купить лазерный уровень 360 12.5см х 10.5см х 9.5см. Бренд LT представляет собственное производство лазерных нивелиров (они же лазерные уровни). Лазерный нивелир - оптический и электромеханический инструмент, с помощью которого на поверхность проецируются точки, линии и плоскости, четкой горизонтальной, вертикальной или заданной наклонной ориентации.

Что такое ротор и статор в двигателе: описание, принцип работы в асинхронных электродвигателях, их функции

Ротор – важная составляющая многих машин и механизмов. Наиболее важной деталью, обозначаемой при помощи данного понятия, является так называемый якорь электрического двигателя, генераторов переменного тока. Равно как и колесо, изобретение и использование ротора позволили сделать человечеству огромный шаг навстречу электрификации. Более подробно о том, что такое ротор, в каких механизмах и машинах он применяется, каких видов бывает, будет рассказано в этой статье.


Ротор

Что такое асинхронный двигатель и принцип его действия

Любой электродвигатель — устройство для преобразования электрической энергии в механическую. Электрический двигатель состоит из неподвижной (статор) и подвижной части (ротор). Строение статора таково, что он имеет вид полого цилиндра, внутри которого имеется обмотка. В это цилиндрическое отверстие вставляется подвижная часть — ротор. Он также имеет вид цилиндра, но меньшего размера. Между статором и ротором имеется воздушный зазор, позволяющий ротору свободно вращаться. Ротор вращается из-за наводимых магнитным полем статора токов. По способу вращения двигатели делят на синхронные и асинхронные.

Так выглядит разобранный асинхронный двигатель с короткозамкнутым ротором

Асинхронный электродвигатель отличается тем, что частота вращения ротора и магнитного поля, создаваемого статором, у него неравны. То есть, ротор вращается несинхронно с полем, что и дало название этому типу машин. Характерно, в рабочем режиме скорость его вращения меньше. Второе название этого типа двигателей — индукционные. Это название связано с тем, что движение происходит за счёт наводимых на нём токов индукции.

Асинхронный двигатель в разобранном виде: основные узлы и части

Коротко описать принцип работы асинхронного двигателя можно так. При включении мотора на обмотки статора подаётся ток, из-за чего возникает переменное магнитное поле. В область действия силовых линий этого попадает ротор, который начинает вращаться вслед за переменным полем статора.

Вид заготовок

Для изготовления поковки вала отливают слиток, у которого отношение длины к его диаметру равно примерно двум. От слитка отрезают верхнюю прибыльную часть весом около 25% от полного веса слитка. А снизу – донную часть не менее 5% от веса слитка. Проверка материала поковки по химическому составу и механическим свойствам должна подтвердить соответствие их техническим условиям. Ось поковки должна совпадать с осью слитка. Внешнее очертание поковок должно приблизительно соответствовать наружным очертаниям валов с учётом припусков по 30 – 40 мм. на сторону для последующей обработки. В местах сложных очертаний поковкам придают упрощённую форму, т. е. делают напуск. Тогда короткие ступени, уступы и выемки не обжимаются, а куются по диаметру ближайшей большой стороны. Нормы припусков для поковок, указанные в некоторых стандартных справочниках, для валов турбин не применимы. При назначении припусков для таких уникальных поковок исходят из технологических возможностей выполнения кузнечных операций, необходимости компенсации деформаций при термической обработке и ряда специфических требований и условий. С обоих концов поковка стали выполняется удлинённой на 400 мм. От каждого конца поковки отрезают по две пробы длиной по 200 мм. каждая для испытаний. Одну пробу отрезают на заводе – изготовителе поковки после её обдирки и термической обработки; вторую – на заводе – изготовителе вала. Металлургические заводы поставляют поковки роторов и валов, как правило, грубо обточенными и термически обработанными, по согласованным между поставщиком и заказчиком чертежам заготовок (РЧЗ) с установленными припусками для механической обработки и контрольных испытаний материалов. Размеры припусков обычно следующие: в радиальном направлении – по 15 – 20 мм. на сторону, в осевом – примерно по 10 мм. на каждый участок. Кроме того, для изготовления продольных образцов и на каждом конце поковки даются припуски по 200 мм. и для изготовления тангенциальных образцов и кольцевых проб(по дисковой части ротора) – 40 мм.

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя. Изготавливают его из стали или чугуна, сваркой или литьём. К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора. Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка. Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).

Виды электромеханических устройств

Статор — понятие и принцип действия

Используют ротор в таких электромеханических устройствах, как двигатели, работающие на постоянном и переменном электрическом токе, генераторы.

Агрегаты, работающие на переменном токе

К таким агрегатам относятся различные электродвигатели. Наиболее распространенная модель данного устройства состоит из следующих частей:

  • Алюминиевый или чугунный ребристый корпус с монтажной коробкой для подключения обмоток статора и ротора;
  • Статор – неподвижная часть в виде полого цилиндра, расположенная внутри корпуса. Обмотка статора состоит из 3 пар расположенных друг напротив друга намотанных в пазы корпуса катушек из медного изолированного провода
  • Цельнометаллический цилиндрический ротор с валом и пазами, в которые впаяны обладающие высокой токопроводящей способностью алюминиевые стержни.

Двигатель, запитываемый от переменного тока
Вращается ротор на двух опорных подшипниках, запрессованных на его валу. Охлаждение работающего на больших оборотах электродвигателя происходит, благодаря крыльчатке – небольшому вентилятору, состоящему из множества лопастей и расположенному на одном из концов вала ротора. Также эффективному охлаждению работающего агрегата способствует ребристая структура алюминиевого корпуса.

Принцип работы подобного двигателя заключается в следующем:

  1. При подключении тока к агрегату он попеременно проходит через одну из трех пар катушек статора.
  2. При протекании по парам статорных катушек электрического тока они создают магнитное поле, силовые линии которого пересекают ротор.
  3. Попеременно запитываемые пары катушек создают подвижное магнитное поле, которое по закону электромагнитной индукции провоцирует появление в неподвижных металлических стержнях ротора электрического тока.
  4. Индуцированный ток в роторе приводит к появлению силы, выталкивающей его из магнитного поля статора. Так как частота подачи тока на катушки статора в среднем составляет порядка 30 импульсов в секунду, появившаяся в роторе выталкивающая сила приводит к его вращению с большой скоростью.

Важно! В зависимости от одновременности вращения ротора и порождающего это движение магнитного поля электрический двигатель переменного тока может быть синхронный (ротор агрегата вращается синхронно с магнитным полем статора) и асинхронный (вращение якоря не синхронизировано с движением магнитного поля статора). Первый вид отличается высокой мощностью и надежностью, в то время как второй характеризуется большим разнообразием конструкций и областей применения.

Машины постоянного тока

Наиболее распространенный электродвигатель постоянного тока щеточного вида представляет собой электрический агрегат, состоящий из:

  • Чугунного корпуса с ребрами охлаждения и специальным монтажным коробом для подключения обмоток агрегата;
  • Вала из прочной инструментальной стали с двумя подшипниками;
  • Якоря, состоящего из сердечника (набора пластин из специальной электротехнической стали), якорной обмотки (размещенных в пазах сердечника катушек из медного провода);
  • Индуктора, состоящего из полюсов возбуждения с намотанными на них катушками из медного провода;
  • Коллектора – расположенных на валу медных пластин, к которым подключаются выводы катушек якорной обмотки;
  • Подпружиненных графитовых или металлографитовых щеток (щеточной группы).

Охлаждается такой двигатель, как и аналог, работающий от переменного тока, – расположенной на валу крыльчаткой.

Двигатель, работающий от постоянного тока

Важно! В отличие от электродвигателя переменного тока частотой вращения ротора в таком силовом агрегате управляет специальный блок, который при помощи установленного на валу датчика Холла определяет положение ротора и его скорость.

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления. Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым.

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений. Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле. Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Читать также: Площадь поперечного сечения потока

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Асинхронный двигатель с фазным ротором

Для фиксации ротора к корпусу статора делают две крышки с подшипниками. На одной из крышек закрепляются щетки, которые прижимаются к кольцам на валу, за счёт чего имеют с ними хороший контакт. Для регулировки скорости вращения щетки соединены с реостатом. Изменяя его сопротивление, меняем напряжение, а с ним и скорость вращения.

Что лучше короткозамкнутый или фазный?

Несмотря на то что двигатели с фазовым ротором лучше стартуют, позволяют в процессе работы плавно менять скорость при помощи обычного реостата, чаще применяется моторы короткозамкнутого типа. В этой конструкции отсутствуют щетки, которые выходят из строя первыми. Кроме того, более простое устройство подвижной части снижает стоимость двигателя, агрегат служит дольше, уход и техобслуживание проще.

Какой лучше: короткозамкнутый ротор или фазный

Тем не менее стоит более подробно ознакомиться с достоинствами и недостатками обоих типов асинхронных двигателей. Итак, достоинства короткозамкнутого асинхронного двигателя:

  • Простая конструкция.
  • Лёгкое обслуживание.
  • Более высокий КПД.
  • Нет искрообразования.
  • Малый пусковой крутящий момент.
  • Высокий пусковой ток (в 4-7 раз выше номинального).
  • Нет возможности регулировать скорость.

Магнитное поле трехфазного статора толкает ротор

Из-за высокого пускового тока прямое включение допускается для двигателей мощностью до 200 кВт. Более мощные требуют пускорегулирующей аппаратуры. Обычно используют частотный преобразователь, который плавно увеличивает ток, обеспечивая плавный старт без перегрузок.

Преимущество асинхронного фазного двигателя:

  • Быстрый и беспроблемный старт.
  • Позволяет менять скорость в процессе работы.
  • Прямое подключение возможно, практически без ограничения мощности.

Недостатки тоже есть: наличие щёток, возможность искрения, сложное и частое обслуживание.

Как регулируется частота вращения

Как уже писали, частота вращения ротора зависит от количества полюсов статора. Чем больше количество полюсов, тем меньше скорость. Но это не только так можно регулировать скорость вращения. Она еще зависит от напряжения и частоты питания.

Способы регулирования частоты асинхронного двигателя

Напряжение можно регулировать, установив потенциометр на входе. Частоту регулируют поставив частотный преобразователь. Частотник — более выгодное решение, так как он ещё и снижает стартовые токи и может быть программируемым.

Остов — ротор

Спицевый остов ротора с шихтованным сегментным ободом.  

ГАЗ 31 029 JZ параход Бортжурнал Чистка клапана ХХ

Остовы роторов, диаметры которых превышают 4 5 Ч — 5 м, выполняют по условиям их перевозки по железной дороге спицевыми, разъемными.  

Остов ротора откован заодно с валом, полюсы массивные. Схема воздушного охлаждения ( вентиляции) замкнутая, двусторонняя симметричная, радиальная. Циркуляция воздуха осуществляется за счет напора, создаваемого вентиляторами пропеллерного типа и выступающими полюсами ротора. Охлажденный воздух входит в машину с двух сторон по торцам снизу. Подход воздуха к вентиляторам организуют диффузоры воронкообразной формы. Пропеллерными вентиляторами одна часть потока воздуха направляется к центру машины с двух сторон вдоль оси вала между полюсами и в воздушный зазор. Этот поток охлаждает полюсы и затем направляется в радиальные каналы сердечника статора, где отводит тепло, выделяющееся в сердечнике и обмотке статора. Другая часть потока воздуха проходит через лобовые части обмотки и охлаждает их.  

Ротор электродвигателя СДСЗ-4500-1500.  

Остов ротора — стальной, откованный заодно с валом. На остове ротора при помощи Т — образных хвостов и клиньев крепятся полюса. Сердечники полюсов изготовлены из стальных поковок посредством механической обработки.  

Схема независимого возбуждения.  

Остов ротора — барабанного типа, цельносварной, состоит из втулки дисков обода и ребер жесткости. Полюсы ротора, изготовленные из листов электротехнической стали толщиной 1 мм, стягивают массивными щеками и шпильками. Полюсы крепят к ободу с помощью болтов. Изоляцию полюсов осуществляют с помощью стеклоткани на эпоксидных связующих.  

Остов ротора передает на вал крутящий момент генератора, вызывающий деформации остова в горизонтальной плоскости. Кроме того, от действия сил веса в остове возникают деформации в вертикальной плоскости, а от действия центробежных сил и усилий от посадки остова на вал и горячей расклиновки обода — в радиальных направлениях.  

Остов ротора 3 явнополюсных синхронных машин может быть шихтованным или сварным.  

Остов ротора образует насаживаемая на вал стальная втулка, к кольцевым фланцам которой прикреплены диски из толстолистовой стали. К дискам конусными шпильками прикреплены сварные спицы. Обод ротора собран из стальных штампованных сегментов, стянутых шпильками, и в горячем состоянии насажен на остов.  

Остовы роторов, если они существуют, а не сам вал является одновременно остовом, — могут составлять одно целое с магнитными сердечниками роторов ( точнее, с ярмами магнитных сердечников, так как зубцы в неявнополюсных конструкциях и сердечники полюсов в яв-нополюсных механической нагрузки не несут) или являться для магнитных сердечников поддерживающей конструкцией. В первом случае они выполняются из цельных дисков, насаживаемых непосредственно на вал или на промежуточную втулку.  

Дисковый остов-обод со ступенчатой обработкой стяжных шпилек.  

Остовы роторов, диаметры которых превышают 4 5 ч — 5 м, выполняют по условиям их перевозки по железной дороге спицевыми, разъемными.  

Остов ротора компенсатора выполнен полым из поковки с приставными валами, соединенными с остовом путем горячей посадки и фланцевым креплением. Во фланцах валов имеются окна для входа охлаждающего газа внутрь остова. В остове выполнены радиальные отверстия, через которые газ поступает к катушкам полюсов.  

Схема НВО ротора синхронного компенсатора — 345 MB-А.  

Однофазный асинхронный двигатель

Выше рассматривался трехфазный асинхронный двигатель, в однофазном асинхронном двигателе их две. Одна рабочая, вторая вспомогательная. Вспомогательная нужна для того, чтобы придать первоначальное вращение ротору. Потому может называться ещё пусковой или стартовой.

Однофазный асинхронный двигатель имеет две обмотки: рабочую и вспомогательную (стартовую или пусковую)

Когда в статоре включена одна обмотка, она создаёт два равных магнитных поля, вращающихся в разные стороны. Если ввести в это поле ротор, который уже имеет какое-то начальное вращение, магнитное поле будет поддерживать это вращение. Но как запустить ротор на старте? Как придать ему вращение, ведь от одной обмотки возникают два равноценных магнитных поля, направленные в разные стороны. Так что с их помощью заставить вращаться ротор невозможно. В простейшем варианте вращение задаётся вручную — механически. Затем вращение подхватывает поле.

Чтобы автоматизировать запуск однофазного асинхронного двигателя и сделана вспомогательная обмотка. Она сконструирована так, что подавляет одну из составляющих магнитного поля основной обмотки и усиливает вторую. Соответственно, одна из составляющих перевешивает, задавая вращение ротора. Затем стартовая обмотка отключается, вращение поддерживает основная.

Широкое распространение асинхронного электродвигателя (АД) вызвано его надежностью и простотой конструкции. Статор такого двигателя стандартный, представляет собой изготовленный из пластин электростатической стали полый цилиндр с трехфазной обмоткой. Ротор же может быть короткозамкнутым и фазным. Последний вариант получил более широкое распространение по ряду причин, хотя его конструкция намного сложнее, чем у короткозамкнутого ротора.

Математическое определение

Ротор векторного поля — есть вектор, проекция которого на каждое направлениеn

есть предел отношения циркуляции векторного поля по контуру L

, являющемуся краем плоской площадки Δ
S
, перпендикулярной этому направлению, к величине этой площадки, когда размеры площадки стремятся к нулю, а сама площадка стягивается в точку:

Направление обхода контура выбирается так, чтобы, если смотреть в направлении , контур L

обходился по часовой стрелке[4].

В трёхмерной декартовой системе координат ротор (в соответствии с определением выше) вычисляется следующим образом (здесь F

— обозначено некое векторное поле с декартовыми компонентами , а — орты декартовых координат):

(что можно считать альтернативным определением, по сути совпадающим с определением в начале параграфа, по крайней мере при условии дифференцируемости компонент поля).

Для удобства можно формально представлять ротор как векторное произведение оператора набла(слева) и векторного поля:

(Последнее равенство формально представляет векторное произведение как определитель).

Источник

Конструкция фазного ротора

Фазный ротор АД конструктивно напоминает его статор. Основа ротора набирается из пластин электростатической стали, которые насаживаются на вал. Конструкция имеет продольные пазы, в которые укладываются витки катушек фазной обмотки. Количество фаз ротора строго соответствует количеству фаз статора. Для подключения обмотки ротора к цепи, на валу последнего устанавливаются 3 контактных кольца, к которым подведены концы обмотки, находящиеся в соприкосновении с токопроводящими щетками. В свою очередь щетки имеют выходы в коробку корпуса, что позволят подключать внешнее дополнительное сопротивление.

В зависимости от напряжения сети, фазы обмотки соединяются “треугольником” или “звездой”. Оси катушек двухполюсного электродвигателя смещены на 120 градусов относительно друг друга.

Контактные кольца изготавливаются из латуни или стали. На вал они посажены с обязательной изоляцией между собой. Щетки расположены на щеткодержатле, изготовлены из металлографита, к кольцам прижимаются посредством пружин.

Значение слова «ротор»

Ротор — то же, что вихрь векторного поля, то есть вектор, характеризующий вращательное движение в данной точке векторного поля.

Ротор многогранника — выпуклое тело способное свободно вращаться в многограннике постоянно касаясь всех его граней; см. тело постоянной ширины и фигура постоянной ширины.

Синдром Ротора — одна из четырёх форм синдрома гипербилирубинемии.

Ротор — вращающаяся часть двигателей и рабочих машин, на которой расположены органы, получающие энергию от рабочего тела (например, ротор двигателя Ванкеля) или отдающие её рабочему телу (например, ротор роторного насоса). Ротор двигателей связан с ведущим валом, ротор рабочих машин — с приводным валом. Ротор выполняется в виде барабанов, дисков, колёс.

Ротор — вращающаяся часть паровой турбины, компрессора, гидронасоса, гидромотора и т. д.

Буровой ротор — механизм, являющийся многофункциональным оборудованием буровой установки, который предназначен для вращения бурильных труб и поддержания колонны бурильных или обсадных труб при свинчивании и развинчивании в процессе спуско-подъемных операций, при поисковом бурении и капитальном ремонте скважин. Привод — цепной или карданный. Роторное бурение.

Ротор — устройство управления поворотом антенны в направлении приёма или передачи сигнала.

Ротор — любое вращающееся тело в теории балансировки.

Ротор — система вентилятора.

Ротор — вращающаяся часть электрической машины (генератора или двигателя переменного тока внутри неподвижной части — статора). Ротор асинхронной электромашины обычно представляет собой собранное из листовой электротехнической стали цилиндрическое тело с пазами для размещения обмотки. Ротор в электромашинах постоянного тока называется якорем.

Ротор — автоматически управляемая машина (транспортное устройство, прибор), в которой заготовки двигаются вместе с обрабатывающими их орудиями по дугам окружности. Роторная печь. Роторный экскаватор. Роторная линия (комплекс роторов).

Ротор — несущий винт вертолёта.

Ротор Дарье — составная часть вертикально-осевого ветрогенератора, крыльчатка которого представляет собой двояковыпуклые лопасти, закреплённые при помощи штанг на вертикально вращающейся оси.

Ротор Савониуса — составная часть вертикально-осевого ветрогенератора в виде двух смещенных относительно друг друга полуцилиндрических лопастей и небольшого (10—15 % от диаметра лопасти) перекрытия, которые образуют параллельно оси вращения ротора.

Ротор Флеттнера — «парусная мачта» или заменяющий паруса ротор (на судне их устанавливается несколько), с помощью которого судно приводится в движение посредством ветра, благодаря эффекту Магнуса. Роторное судно Флеттнера.

Ротор, Артуро (1907—1988) — филиппинский врач, государственный служащий, музыкант и писатель.

РОТОР — Сетевой конкурс «Российский Онлайн ТОР».

НПО «Ротор» — предприятие — разработчик и производитель гироскопических приборов для ракетно-космической техники (СССР, Россия).

Приборостроительный — промышленное предприятие в Барнауле.

«Ротор» — футбольный клуб из Волгограда.

«Ротор-Волгоград» — пляжный футбольный клуб из Волгограда.

«Ротор» — тренировочная база в Волгограде.

«Ротор» — официальный журнал волгоградского футбольного клуба.

Зачем нужно добавочное сопротивление?

Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.

Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.

Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.

Восстановление маркировки обмоток

Если точнее, маркировка обмоток нужна только для определения направления намотки катушек обмотки. Конец и начало обмотки обозначают только с этой целью. Дело в том, что при включении обмотки в работу в ней начинают возникать вихревые токи, которые движутся по направлению «от начала к концу». Если обмотки включить по принципу «начало с началом, конец с концом», то токи суммируются, обмотки превратятся в один большой резистор и возникнет огромный суммарный ток. Двигатель начнет сильно гудеть и не будет вращаться. Очень быстро начнут нагреваться обмотки, и двигатель сгорит. Причем, вполне возможно, вспыхнет настоящее пламя оранжево-синего цвета с очень вредным и неприятным запахом.

Существует способ определения концов и начал обмоток.

Весь этот процесс очень хорошо показан на видео. Автор этого видео использовал для проверки сетевое напряжения в 220 Вольт, что я крайне не рекомендую делать. Используйте понижающие трансформаторы, либо автотрансформатор.

Отличие короткозамкнутого ротора от фазного

В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название – “беличья клетка”.

Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.

Читать также: Расположение точечных светильников в гостиной

Технические требования к механической обработке роторов

Основными техническими требованиями к процессу механической обработки валов и роторов, обычно указанных в чертежах турбины, являются следующие: а) большинство основных размеров цельнокованых роторов должны выполнятся по 2 – му классу точности, а отдельные из них (например, размеры мест под посадку дисков) – по 1 — му классу; размеры мест под посадку лопаток должны выполняться по 3 — му классу; б) чистота обработки поверхности опорных шеек должна соответствовать 9 – му классу; участков под насадку дисков и других деталей — 7 — му классу; резьб и неответственных фасок – 5 – му классу; остальных участков – 6 – му классу; в) овальность, конусность и не концентричность участков под насадку рабочих ко-лёс и других деталей обычно не должны превышать 0,02 мм. ; опорных шеек – не более 0,015мм г) смещение центрального отверстия относительно опорных шеек обычно допуска-ется не более 0,3мм.;

д) радиальное биение не должно превышать: 0,02мм. – для опорных шеек роторов и валов паровых и газовых турбин; 0,05мм. – для роторов осевых компрессоров; 0,02мм.на длине 800 мм. от места посадки диска – для консольных роторов; е) допустимое торцевое биение по упорному диску, выточенному за одно целое, и фланцу жёсткой муфты по присоединительной стороне должно быть не более 0,015 – 0,02 мм. ; по ободу дисков цельнокованого ротора – 0,05 м. ; по всем уступам вала с насадными дисками – 0,01 – 0,03 мм. ж) перекос шпоночных пазов относительно оси ротора допускается не более 0,015 мм. на каждые 100 мм. длины; перекос боковых граней паза – не более 0,03мм. При двух или трёх шпоночных пазах несимметричность расположения пазов относительно оси вала не должна превышать 0,05 мм.

Преимущества и недостатки электродвигателя с фазным ротором

Широкое распространение АД с фазным ротором получил за счет ряда серьезных преимуществ перед другими машинами подобного рода. Среди них следует отметить большой вращающий момент при запуске, а также относительно постоянную скорость вращения даже при высоких нагрузках. Такие электродвигатели для запуска требуют меньший пусковой ток, а конструкция позволяет использовать автоматические пусковые устройства. Кроме того, эти электрические машины хорошо переносят продолжительные перегрузки.

Как и любой электрический механизм, электродвигатели с фазным ротором имеют ряд недостатков:

  • Чувствительность к перепадам напряжения;
  • Большие габаритные размеры
  • Высокая стоимость;;
  • Более сложная конструкция за счет цепи ротора с добавочным сопротивлением;
  • Меньшие показатели коэффициента мощности и КПД (относительно АД с короткозамкнутым ротором).

Ротор — тип

Конструкция двухфазного индукционного двигателя с тонкостенным ротором.  

Ротор типа беличье колесо состоит из магнитопроводящего цилиндра ( набранного из изолированных стальных листов для уменьшения потерь), в продольные пазы которого заложены отдельные проводники из меди или алюминия, замыкаемые с торцов двумя токопроводящими кольцами. Принцип действия и основные характеристики у обоих типов машин одинаковы.  

Ротор типа ротора турбогенератора состоит из трех частей: средняя утолщенная часть ( бочка) длиной 2 / 2 2 ( 1 — е / и два крайних участка меньшего диаметра ( хвостовины) длиной l e l каждый. Конструкция ротора симметрична относительно среднего поперечного сечения, следовательно, можно рассматривать только половину ротора, состоящую из свободных от нагрузки и нагруженных участков. Сосредоточенная нагрузка располагается на границах участков и учитывается в условиях сопряжения этих участков.  

Все роторы типа SRM, профиль 5 7, относительный объем Vt меняется иепрерьюно.  

У ротора огтеобразного типа имеется возможность применить параллельное включение магнитов.  

Обмотка ротора АД типа ВАКЗ выполнена двухслойной волновой и уложена в полузакрытый паз. Лобовые части обмотки ротора бандажируют с помощью немагнитной стальной проволоки.  

Установка имеет ротор откидного типа.  

Моменты и частоты вращения двигателей.| Схемы включения двигателей.| Габаритные и установочные размеры двигателей ДКИР-ТВ, ДКИР-АТВ.  

Двигатели имеют кброткозамкнутый ротор типа беличьей клетки с редуктором.  

Однако у роторов типа беличья клетка допустимое по механической прочности отношение длины к диаметру больше, чем у тонкостенных полых немагнитных роторов, консольно закрепленных на валу. Значит, при неизменной поверхности, необходимой для проведения основного магнитного потока, диаметр ротора типа беличья клетка и его момент инерции могут быть уменьшены за счет увеличения длины.  

Короткозамкнутая обмотка ротора типа беличьей клетки весьма эффективно демпфирует эти магнитные поля в случае неподвижного эксцентриситета и очень слабо в случае вращающегося эксцентриситета. Эффективность демпфирования, однако, снижается с увеличением числа пар полюсов основного поля.  

При ремонте роторов типа беличье колесо, залитых медью, трещины в кольцах заваривают, а поврежденные стержни заменяют новыми. Стержни соединяют с короткозамыкающими кольцами пайкой или заваркой угольными электродами.  

Механическое использование ротора когтеобраз-ного типа значительно выше, чем ротора в виде звездочки. Окружная скорость ротора когтеобразного типа может быть доведена до 100 м / сек.  

Двигатель с ротором типа беличья клетка.  

ИД и с ротором типа беличья клетка — ДК.  

Область применения электродвигателей с фазным ротором

Ад с фазным ротором, за счет высокого крутящего момента, низких пусковых токов и способности долговременно работать при повышенных нагрузках, используются там, где необходима большая мощность электродвигателя, но нет необходимости плавно регулировать скорость вращения в широких диапазонах. Кроме того, эти машины отлично приспособлены под пуск с нагрузкой на валу.

За счет высокой производительности, наиболее часто АД с фазным ротором используются на различном серьезном, тяжелом силовом оборудовании, например, подъемных кранах, лифтовых приводах, станках, различных подъемниках. Иными словами, эти двигатели используются там, где есть необходимость запуска под нагрузкой, а не на холостом ходу.

Проверка электродвигателя с фазным ротором

Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.

Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.

О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:

  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата

Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

Асинхронный двигатель представляет собой мотор переменного тока, скорость вращения которого не равна частоте напряжения в обмотках статора. Эти электродвигатели получили широкое распространение, потому что являются достаточно выносливыми. Асинхронный однофазный, трехфазный моторы могут работать при значительной нагрузке продолжительное время, не перегреваясь, держать свой крутящий момент. Работа асинхронного двигателя проста, но при этом его характеристики напрямую зависят от параметров обмоток и технологии их укладки.

Корпус — ротор

Корпус ротора — стальной, литой; в пазах клиньями закреплены била 6 из износостойкой стали или отбеленного К торцам ротора винтами присоединены стальные диски, верхней части корпуса шарнирно закреплены несколько отражательных плит 4, имеющих футеровку. Пространство между ротором, отражательной плитой и боковыми футеровочными плитами образует камеру дробления. Каждая отражательная плита имеет узел 5 регулировки ширины выходной щели — наименьшего расстояния между окружностью ротора и ближайшей к нему точкой на нижней кромке плиты.  

Шлюзовой питатель конструкции ЦНИИХПа.  

Корпус ротора также литой. Он имеет в верхней части воронку 3, через которую поступает транспортируемый материал, а в нижней части — канал / / для подвода сжатого воздуха. Канал отделен от полости корпуса перегородкой 10, в которой имеются наклонные отверстия 9, расположенные под углом 45 к оси питателя.  

Корпус ротора представляет собой последовательно соединенные концентрические-круговые цилиндрические оболочки постоянной и переменной толщин. Между собой цилиндры сопрягаются коническими переходами или непосредственно соединяются друг с другом, образуя ступенчатое изменение толщины с различными радиусами перехода. Конструктивные формы и размеры окон и отверстий под соплодержатели в сепараторостроении весьма разнообразны. Некоторые из применяемых форм показаны на рис. 6.3. Внизу корпус барабана заканчивается днищем, вверху — фланцем.  

Схема смесительно-отстойного.  

Корпус ротора состоит из внутренней и наружной концентрических обечаек 6 и 7, закрытых с торцов боковыми стенками. Внутри ротора находится пакет концентрических цилиндров 8, расположенный с зазором относительно боковых стенок корпуса; цилиндры закреплены в двух боковых дисках. Цилиндры имеют отверстия круглые плоские либо в виде коротких сопел, либо прямоугольной формы с отбортовкой, от чего существенно зависит эффективность разделения фаз. Отверстия в смежных цилиндрах расположены взаимно противоположными группами, что позволяет удлинить путь и увеличить продолжительность контакта жидкостей.  

Безнапорный центробежный экстрактор.  

Корпус ротора состоит из внутренней б и наружной / концентрических обечаек, закрытых с торцов боковыми стенками. Внутри ротора находится пакет 8 перфорированных концентрических цилиндров. От формы перфораций существенно зависит эффективность массообмена.  

Корпус ротора — стальной, литой; в пазах клиньями закреплены била 6 из износостойкой стали или отбеленного чугуна. К торцам ротора винтами присоединены стальные диски.  

Схема смесительно-отстойного.  

Корпус ротора состоит из внутренней и наружной концентрических обечаек 6 и 7, закрытых с торцов боковыми стенками. Внутри ротора находится пакет концентрических цилиндров 8, расположенный с зазором относительно боковых стенок корпуса; цилиндры закреплены в двух боковых дисках. Цилиндры имеют отверстия круглые плоские либо в виде коротких сопел, либо прямоугольной формы с отбортовкой, от чего существенно зависит эффективность разделения фаз. Отверстия в смежных цилиндрах расположены взаимно противоположными группами, что позволяет удлинить путь и увеличить продолжительность контакта жидкостей.  

Корпус ротора в этом случае упрощается, так как в его составе остается лишь вал с большим коническим основанием блока цилиндров, зубчатым венцом и плоским распределителем и нижний конический диск с пазами для закрепления блока рабочего органа. Такая конструкция пригодна и для двухсторонних конических роторов, блочный рабочий орган которых будет содержать еще один элемент — направляющую для второго осевого ползуна.  

Корпус ротора состоит из внутренней и наружной концентрических обечаек 6 и 7, закрытых с торцов боковыми стенками.  

Корпус ротора — стальной, литой; в пазах клиньями закреплены била 6 из износостойкой стали или отбеленного чугуна. К торцам ротора винтами присоединены стальные диски.  

Корпуса роторов МБ изготовляют из диамагнитных материалов — алюминиевых сплавов АК-4, АК-6, Д16, содержащих добавки меди, магния, никеля, железа, кремния. Эти сплавы хорошо обрабатываются, имеют малый коэффициент линейного расширения, пластичны в горячем состоянии. Заготовки корпусов в мелкосерийном производстве получают ковкой. В серийном производстве в зависимости от размеров ротора для этой цели используют горячую штамповку. Заготовки термически обрабатывают закалкой ( 490 — 520 С), искусственным ( 150 — 165 С) или естественным старением. Затем их контролируют на ультразвуковом дифрактометре на отсутствие внутренних дефектов.  

Область применения

Асинхронный двигатель получил широкое распространение в качестве тягового, второстепенного и прочих видов силовых компонентов. Учитывая особенности его конструкции, отсутствие скользящих контактов, эксплуатация такого мотора намного проще. Также, схема подключения не требует сложных устройств управления, если говорить о простом режиме работы с постоянной частотой. Плюс ко всему и срок службы до сервисного обслуживания намного дольше, так как внутреннее пространство и обмотки не загрязняются графитом.

Применяется асинхронный электродвигатель во многих сферах:

  • Системы вентиляции – благодаря выносливости и неприхотливости при эксплуатации моторы с короткозамкнутыми роторами достаточно часто используются в качестве вентиляторов. Они хорошо переживают продолжительную работу на максимальных оборотах, обеспечивая пользователей или технологическое оборудование интенсивным воздушным потоком.
  • Конвейеры – благодаря высокому моменту, способности его поддерживать при нагрузках моторы асинхронного типа стали идеальным вариантом для реализации управления подвижными производственными линиями.
  • Следящие системы и приводные устройства – особо часто применяют асинхронные двигатели в приводных системах на технологическом оборудовании. Но для организации управления таким типом двигателя потребуется особая схема подключения и частотный блок управления, а ротор асинхронного двигателя оснащается неодимовыми магнитами. Такие моторы рассчитаны на работы с частотой до 400 Гц.
  • Бытовая сфера. Из такого мотора можно сделать различные рабочие агрегаты бытового назначения или для небольшой мастерской: вентилятор, управляемые заслонки, циркулярная пила, фуганок, прочее оборудование.

Разновидности моторов

От типа питающей сети асинхронные электродвигатели подразделяются на:

  1. Трехфазные. Обмотки асинхронных двигателей такого типа состоят из 3 катушек, специальным образом уложенных в пазах статора. Они предназначены для работы в промышленности, так как имеют высокий КПД и cosφ приближенный к 1, а для обеспечения дополнительной экономии работают с системой рекуперации энергии при торможении, выступая генератором.
  2. Однофазный асинхронный двигатель. Применяется в быту и промышленности: старые стиральные машины, бытовые вентиляторы, холодильное и прочие виды оборудования. Имеют меньший КПД, мощность, по сравнению с трехфазными, что объясняется потерями в статоре из-за отсутствия дополнительной фазы.

Вид станков

Зачистка ротора выполняется путём фрезерования на горизонтальном сверлильно – фрезерном станке. Центровку ротора выполняют на горизонтальном сверлильно – фрезерно – расточном станке. Обдирку поковок барабанных роторов крупных разме-ров производят на токарно – центровых станках большой мощности, с двумя или тремя суппортами для одновременной работы несколькими резцами. Сверление и растачивание производят на специальных горизонтально – сверлильных станках для глубокого сверления или на крупных токарных станках, снабжённых специальными приспособлениями. В барабанных роторах просверливают уширенные отверстия так называемой бутылочной формы. Такие отверстия растачиваются с помощью специ-альных борштанг. Крепление резцов в борштанге силой резания. Для этого резцы устанавливаются в конических пазах. Глубина расточки выдерживается по упорам или заметкам на борштанге. Установка для теплового испытания состоит из специа-лизированного станка и электропечи. Можно применять также специально приспо-собленный токарно – центровой станок.

Устройство асинхронного двигателя

Устройство асинхронного двигателя является достаточно простым:

  • Статор – является неподвижной частью электрического двигателя, который снабжен обмотками возбуждения.
  • Ротор – вращающийся элемент мотора, который крутится под действием магнитного поля, создаваемым обмотками возбуждения, расположенными на статоре. Различают 2 типа двигателя от конструкции ротора: короткозамкнутые и фазные.
  • Фланцы – статическая часть электрического двигателя, в которой находятся опорные подшипники, удерживающие ротор и являющиеся своего рода крепежом для статора. Он зажимается между двумя фланцами-крышками стяжными болтами. Либо они прикручены к корпусу статора.
  • Клеммная коробка – часть статической конструкции двигателя, в которую выводятся концы обмоток со статора. Посредством его осуществляется подключение двигателя к схеме управления.
  • Крыльчатка и защитный кожух – используется для обеспечения принудительной вентиляции, а кожух предохранит обслуживающий персонал от травматизма.
  • Дополнительные сервисные обмотки – при необходимости совместно с обмоткой возбуждения на статоре может быть дополнительная, предназначенная для контроля и измерения рабочих параметров мотора во время его работы.
  • Термодатчики – промышленные асинхронные двигателя, кроме обмоток, также имеются датчики температуры, контролирующие перегрев на случай резкого возрастания тока потребления.

Читать также: Как сделать флюс для пайки алюминия

Также двигателя могут быть оборудованными планарными редукторами и изготовленными в едином корпусе. Это преимущественно промышленные типы агрегатов, применяемые на станках, конвейерах и прочих видах оборудования.

Определение

С точки зрения электротехники, классический ротор – это вращающееся цилиндрическое тело, имеющее следующее строение:

  • Вал из прочной инструментальной стали с как минимум двумя подшипниками, расположенными по одному в передней и задней частях;
  • Сердечники из толстых металлических пластин;
  • Намотанные на собранные из пластин сердечники катушки;
  • Коллектор или пара специальных токопроводящих колец.

Для принудительного воздушного охлаждения вращающейся очень часто с большой скоростью детали служит расположенная в одном из его торцов крыльчатка. В генераторах вращение ротору передается от турбины, соединенной с ним через общий вал, или от работающего двигателя при помощи шкива, на который одет гибкий и прочный ремень (клинно-ременная передача).

Особенности устройства каждого из элементов

Статор асинхронного электродвигателя представляет собой цилиндр, изготовленный из листов специальной электротехнической стали толщиной до 0.5 мм, покрытых лаком. Этот цилиндр является сердечником, с внутренней стороны имеются пазы, куда укладываются обмотки. В трехфазных, соответственно, сдвинутые на 120 градусов, в однофазных – на 90. Обмотки могут быть уложены несколькими способами в зависимости от схемы их подключения и эксплуатационных требований. Именно от этого зависит такой показатель, как момент и мощность на валу. А при наличии количества полюсов более, чем 2 пары, то он может использоваться в следящих системах управления приводными механизмами.

Статор запрессован в корпус либо же расположен между фланцами. Корпус и боковые крышки изготовлены из чугуна или сплава алюминия. На них имеются ребра для увеличения площади и повышения эффективности отведения тепла при работе. Такое устройство позволяет лучше охлаждать двигатель, обеспечивая продолжительную работу при предельных нагрузках.

Однополюсная обмотка такого электродвигателя наматывается из 3-х катушек. Каждая из них называется фазой. Для достижения требуемых параметров работы мотора обмотка укладывается в противоположных пазах сердечника. Катушки соединяются между собой специальным образом в соответствии со схемой подключения и ожидаемых характеристик, обеспечивая возбуждение магнитного поля и необходимый момент при вращении.

Все концы датчиков выводятся в клеммную коробку, что позволяет их соединять в звезду или треугольник, что зависит от схемы подключения системы управления, величины питания. 3-фазный электродвигатель является универсальным, при необходимости его можно подключать к однофазному питанию с линейным напряжением. При соединении обмоток треугольником напряжение обмоток равно линейному Uф, а при подключении по схеме звезды – √3Uф.

Информационная табличка на двигателе (шильдик)

Полную и достоверную информацию о двигателе можно узнать, если уметь «читать» шильдик. Точнее то, что на нем написано. Начнем описание шильдика рассматриваемого двигателя сверху вниз.

  1. Название двигателя. Значок слева – эмблема завода-изготовителя, справа – знак качества СССР.
  2. Слева: тип двигателя – в этом наборе букв и цифр кодировалась технологическая информация. В кодировку могли включить данные о: количестве катушек в одной обмотке; количество витков провода в одной катушке; скольким числом проводов намотаны катушки; тип лака, примененного для пропитки и т.д. Справа: заводской номер двигателя.
  3. Слева направо: количество рабочих фаз; частота рабочего напряжения (Гц); мощность двигателя (W); cos φ – коэффициент мощности тока (параметр показывает, какое количество тока, взятого из сети, используется по назначению). Чем больше мощность, тем выше этот параметр.
  4. Число оборотов в минуту вала двигателя; характеристики статора – по каким схемам можно соединять обмотки (треугольник или звезда); величина(ы) рабочего напряжения.
  5. Ток, потребляемый двигателем, соответствующий каждой схеме соединения обмоток (в данном случае – 2,3 А при соединении «треугольником» и 1,33 А – «звездой»); коэффициент полезного действия (КПД), степень пыле- влагозащиты (IP44).
  6. ГОСТ СССР, по которому сделан двигатель; класс изоляции, режим S1. Режим S1 означает, что это постоянный режим работы. В таком режиме двигатель может оставаться включенным в работу на длительное время.
  7. Страна-производитель двигателя.

Ротор

Ротор в асинхронном электродвигателе представляет собой вал, на котором закрепляется сердечник, набранный из листов электротехнической стали. Что трехфазный, что однофазный мотор, ротор имеет практически одинаковую конструкцию. В качестве обмотки в обычных асинхронных моторах на рабочую частоту 50Гц используются куски медного или алюминиевого провода большой толщины или стержни, соединенные между собой торцевыми замыкающими кольцами.

Для того чтобы обмотка надежно удерживалась в сердечнике, имеются специальные пазы, куда она запрессована. Торцевые кольца могут быть снабжены вентиляционными лопатками, предназначенными для улучшения интенсивности охлаждения внутреннего пространства. Вал закреплен на подшипниках, впрессованных во фланцы или плитах, закрепленных к станине в зависимости от устройства.

Между валом и статором имеется зазор, величина которого зависит от пусковых параметров мотора. Если необходимо увеличить мощность и момент, то он должен быть как можно меньше. Одновременно с ростом мощности увеличиваются и добавочные потери в верхних слоях статора и ротора.

Ремонт

Ремонтные работы всего устройства выполняются с целью восстановления его функциональности и работоспособности. Иногда требуется замена некоторых деталей. Например, при нагреве статора по разным причинам, может образоваться нагар на конструкции якоря электродвигателя.

Последовательность шагов тогда следующая:


  • Электродвигатели: устройство и принцип работы

  • Применение электродвигателей

  • Подключение электродвигателя — основные схемы, способы и особенности подсоединения различных моделей (инструкция + фото)

  • демонтаж двигателя;
  • очистные работы;
  • разборка всех узлов;
  • восстановление поврежденных частей;
  • покраска;
  • сборка двигателя и проверка его в нагрузочном режиме.

Если оборудование представлено фазным типом, то требуются ремонтные работы отдельным его узлам, в том числе и щеточно-коллекторному.

Если стержень имеет трещины, то он подлежит восстановлению или замене. Делается это так: на месте трещины проводится надрез и высверливание отверстий от точки этого надреза до торца замыкающего кольца. Та часть, которая оказалась высверленной, заполняется медным сплавом.

Не стоит забывать и о проверке двигателя на обрыв и короткое замыкание. Сопротивление ротора и статора проверяются при помощи омметра, сверяясь при этом с техническими характеристиками в инструкции по эксплуатации. Однако прибор должен быть крайне чувствителен ввиду стремления сопротивления к нулю в обмотках мощных моделей моторов.

Принцип работы

Асинхронный двигатель принцип работы имеет достаточно простой. Он основан на двух физических явлениях:

  1. При подаче напряжения на статорные обмотки в двигателе возникает вращающееся магнитное поле.
  2. Поле оказывает воздействие на ток, индуцируемый в роторе. А это создает крутящий момент, поворачивающий вал двигателя относительно полюсов.

За каждый поворот вала полюса меняются полярностью с частотой сети. Поэтому напряжение обмотки статора имеет стандартную частоту, а скорость вращения зависит от:

  • нагрузки на валу;
  • количества пар полюсов;
  • особенностей намотки статора.

1.Описание назначения и конструкции предложенной детали

Вал – основная и наиболее нагруженная деталь ротора. На вал ротора турбины действуют крутящий момент, соответствующий передаваемой турбиной мощности; изгибающий момент от собственного веса и веса, насаженных на него деталей; силы неуравновешенного давления пара вдоль оси. Тяжёлые условия работы валов и большая ответственность их с точки зрения обес-печения надёжности работы всей турбины требуют особо тщательного подхода к выбору материалов, способов изготовления заготовок и последующей механической обработки, а также методики и средств контроля качества обрабатываемых валов на всех этапах технологического процесса.

Маркировка электродвигателя

Для упрощения процесса подключения и выбора схемы асинхронного 3-фазного ЭД на каждом из них имеется соответствующая маркировка. В ней указываются такие характеристики, как:

  • крутящий момент;
  • мощность;
  • максимальная скорость вращения;
  • cosφ.

Также в зашифрованной маркировке имеется указание типа двигателя, количества полюсов. Их необходимо учитывать при выборе мотора для тех или для других нужд. А для облегчения процесса подключения все концы сводятся в клеммную коробку, где подписаны следующим образом:

Если мотор подключается к сети 380 В с линейным напряжением обмоток 220В, то его схема обмоток должна быть треугольником. Но если двигатель подключается к стандартной сети 380В, то схема включения обмоток должна быть звездой.

Скольжение

При рассмотрении принципа работы асинхронного электрического двигателя применяют такое понятие, как скольжение, и обозначается параметр буквой «s». Оно возникает из-за разницы в скоростях вращения магнитного поля статора и реальной частоты вращения ротора. При этом первый показатель на порядок больше. Следовательно, чем выше разница, тем сильнее скольжение.

Скольжение позволяет объяснить принцип работы. За счет отставания частоты вращения ротора от магнитного поля статора и обеспечивается наведение ЭДС в короткозамкнутом роторе. Но если бы поле вращалось со скоростью частоты ЭДС в роторе, то собственно вращения не происходило.

Скольжение, являясь относительной величиной, измеряется в %. И становится больше при увеличении нагрузки на валу двигателя.

Ротор — центробежный насос

Ротор центробежного насоса является одной из самых сложных и ответственных сборочных единиц и во многом определяет надежность насоса в целом.  

Роторы центробежных насосов, судовые винты, роторы водяных турбин обладают под влиянием вращающейся с ними совместно воды большим моментом инерции, чем это соответствует их массе.  

Ротор центробежного насоса является одной из самых сложных и ответственных сборочных единиц и во многом определяет надежность насоса в целом.  

Ротор центробежного насоса ( рис. 7.18 в) состоит из вала 3, комплекта рабочих колес 4, деталей разгрузки осевого усилия 5, защитных 2 и водоотбойных ( маслоотбой-ных) колец 6, полумуфты / — и крепежа.  

Для роторов центробежных насосов установлено три класса точности уравновешивания: нулевой, первый и второй.  

Перед пуском ротор центробежного насоса необходимо несколько раз провернуть от руки, чтобы убедиться, что вал насоса вращается свободно; плотно закрыть напорную задвижку и залить насос перекачиваемой жидкостью. Способы заливки насосов перекачиваемой жидкостью могут быть различными.  

Во время работы ротор центробежного насоса испытывает значительное осевое усилие, направленное в сторону всасывающей части. Величина D2 — D3 всегда больше D2 — Dlt поэтому сила Р2 всегда больше Р1 и результирующая сил Р2 и Р1 направлена в сторону всасывающей части колеса.  

Система осевой разгрузки ротора центробежного насоса является системой автоматического регулирования и должна удовлетворять условиям динамической устойчивости.  

Ые Пяты, гайки ротора центробежных насосов; регулировочные штуцера глубиннонасосных установок и фонтанной арматуры; зубья, опорные катки и откосы роторных траншейных экскаваторов и другие детали.  

Таким образом, для ротора центробежного насоса, например, весом 30 6 кгс п диаметром колеса 0 3 м величина остаточного дисбаланса, расположенного на наружной его окружности, пе должна превышать 1 5 — 2 гс.  

Для чего производят балансировку ротора центробежного насоса.  

Из каких основных деталей состоит ротор центробежного насоса.  

В настоящее время для динамической балансировки роторов центробежных насосов все шире применяют электрические и электромагнитные балансировочные станки, на которых величины и координаты дисбаланса определяют при помощи соответствующих электрических устройств.  

Устройство для повышения точности динамической балансировки рабочего колеса и ротора насоса.  

Точность динамической балансировки рабочих колес и роторов центробежных насосов можно повысить при помощи устройства, показанного на рис. 2.63. На входе и выходе рабочего колеса 2 установлены заглушки 1, выполненные из прозрачного материала. В канале 5, сообщенном с плотностью рабочего колеса 2, установлена эластичная мембрана 4, отделяющая полости ротора 3 и колеса 2 от атмосферы.  

Двигателя с фазным ротором

Когда речь идет о моторах с фазным ротором, то он имеет немного иное устройство. Также имеется 3 обмотки, которые соединены в звезду, а их начала выведены на подводящие кольца. Сравнивая два типа двигателя с короткозамкнутым и фазным роторами, то у второго развивается момент сразу же под высокой нагрузкой. Такие моторы получили применение в системах, где требуется сделать мощный приводной агрегат с высокой тягой. Также такие моторы являются более удобными для регулируемого управления посредством регулятора частоты.

2.Применяемые материалы

Валы роторов изготовляют из поковок. Поковки для валов, работающих при тем-пературе металла не свыше 4500 С, изготовляют из углеродистых и легированных сталей шести категорий (по прочности). Рекомендуемые марки стали согласно от-раслевым техническим условиям (ОТУ 24-10-004-68 ) указанны в табл. 1. Таблица 1.

Механические свойства поковок валов и цельнокованых роторов

Кате горияМеханические свойства продольных образцовРекомендуемые стали для работы при температурах 4000-4500 С
в Н/мм2в кгс/мм2
I5205235, 40
II5805834ХМ1А
III6506535ХМ, 34ХН1М, 34ХМ1А
IV7207234ХМ1А
V8208234ХН1М, 34ХН3М
VI8708734ХН1М, 34ХН3М

В паровых и газовых турбинах для цельнокованых роторов, работающих при тем-пературах свыше 5000 С, где требуется высокий уровень жаропрочных свойств мате-риала, применяют молибденсодержащие стали, например хромомолибденовые, хро-момолибденованадиевые, хромомолибденовольфрамованадиеые. При температурах свыше 7000 С применяют сплавы на никелевой основе, а также на кобальтовой, мо-либденовой и смешанных основах. Некоторые из марок сталей, наиболее широко применяемых для деталей роторов, работающих при температурах выше 5000 С, при-ведены в табл. 2.

Таблица 2.Механические свойства поковок валов паровых и газовых турбин

Марка сталиМеханические свойстваТермическая обработкаТемпература рабочей среды в 0С
в Н/мм2в кгс/мм2
Р2МА690-74069-74Двойная нормализация 9700 – 9900 С отпуск при 6800 – 7000 С535-540
20Х3МВФ80080Закалка при 10500 С в масле, отпуск при 7000 СДо 550
1Х12ВНМФ75075Закалка при 10500 С в масле, отпуск при 6800 — 7000 СДо 580
1Х16Н13М2Б58058Закалка при 11000 – 11300 С в воздухе; старение при 7500 С – 12 ч.До 600
ХН35ВТ65065Закалка при 10800 С в воде; старение при 8500 С – 10 ч. при 7000 С – 50 ч.До 650

Недостатки асинхронных электродвигателей

В стандартном исполнении без магнитов на роторе асинхронные электродвигатели являются маломощными. Они неспособны сразу обеспечить высокий крутящий момент. А также для их запуска требуется большое количество электрической мощности, которая может превышать предельно допустимые показатели системы питания. Поэтому их пуск должен выполняться без нагрузки. Кроме этого, асинхронные электродвигатели являются мощными источниками электромагнитных помех, сопровождающимися сбоями в работе различных других устройств, находящихся вблизи. Для снижения их влияния необходимо предусматривать качественное заземление и обязательное экранирование.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]