямом вращении. Если отрицательный (фаза В опережает фазу А на четверть), значит, вращение в обратном направлении. Два этих сигнала с одной частотой и фазой ±90° подаются на триггер, выход которого однозначно указывает о направлении вращения.
Ничего это не напоминает? В энкодере – двухфазная система, со сдвигом фаз 90°, в электрощите – трехфазная система, со сдвигом фаз 120°. Для смены направления вращения трехфазного двигателя достаточно поменять местами любые две фазы.
Со скоростью, расстоянием и направлением разобрались, а что делать, если нужно узнать угол поворота? Для этого вводится сигнал “Z” (Zero) – опорный импульс, который также называют нуль-меткой или референсной меткой:
Выходы энкодера А, В с нулевой меткой Z
Импульс “Z” имеет длительность Т (бывает и другая длительность – T/2, или 2Т) и проскакивает 1 раз за оборот вала энкодера. Иными словами, длительность нулевой метки может быть в тысячи раз короче периода вращения вала энкодера.
Как и у индуктивных датчиков, выходы энкодера транзисторные, и могут быть нескольких типов. Читайте статью про подключение транзисторных оптических и индуктивных датчиков.
В современных датчиках каждая фаза (канал) обычно имеет ещё один, противофазный выход.
С теорией заканчиваем, плавно переходим к практике.
Характеристики
Основная характеристика датчиков поворота — разрядность. Разрядность энкодера — это количество импульсов за один оборот. Ее также называют разрешением. Как правило, разрешение составляет 1024 за один оборот.
Другие конструктивные и функциональные особенности этих приборов:
- тип вала — пустой или с прямой осью;
- размеры отверстия и вала;
- рабочее напряжение;
- размеры корпуса прибора;
- способы выхода;
- разрядность (количество бит);
- сигнал на выходе;
- есть энкодер с кнопкой;
- длина кабеля и тип разъема;
- способ крепления.
Монтаж энкодеров
По монтажу сразу скажу главное – вал энкодера по отношению к валу механизма должен быть надежно зафиксирован! Обычно это делается при помощи шестигранных винтов.
Бывали случаи, когда из-за проскальзывания самодельных и даже штатных муфт глючили производственные линии, и мы долго не могли найти причину – ведь всё остается исправным!
Монтироваться энкодер может и на валу двигателя, и на валу любого другого механизма – это не принципиально, и зависит лишь от конструкции и требований к точности выполнения поставленной задачи.
Вал энкодера никогда не будет соосным с вращающимся валом (вспомните, для чего нужен карданный вал). Поэтому используются специальные заводские переходные муфты, нужно надежно их крепить и периодически проверять качество монтажа.
Энкодер механически соединен с приводом через соединительную муфту для компенсации несоосности
Корпус любого энкодера всегда неподвижен. Вращается только его внутренняя подвижная часть.
Существуют энкодеры с полым валом, которые надеваются непосредственно на измеряемый вал и там фиксируются. Там даже нет такого понятия, как несоосность. Их гораздо проще монтировать, и они надежнее в эксплуатации. Чтобы энкодер при этом не прокручивался, используется лишь металлический поводок. На фото ниже показан энкодер с полым валом (обозначен В21.1), надетый на вал редуктора:
Энкодер с полым валом, надет на вал редуктора
Обратите внимание – корпус энкодера целиком и полностью держится на валу редуктора. От проворачивания его держит металлический поводок. При работе энкодер обычно немного покачивается по овальной траектории, это нормально, поскольку идеал существует только на картинках в даташитах и учебниках.
Бывают сквозные полые валы, когда ось механизма проходит через энкодер насквозь.
Эффект Виганда
Эффект Виганда — это нелинейный магнитный эффект, названный в честь его первооткрывателя Джона Р. Виганда. Данное явление происходит в специально отожженной и закаленной проволоке, называемой проволокой Виганда.
Проволока Виганда изготавливается из низкоуглеродистого викаллоя, ферромагнитного сплава кобальта, железа и ванадия. Вначале проволока отжигается. Она притягивается к магнитам, и силовые линии магнитного поля «втягиваются» в провод. Но проволока сохраняет лишь очень небольшое остаточное магнитное поле, когда внешнее поле снимается.
Затем проволоку скручивают и раскручивают для холодной обработки внешней оболочки, пока сердечник остается мягким. Затем проволока выдерживается. Это делает магнитную коэрцитивную силу внешней оболочки намного выше, чем у внутреннего сердечника. Высокая коэрцитивность оболочки позволяет ей сохранять внешнее магнитное поле, даже когда первоначальный источник поля удален.
Теперь на проводе будет наблюдаться большой магнитный гистерезис: если к проводу поднести магнит, внешняя оболочка с высокой коэрцитивной силой удерживает магнитное поле от внутреннего мягкого сердечника. Но если магнитное поле превышает заданный порог, весь провод — как внешняя оболочка, так и внутренний сердечник — быстро меняет полярность намагничивания. Это переключение (эффект Виганда) происходит за несколько микросекунд.
Подключение и работа энкодеров. Реальные примеры.
Ниже я рассмотрю несколько примеров использования энкодеров в реальном оборудовании.
Измерение скорости полотна
В данном примере, инкрементальный энкодер ELCO используется для измерения скорости бумажного полотна при производстве бумаги. Энкодер закреплен на бумаговедущем валу через муфту, скорость вращения которого однозначно говорит о скорости бумаги.
При помощи системы «энкодер+контроллер» можно вычислить мгновенную скорость, а также погонную длину произведенной продукции.
Энкодер работает на бумаговедущем валу
или другой ракурс:
Энкодер ELCO работает на бумаговедущем валу. Корпус энкодера закреплен жестко, стыковка валов – через компенсирующую муфту
Минус такой установки – при механической поломке вала (а это бывало уже не раз, изнашиваются подшипники) ломается либо муфта, либо сам энкодер.
Положение деталей на конвейере
В этом случае энкодер насажен на вал двигателя, подключенного через преобразователь частоты. Двигатель через редуктор передает движение на конвейер, по которому движутся заготовки деталей.
Положение детали на конвейере, позиционирование при помощи энкодера на двигателе
С помощью энкодера и оптических датчиков, фиксирующих просвет между образцами продукции, контроллер с большой точность может управлять обработкой деталей.
При этом направление знать не обязательно (оно всегда одно), и могут применяться энкодеры без ноль-метки:
Энкодер для определения только скорости вращения
По моему мнению, насаживание энкодера на вал двигателя – не очень хорошая идея в смысле того, что энкодер крутится на больших оборотах (до 3000 об/мин). Кроме повышенного механического износа, необходимо предусмотреть обработку сигналов со сравнительно высокой скоростью. Но сегодня, с развитием промышленной электроники, это не проблема.
Крепление энкодера на валу двигателя позволяет очень точно контролировать скорость привода. С появлением высокооборотистых энкодеров многие производители наладили выпуск двигателей со встроенным энкодером.
Если интересно применение ПЧ в конвейерах, вот моя статья на Дзене, где я подробно рассматриваю схему включения ПЧ для конвейера.
Ещё пример точного позиционирования при помощи энкодера для двигателя:
Энкодер – работа на валу двигателя со стороны крыльчатки
В этом случае двигатель приводит в действие цепную передачу лифта, подающего заготовку на обработку. Точность позиционирования лифта – порядка 1 мм, длина пути – более 2 м.
Перемещение детали
Ещё большую точность, чем в предыдущем случае, можно получить, если вал энкодера закрепить на ходовой винт с резьбой.
На фото сверху вниз – направляющая, ходовой винт, кабель к энкодеру
Если на ходовой винт закрепить гайку, которая механически скреплена с перемещаемой деталью (в реальном примере это – металлическая заготовка, которая рубится или гнётся по нужному размеру), то с помощью энкодера можно до долей миллиметра узнать её положение. Точность вычисления будет зависеть от шага резьбы и разрешающей способности энкодера.
Минус такого решения – при большой скорости возможен «промах», и нужно либо уменьшать скорость при приближении к цели, либо постоянно двигаться на низкой скорости. Кроме того, механика тоже должна быть точной, чтобы исключить любые люфты и перекосы.
Перемещение упора
Задача стоит в принципе такая же, как и в предыдущем случае. Но тут другой принцип перемещения – за счет зубчатой передачи:
Зубчатая передача перемещения каретки
Плюс данной реализации в том, что энкодер насажен непосредственно на зубчатое колесо, которое осуществляет передачу вращения. При большом разрешении энкодера и отсутствии механических люфтов можно добиться очень высокой точности позиционирования.
Использование энкодера совместно с винтовой и зубчатой передачей позволяет достичь высокой точности обработки деталей в станках с ЧПУ.
Вычисление точной координаты
В производстве полиграфической продукции иногда нужно нанести клей (или краску) в точное место. Когда печатная продукция (например, коробки или конверты) движутся по ленточному конвейеру, при помощи оптического датчика определяется начало коробки, затем контроллер при помощи энкодера вычисляет нужную координату, и включает подачу клея.
Вычисление точной координаты при помощи измерительного колеса
Формируется клеевая дорожка нужной длины, затем клей выключается. Далее коробка подается на фальцовочный узел, где складывается и склеивается. При этом скорость работы линии может достигать до 300 коробок в минуту.
Системы дозирования
Для точного открытия заслонки в системе дозирования жидкостей служит система, состоящая из двигателя с редуктором, на вал которого с одной стороны закреплена задвижка, с другой – энкодер.
Поворот на определенный угол при помощи энкодера
Поворот вала редуктора на угол не более 180° ограничен индуктивными датчиками приближения, а точное положение определяется по сигналу от энкодера. В исходном состоянии задвижка закрыта, и датчик минимального положения активен. Это состояние принимается за ноль. Далее включается двигатель, и вал поворачивается. Точный угол поворота пропорционален количеству импульсов от энкодера обратной связи. В данном случае энкодер не делает полный оборот, его движение ограничено датчиками.
Датчики активируются кулачками, которые закреплены (и могут корректироваться шаловливыми ручками)) на том же валу, что и энкодер.
При выключении питания положение энкодера (а значит, и задвижки) запоминается в памяти контроллера. В случае необходимости оператор может провести инициализацию (установку нулевого и максимального положения) за счет индуктивных датчиков. Опорная “Z” – метка при этом не используется.
Защита двигателя
Даже при перегрузке двигателя его скорость понижается, скольжение есть всегда, даже на холостом ходу. Но изменение тока при этом ничтожно. Особенно (например), если двигатель работает на застрявшую продукцию через редуктор.
Поэтому, очень удобно использовать энкодер, закрепленный на валу двигателя, для определения повышенного скольжения. А значит – перегрузки двигателя.
У меня на Дзене есть статья, как энкодер защищает двигатель от перегрузки, там тема раскрыта подробнее.
Вот фото оттуда:
Энкодер, механическая поломка из-за смещения двигателя
Энкодер перестал выдавать импульсы (перегрузки, правда, не было), и тут же контроллер выдал сообщение:
Сообщение на экране оператора о поломке энкодера
Запоминающие энкодеры
Энкодеры умнеют на глазах. В американской линии довелось иметь дело с серводвигателем, в состав которого входит энкодер с памятью.
Энкодер в составе серводвигателя с памятью
Энкодер не простой – у него в памяти зашиты параметры серводвигателя (их более сотни), которые он каждый раз при включении питания передает к центральный контроллер. Из-за заводского брака энкодер был плохо закреплён, и начал тереться о корпус двигателя, что привело к нарушению синфазности вращения двигателя и энкодера. Американцы дистанционно заново программировали этот энкодер, чтобы можно было запустить линию. Но это уже совсем другая история…
Резольвер
Совсем коротко о резольвере. По сути он выполняет те же функции, что и энкодер – может вычислять скорость и направление вращения двигателя. Но резольвер – аналоговый измерительный прибор. В некоторых случаях он гораздо точнее говорит об угле поворота, поскольку фактически речь идет о вычислении сдвига фаз на его выходах.
Реальный японский резольвер SMARTSYN TAMAGAWA SEIKI MODEL: TS2651N141E78, довелось когда-то ремонтировать:
Устройство резольвера
Литература
- Sensors and Controls. SOLUTIONS GUIDE. Bourns, 2003.
- Bourns® Rotary Encoders. Short Form Brochure. Bourns, 2011.
- Encoders. DESIGN CONSIDERATIONS. TECHNICAL NOTE. Bourns, 2010.
- Bourns® Sensors & Controls. Model EM14 Brochure. Bourns, 2004.
- Bourns® Model EMS22 Non-Contacting Magnetic Encoder. Sensors & Controls Product Brochure. Bourns, 2014.
- Selecting the Appropriate Position Feedback Sensor for Factory Automation Valve Designs. WHITE PAPER. Bourns, 2011.
- Bourns® Medical Industry Products. Focus Market Brochure. Bourns, 2007.
- https://www.bourns.com/.
Получение технической информации, заказ образцов, заказ и доставка.
•••
Тахогенератор
Не путайте энкодер и тахогенератор (его иногда ошибочно называют тахометром)!
У них схожие функции и область применения, но у тахо от скорости вращения двигателя зависит не частота выходных импульсов, а выходное напряжение.
Посмотрите, какая конструкция установлена у нас на заводе на двигателе постоянного тока мощностью 200 кВт:
Энкодер + тахометр слиты в единое целое на валу двигателя
Тахогенераторы, как и двигатели постоянного тока, в современном оборудовании практически не используются.
Особенности установки и использования
Монтажом энкодеров любого типа должны заниматься специалисты, понимающие технологические особенности производства. В этом случае можно рассчитывать на качественный монтаж энкодеров и корректность их показаний.
Устройства можно устанавливать прямо на передние части приводов, благодаря чему будут сведены к минимуму габариты всей системы и снижена ее сложность. Таким образом, можно будет исключить потенциальный отказ оборудования.
Энкодеры используются в таких многих сферах промышленности как:
- пищепром;
- печать;
- деревообработка;
- текстиль;
- металлообработка.
Производители энкодеров
Среди российских производителей энкодеров мне известен лишь только Питерский СКБ ИС, который производит энкодеры марки ЛИР. К сожалению, российского промышленного оборудования сейчас почти не производится, и ЛИРы применяются лишь в военном и лабораторном оборудовании.
Читайте на Дзене моё мнение (2 статьи) по импортозамещению электротехнической продукции.
По этой причине я имею дело только с энкодерами зарубежного производства. Производителей энкодеров много – их производят почти все производители полупроводниковых датчиков. Чаще всего я встречаюсь с энкодерами Autonics – как и в случае с датчиками, в России представлен большой ассортимент. Другие известные мне производители энкодеров – немецкий Sick, японский Omron, и несколько китайских брендов.
Использование тех или иных марок энкодеров обусловлено часто не техническими причинами, поскольку их параметры, схемы подключения и надежность практически идентичны. Тут скорее политические мотивы – производители комплектующих любыми путями стараются, чтобы их продукция вошла в состав больших и массовых производственных линий, чтобы таким образом закрепиться на рынке.
Скачать
Статья, которую вы сейчас прочитали, недавно была в урезанном виде опубликована в бумажном журнале “Электротехнический рынок” под названием “Энкодер: мастхэв производственной линии”. Кому интересно, выкладываю для скачивания:
• Энкодер: мастхэв производственной линии / Статья в журнале «Электротехнический рынок» от СамЭлектрик.ру. Разновидности и примеры реального применения энкодеров. Приведены описания реальных узлов оборудования, в которых применяются энкодеры, pdf, 1.15 MB, скачан: 888 раз./
Рекомендую скачать ещё одну интересную статью по энкодерам:
• Подключение инкрементного энкодера к ПЛК / Обобщены данные о типах выходного сигнала энкодера, способах его обработки, подсчёте измеряемой частоты вращения. Пример подключения и обработки сигналов энкодера в контроллере Siemens, pdf, 2.36 MB, скачан: 826 раз./
Приглашаю коллег к обсуждению в комментариях, буду рад замечаниям и дополнениям к статье!
Дальнейшее описание, включая форму волны энкодера
Ниже приведено изображение, показывающее формы сигналов каналов A и B кодера:
Это может прояснить, как работает выше указанный код. Когда устройство обнаруживает переход от низкого к высокому уровню на канале A, он проверяет, перешел ли канал к B высоким или низким уровням. Затем происходит увеличение/уменьшение переменной, чтобы учесть направление, в котором кодер должен вращаться. Это нужно, чтобы генерировать найденную форму волны. Также на изображении показаны переходы красным или зеленым цветом. Они зависят от того, в каком направлении движется кодировщик.
Одним из недостатков приведенного выше кода является то, что на самом деле он учитывает только одну четверть возможных переходов.
Руководство по энкодерам и тому, как оно подключается к Ардуино, закончилось. Благодаря этому можно получить общее представление о том, что из себя представляют данные устройства, и как они работают.