Свойства конденсатора и их влияние на его применение

Конденсаторы — это приборы, накапливающие электрическую энергию в виде зарядов. Аппараты не могут пропускать через себя постоянный ток. Будучи включёнными в цепь с переменным током, он уподобляется пружине, подвергающейся внешнему воздействию. Примечательно, что они не будет пропускать и ток, однако при его прохождении случится перезарядка накопителя, из-за чего покажется, что он проходит через обкладки. Если к ним в разряженном состоянии приложить постоянное напряжение, то по цепи пойдет ток, который снижается по мере зарядки накопителя. Когда достигается паритет значений напряжения на источнике питания и пластинах, он прекращает протекать, что приводит к разрыву.

Что такое конденсатор

Конденсаторы — это пассивные элементы, используемые при формировании разнообразных электротехнических схем, блокирующих и защитных устройств. Будучи включённым в переменную цепь накопитель аккумулирует и возвращает энергию. Если подключается переменный, то энергия возвращается в систему, при этом поддерживается периодичность, которая соответствует рабочей частоте.


Что собой представляют конденсаторы

К сведению! Когда через конденсатор протекает переменный ток, то он непрерывно оказывает ему сопротивление, величина которого обратно пропорционально зависит от частоты.

Уменьшение частоты приводит к повышению сопротивления. Когда источник, генерирующий такой ток, подключается к накопителю, то максимальное напряжение определяется силой.

Чтобы на примере убедиться в возможности проведения переменного тока, формируют простую электрическую цепь, включающую следующие компоненты:

  • переменные источники;
  • конденсатор;
  • потребитель — обычно это лампочка.


Цепь с конденсатором
Будучи включённым в переменную конденсатор время от времени перезаряжается, приобретая и отдавая заряды. Следовательно, происходит обмен электричеством между источником и двухполюсником, что приводит к формированию реактивной энергии.

Обратите внимание! Прибор не допускает пропускание по постоянной сети, поскольку в этом случае имеющееся сопротивление будет равно бесконечности. Если проходит переменный, то у сопротивления будет конечное значение.

СОВЕТЫ ПО ВЫБОРУ И ИСПОЛЬЗОВАНИЮ КОНДЕНСАТОРОВ

Эксплуатационная надежность конденсаторов во многом определяется правильным выбором типов конденсаторов при проектировании аппаратуры использовании их в режимах, не превышающих допустимые. Для правильного выбора конденсаторов необходимо на основе анализа требований к аппаратуре определить:

  • значения номинальных параметров и допустимые их изменения в процессе эксплуатации (емкость, напряжение, сопротивление изоляции и др.);
  • допустимые режимы и рабочие электрические нагрузки (диапазон рабочих частот, амплитуда и частота переменной составляющей напряжения, реактивная мощность, параметры импульсного режима);
  • эксплуатационные факторы (интервал рабочих температур, величины механических нагрузок и относительной влажности окружающей среды);
  • показатели надежности, долговечности и сохраняемости конденсаторов;
  • конструкцию конденсаторов, способы монтажа, габариты и массу.

В целях повышения надежности и долговечности конденсаторов во всех возможных случаях следует использовать их при менее жестких нагрузках и в облегченных режимах по сравнению с допустимыми.

Монтаж и крепление конденсаторов. Применяемые способы монтажа и крепления конденсаторов должны обеспечивать необходимую механическую прочность, надежный электрическим контакт и исключение резонансных явлений во время воздействии вибрационных нагрузок. В зависимости от конструкции крепление конденсаторов к шасси, панелям и платам аппаратуры производится за крепежные устройства (фланцы, резьбовые соединения), с помощью скоб, хомутов, заклепок или приклейкой, заливкой и пайкой за выводы. Крепежные приспособления не должны повреждать корпус и защитные покрытия конденсаторов. Устройства для крепления не должны ухудшать условий отвода теплоты от конденсаторов. Не разрешается использовать лепестковые выводы конденсаторов для припайки к ним других деталей.

Крепления вакуумных конденсаторов, являющиеся одновременно контактными устройствами, должны выполняться из материалов с высокой теплопроводностью и обеспечивать хороший тепловой и электрический контакт с выводами конденсаторов. Поверхности креплений, сопрягаемые с выводами конденсаторов, должны быть посеребрены. Крепить конденсаторы при установке в аппаратуру следует без перекосов, так как наличие последних создает механические напряжения в баллоне и может привести к потере герметичности и выходу конденсатора из строя. Выводы наружных электродов конденсаторов следует подсоединять к низкопотенциальной точке устройства или заземлять. У конденсаторов переменной емкости рекомендуется заземлять вывод подвижного электрода. При сопряжении регулировочного винта конденсатора переменной емкости с выводом привода следует обращать внимание на обеспечение соосности указанных элементов или предусматривать гибкое их соединение.

Контактирование выводов конденсаторов с другими элементами производится обычно пайкой или сваркой. Пайку следует производить бескислотными флюсами; при этом не должно происходить опасного перегрева выводных узлов конденсатора. Допускается пайка выводов на расстояниях от корпуса меньших, чем указано в нормашиной документации, при защите контактного узла от перегрева и повреждений с помощью термоэкранов и теплоотводов, а также одноразовый изгиб проволочных и лепестковых выводов конденсаторов при условии защиты контактного узла от повреждений в момент изгиба. Радиус изгиба выводов должен быть не менее полуторного диаметра проволочного вывода или полуторной толщины ленточного вывода. При монтаже неполярных конденсаторов с оксидным диэлектриком необходимо обеспечить изоляцию их корпусов от других элементов, шасси и друг от друга.

Принцип работы конденсатора

Подключение прибора к постоянному источнику приводит к тому, что в начальный момент происходит аккумуляция в обкладках из-за электростатической индукции, а сопротивление в этот момент приравнивается нулю. Электрическая индукция провоцирует поле к притяжению разноимённых зарядов на разные обкладки, расположенные друг напротив друга.

Вам это будет интересно Редактор для рисования схем

Такое свойство получило название ёмкость, которая характерна для всех типов материалов, в том числе и диэлектриков, однако в случае с проводниками она существенно больше. Именно поэтому обкладки изготавливаются из проводника. Увеличение ёмкости способствует накоплению большего количества зарядок на обкладках.

Важно! Когда аккумулируются заряды, происходят ослабление поля и наращивание двухполюсника.


Принцип работы

Происходит это из-за уменьшения места в обкладках, воздействия одноимённых зарядов друг на друга. Одновременно с этим напряжение приравнивается к источнику тока. Прекращение электричества в цепи происходит после того, когда обкладки полностью заполнятся электричеством. Из-за этого пропадает индукция и остаётся только поле, удерживающее и не пропускающее заряды.


Диэлектрик между обкладками

Электротоку будет некуда деться, а на двухполюснике напряжение приравнивается к ЭДС. Когда ЭДС повышается, поле сильнее воздействует на диэлектрик из-за отсутствия места в обкладках. Если внутреннее конденсаторное напряжение будет выше предельных значений, тогда пробьёт диэлектрик.

Конденсатор преобразуется в проводник, и происходит освобождение зарядов, из-за чего электроток начинает идти. Чтобы применять двухполюсник при высоком напряжении повышают размер диэлектрика и наращивают расстояние, имеющееся между обкладками на фоне снижения ёмкости. Диэлектрик располагается между обкладками и не даёт проходить постоянному, выполняя в отношении него барьерную функцию.


Электрическая индукция

Обратите внимание! Именно постоянное напряжение способно формировать электростатическую индукцию, но только в случае замыкания в момент зарядки конденсатора. Благодаря этому механизму сохраняется энергия до момента подсоединения к нему потребителю.

Конденсатор в цепи постоянного тока

Чтобы понять, как работает накопитель в цепи постоянного тока, надо добавить в схему лампочку, которая станет загораться только при зарядке, в процессе которой от электротока остаётся напряжение, как бы догоняющее его из-за плавного нарастания. Заряды электричества затрачивают какое-то время для перемещения к обкладкам, именно это и есть время зарядки, продолжительность которого определяется частотой и ёмкостью напряжения. Когда зарядка завершается, лампочка тухнет, и постоянный электроток перестаёт проходить через пассивный электронный компонент.

Конденсатор в цепи переменного тока

Если у источника изменить полярность, то это приведёт к разрядке конденсатора в цепи переменного тока и его повторной зарядке. Формируется постоянная электростатическая индукция при переменном. Всегда при изменении электричеством своего направления запускается механизм зарядки и разрядки, из-за чего он и пропускает переменный. Увеличение частоты приводит к снижению ёмкостного сопротивления двухполюсника.

Вам это будет интересно Особенности ветрогенератора для дома


Конденсатор в постоянной цепи

Эти загадочные конденсаторы


Эта статья — об особенностях керамических конденсаторов, которые проявляются на высоких частотах (порядка десятков, сотен мегагерц и выше). Статья основана на материалах исследований, проводимых специалистами компании Johanson Technology. Речь в основном пойдет о керамических конденсаторах, годных для применения в:

  • Высокоскоростных цифровых устройствах (фильтрация собственных и внешних помех);
  • Высокочастотных устройствах (фильтрация, ВЧ согласование, обработка ВЧ-сигнала и пр.);
  • Любых других устройствах для фильтрации внешних высокочастотных помех, которые могут поступать как через цепи питания, так и по воздуху от устройств и систем беспроводной связи, радиостанций, устройств силовой электроники и пр.

При производстве таких конденсаторов используются специальные диэлектрики, которые называются NPO
или
COG
. Эти диэлектрики известны тем, что обеспечивают слабую зависимость емкости конденсатора от температуры окружающей среды и приложенного напряжения. Чаще всего для уменьшения габаритов керамические конденсаторы выполняются в виде многослойных керамических конденсаторов —
MLCC, Multilayer Ceramic Capacitor
, структура которых показана на следующей картинке:

Одним из мировых лидеров в производстве высокочастотных керамических конденсаторов является компания Johanson Technology

, материалы которой и послужили основой для этой статьи.

Что происходит с конденсаторами при увеличении частоты?

При увеличении рабочей частоты первой «особенной» частотой, с которой сталкиваются исследователи, является частота последовательного резонанса – SRF, Series Resonant Frequency
. Как известно из курса физики, это частота, при которой реактивное сопротивление идеального конденсатора компенсируется реактивным сопротивлением последовательно включенной идеальной катушки индуктивности таким образом, что общее сопротивление цепи становится равным нулю. В случае керамического конденсатора явление последовательного резонанса объясняется наличием паразитной индуктивности выводов и обкладок конденсатора. И примечательна SRF в нашем случае следующим:

  1. На частоте последовательного резонанса (SRF) конденсатор обладает наименьшим сопротивлением, называемым эквивалентным последовательным сопротивлением – ESR, Equivalent Series Resistance
    . Этот факт позволяет вместо конденсатора получить узкополосный фильтр, который может использоваться для фильтрации помех.
  2. На частотах выше, чем SRF, конденсатор ведет себя подобно индуктивности! Поэтому иногда говорят, что на частотах выше частоты последовательного резонанса конденсатор представляет собой индуктивность, не пропускающую постоянный ток — DC blocking inductor
    .

При дальнейшем увеличении частоты можно наблюдать целый ряд частот, на которых многослойный конденсатор обладает относительно высоким сопротивлением. Такие частоты называют частотами параллельного резонанса – PRF, Parallel Resonant Frequency
. Наличие серии параллельных резонансов объясняют наличием паразитных емкостей, включенных параллельно с «DC blocking inductor».

Интересно отметить, что в общем случае, согласно экспериментальным данным, получить грубую оценку частоты первого параллельного резонанса можно, удвоив значение частоты последовательного резонанса.

Другим интересным фактом является то, что можно избавиться от всех нечетных частот параллельного резонанса, включая первую, просто расположив пластины внутренних обкладок многослойного конденсатора не параллельно поверхности печатной платы, а перпендикулярно!

Посмотрите на пример зависимости вносимого ослабления от частоты при двух вариантах расположения обкладок, который приводит Johanson:


На верхней картинке обкладки конденсатора расположены параллельно печатной плате, а на нижней – перпендикулярно.

Предполагается, что исчезновение нечетных частот PRF связано с уменьшением паразитных емкостей между обкладками керамического конденсатора и печатной платой. Но почему при этом исчезают нечетные резонансы и остаются четные? Если у вас есть какие-нибудь мысли по этому поводу – добро пожаловать в комментарии!

Так как частоты SRF и PRF керамических конденсаторов могут лежать в очень широком диапазоне, информация о них становится жизненно необходимой при проектировании электронных устройств. В своей документации Johanson Technology приводит значения этих частот, причем частота PRF соответствует частоте первого параллельного резонанса (обкладки конденсатора расположены параллельно поверхности платы).

Вот типичные значения резонансных частот для конденсаторов Johanson Technology размера 0402:

И типичные значения резонансных частот для конденсаторов Johanson Technology размера 0603:

Как видим, резонансные частоты перемещаются в область более низких частот при увеличении емкости и уменьшении размеров конденсаторов. А это приводит к сужению диапазона рабочих частот в случае, когда необходимо, чтобы этот конденсатор вел себя подобно… конденсатору!

Практические рекомендации

  • Внимательно изучайте документацию на используемые конденсаторы, чтобы исключить ситуацию, когда «правильная» схема работает неправильно.
  • Не используйте для фильтрации высокочастотных помех низкочастотные керамические конденсаторы, конденсаторы с неизвестными характеристиками (и тем более — электролитические конденсаторы).
  • Определите частотные диапазоны помех и подбирайте фильтрующие конденсаторы, исходя из этих диапазонов. Учитывайте при этом индуктивность проводников, сопоставимую с паразитной индуктивностью высокочастотных конденсаторов. Для расчета индуктивности проводника можно воспользоваться формулой: где L — индуктивность, нГн, x — длина проводника, см, w — ширина проводника, см, h — высота проводника, см.
  • Следуйте рекомендациям производителей электронных компонентов относительно правил разводки высокочастотных печатных плат.
  • Для расширения рабочего диапазона керамический конденсатор может быть установлен на бок (исключение первого параллельного резонанса).
  • В высокочастотных цепях частоты последовательного резонанса используемых конденсаторов должны быть существенно выше рабочего частотного диапазона. Для закрепления этой мысли специалисты Johanson Technology приводят пример из собственного опыта, когда при приближении рабочей частоты к частоте последовательного резонанса конденсатор емкостью 10 пФ вел себя подобно конденсатору, обладающему ёмкостью 1000 пф!
    Если в устройстве используется модуль беспроводной связи Bluetooth, Wi-Fi, GSM, GPS и пр. с внешней антенной, то обычно рекомендуется предусмотреть в антенной цепи места для установки согласующих элементов (placeholders). Это позволяет при необходимости произвести безболезненную настройку высокочастотной части плат. Для упрощения этой задачи Johanson Technology предлагает использовать специальные кассы высокочастотных компонентов, которые делают процесс согласования ВЧ цепей менее трудоемким.

Почему идет переменный ток через конденсатор

Конденсатор — это разрыв, поскольку его прокладки не касаются друг друга из-за нахождения между ними диэлектрика, не проводящего постоянный электроток. Однако будучи подключённым к постоянной цепи, он всё же может его проводить в момент подсоединения, поскольку происходит зарядка или перезарядка.

Когда завершается переходный процесс, ток перестаёт проходить через пассивный электронный компонент из-за разделения его обкладок диэлектриком. Будучи подключённым к такой цепи он проводит его колебания вследствие циклической перезарядки. Здесь прибор входит в колебательный контур и вместе с катушкой выполняет функцию накопителя энергии.

Такой симбиоз способствует преобразованию электричества в магнитную энергию или, наоборот, с равной их собственной частотной скоростью, которая рассчитывается по формуле: omega = 1 / sqrt(C × L).


Почему идёт переменный ток

Действительность такова, что конденсатор не способен пропускать через себя переменный ток. Сначала он его аккумулирует на обкладках. Возникает ситуация, в которой на одной из них имеет место переизбыток электронов, а на другой их, напротив, мало. В результате конденсатор отдаёт эти заряды, из-за чего электроны, находящиеся во внешней цепи, перемещаются в одну и в другую сторону от одной обкладки к другой.

К сведению! Результат выражается в том, что электроны перемещаются внутри внешней цепи, но не в самом пассивном компоненте. Энергия перераспределяется внутри поля между конденсаторными пластинками, что называют токами смещения, отличающимися от электротоков проводимости.

Треугольник проводимостей для конденсатора

Стороны треугольников токов, выраженные в единицах тока, разделим на напряжение U. Получим подобный треугольник проводимостей (рис. 13.16, б), катетами которого являются активная G = IG/U и емкостная Вс = Iс/U проводимости, а гипотенузой — полная проводимость цепи Y = I/U. Из треугольника проводимостей

Связь между действующими величинами напряжения и тока выражается формулами

I = UY

U = I/Y (13.35)

Из треугольников токов и проводимостей определяют величины

cosφ = IG/I = G/Y; sinφ = Ic/I = Bc/Y; tgφ = IC/IG = Bc/G. (13.36)

Формулы вычисления тока в конденсаторе

Ёмкость конденсатора, включенного в цепь переменного тока, рассчитывается по формуле: C = q / U, где:

  • С — ёмкость;
  • q — заряд одной из пластин;
  • U — напряжение внутри.


Ёмкость
Конденсаторы бывают разной формы, поэтому и их расчёт осуществляется по нескольким формулам:

  • плоский — C = E × E0 × S / d;
  • цилиндрический — С=2 π × E × E0 × l / ln(R2 / R1);
  • сферический — C = 4 π ×E × E0 × R1 × R2 / R2 — R.

Обратите внимание! Сопротивление в переменной цепи, которое может оказывать резистор, включённый в электрическую цепь, вычислить нельзя, так как она считается бесконечно большим. Однако в данном случае, это можно сделать по формуле: Хс = 1 / 2πvC = 1 / wC.

Вам это будет интересно Все о бесперебойном питании

Напряжение конденсатора в цепи переменного тока вычисляется по следующей формуле: Wp = qd E / 2.


Напряжение рассчитывается по определенной формуле

Чтобы рассчитать напряжение на конденсаторе в цепи переменного тока, необходимо воспользоваться актуальными формулами.

Векторная диаграмма токов в цепи с конденсатором

Для определения действующей величины общего тока I методом векторного сложения построим векторную диаграмму согласно уравнению

I = IG + IC

Действующие величины составляющих тока:

IG = GU (13.31)

IC = BCU (13.32)

Первым на векторной диаграмме изображается вектор напряжения U (рис. 13.16, а), его направление совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза напряжения φa =0). Вектор IG совпадает по направлению с вектором U, а вектор IC направлен перпендикулярно вектору U с положительным углом. Из векторной диаграммы видно, что вектор общего напряжения отстает от вектора общего тока на угол φ, величина которого больше нуля, но меньше 90º. Вектор I является гипотенузой прямоугольного треугольника, катеты которого — составляющие его векторы IG и IC :


При напряжении u = Umsinωt соответствии с векторной диаграммой уравнение тока

i = Imsin(ωt + φ)

Где и зачем применяются конденсаторы

Где и почему используются эти приборы, которые могут работать в радиотехнических, электронных и электротехнических устройствах? Накопители используются в электротехнике при включении асинхронных моторов для сдвига фаз, без чего двигатель в составе однофазной цепи не будет функционировать. Если ёмкость составляет несколько фарад, то их применяют в электромобилях для питания мотора.


Применение возможно в разных сферах

Правильное использование этих приборов позволит получить лучший результат. Понимание основных принципов физики упрощает эксплуатацию оборудования. Неправильное применение чревато негативными последствиями, вызванными несоблюдением техники безопасности.

Мощность цепи с конденсатором

Выражение мгновенной мощности реального конденсатора

p = ui = Umsinωt * Imsin(ωt+φ)

совпадает с выражением мгновенной мощности катушки. Рассуждения, аналогичные тем, которые сделаны при рассмотрении графика мгновенной мощности катушки (см. рис.13. 11), можно провести и для реального конденсатора на основе графика рис. 13.17. Величины активной, реактивной и полной мощностей выражаются теми же формулами, какие были получены для катушки [см. (13.19) — (13.22)]. Это нетрудно показать, если стороны треугольника токов, выраженные в единицах тока, умножить на напряжение U. В результате умножения получится подобный треугольник мощностей (рис. 13.16, в), катетами которого являются мощности; активная

P = UIG = UIcosφ

реактивная

Q = UIC = UIsinφ

полная

ЗАРЯДКА КОНДЕСАТОРА.

Считаем, что первоначально конденсатор не заряжен. В момент времени t = 0 ключ замкнули, и в цепи пошёл ток, заряжающий конденсатор. Увеличивающиеся заряды на обкладках конденсатора будут всё в большей степени препятствовать прохождению тока, постепенно уменьшая его. Запишем закон Ома для этой замкнутой цепи:

.

После разделения переменных уравнение примет вид:

Проинтегрировав это уравнение с учётом начального условия

q = 0 при t = 0 и с учётом того, что при изменении времени от 0 до t заряд изменяется от 0 до q, получим

, или после потенцирования

q = . (4)

Анализ этого выражения показывает, что заряд приближается к своему максимальному значению, равному С, асимптотически при t ® ?.

Подставляя в формулу (4) функцию I(t) = dq/dt, получим

. (5)

Из закона сохранения энергии следует, что при зарядке конденсатора для любого момента времени работа источника тока dАист рана сумме количества джоулевой теплоты dQ, выделившейся на резисторе R и изменению энергии конденсатора dW:

dAист= dQ + dW,

где dAист =Idt, dQ =I2Rdt, dW =d. Тогда для произвольного момента времени t имеем:

Аист(t)===С. (6)

Q(t)==С. (7)

W(t) ==. (8)

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]