обмен дома +на квартиру Широкий спектр услуг агентства недвижимости. Здесь можно получить помощь в прохождении юридических процедур касательно купли/продажи дома или квартиры, оценки недвижимости. Огромный опыт работы.

Отличия полевых транзисторов от биполярных. Области применения


Транзисторы: схема, принцип работы,​ чем отличаются биполярные и полевые

Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.
В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Применение транзисторов в жизни

Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:

  • Усилительные схемы.
  • Генераторы сигналов.
  • Электронные ключи.

Будет интересно➡ Что такое светодиод

Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства.

Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы. Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора. Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем.

На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.


Эволюция транзистора

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Как работает транзисторный ключ

В данной статье мы рассмотрим, как работает транзисторный ключ на биполярном транзисторе. Такие полупроводниковые элементы производятся двух типов – n-p-n и p-n-p структуры, которые различаются типом применяемого полупроводника (в p-полупроводнике преобладают положительные заряды – «дырки»; в n-полупроводнике – отрицательные заряды – электроны).

Выводы БТ называются база, коллектор и эмиттер, которые имеет графическое обозначение на чертежах электрических схем, как показано на рисунке.

С целью понимания принципа работы и отдельных процессов, протекающих в биполярных транзисторах, их изображают в виде двух последовательно и встречно соединенных диодов.

Наиболее распространенная схема БТ, работающего в ключевом режиме, приведена ниже.

Чтобы открыть транзисторный ключ нужно подвести потенциалы определенного знака к обеим pn-переходам. Переход коллектор-база должен быть смещен в обратном направлении, а переход база-эмиттер – в прямом. Для этого электроды источника питания UКЭ подсоединяют к выводам базы и коллектора через нагрузочный резистор RК. Обратите внимание, положительный потенциал UКЭ посредством RК подается на коллектор, а отрицательный потенциал – на эмиттер. Для полупроводника p-n-p структуры полярность подключения источника питания UКЭ изменяется на противоположную.

Будет интересно➡ Что такое автотрансформатор?

Резистор в цепи коллектора RК служит нагрузкой, которая одновременно защищает биполярный транзистор от короткого замыкания.

Команда на открытие БТ подается управляющим напряжением UБЭ, которое подается на выводы базы и эмиттера через токоограничивающий резистор RБ. Величина UБЭ должна быть не меньше 0,6 В, иначе эмиттерный переход полностью не откроется, что вызовет дополнительные потери энергии в полупроводниковом элементе.

Чтобы не спутать полярность подключения напряжения питания UКЭ и управляющего сигнала UБЭ БТ разной полупроводниковой структуры, обратите внимание на направление эмиттерной стрелки. Стрелка обращена в сторону протекания электрического тока. Ориентируясь на направление стрелки достаточно просто расположить правильным образом источники напряжения.

Применение транзисторного ключа в связке с МК

Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:

В резистор RБЭ нет необходимости, потому как выходы МК “подтягивается” к нулю еще при программировании.

Условия для работы транзисторного ключа

Итак, давайте вспомним, какие требования должны быть, чтобы полностью “открыть” транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:

1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.

2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется “режимом насыщения“.

Этот рисунок – воображение моего разума. Здесь я нарисовал тот самый режим насыщения.

Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Ток или поле, управление транзисторами

Большинству людей, так или иначе имеющими дело с электроникой, принципиальное устройство полевых и биполярных транзисторов должно быть известно. По крайней мере, из названия «полевой транзистор», очевидно, что управляется он полем, электрическим полем затвора, в то время как биполярный транзистор управляется током базы.

Ток и поле, различие здесь кардинальное. У биполярных транзисторов управление током коллектора осуществляется путем изменения управляющего тока базы, в то время как для управления током стока полевого транзистора, достаточно изменить приложенное между затвором и истоком напряжение, и не нужен уже никакой управляющий ток как таковой.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Преимущества и недостатки МОП-транзисторов

Униполярные транзисторы имеют довольно широкое распространение в современной системотехнике благодаря ряду преимуществ, среди которых:

  • возможность мгновенного переключения;
  • отсутствие вторичного пробоя;
  • хорошая эффективность работы при низких напряжениях;
  • стабильность при температурных колебаниях;
  • низкий уровень шума при работе;
  • большой коэффициент усиления сигнала;
  • экономичность в плане энергопотребления;
  • меньшее количество технологических операций при построении схем с использованием МОП-транзисторов по сравнению с применением биполярных приборов.

Применение этих приборов ограничивают следующие недостатки:

Важнейший минус – повышенная чувствительность к статическому электричеству. Тонкий слой оксида кремния легко повреждается электростатическими зарядами, поэтому МОП-приборы могут выйти из строя даже при прикосновении к прибору наэлектризованными руками. Современные устройства практически лишены этого недостатка благодаря корпусам, способным минимизировать воздействие статики. Также в них могут интегрироваться защитные устройства по типу стабилитронов.

Появление нестабильности работы при напряжении перегрузки.

Разрушение структуры, начиная от температуры +150 °C. У биполярных приборов критической является температура +200 °C.

Постоянный поиск по получению хороших эксплуатационных свойств высокомощных униполярных транзисторов привел к изобретению гибридного IGBT-транзистора. Эти устройства объединили лучшие качества биполярного и полевых транзисторов.

Чем отличается полевой транзистор от биполярного;

Какие параметры определяют свойства транзистора в его быстродействии

Транзисторы работают между активным режимом и отсечкой, в результате чего схема не входит в режим насыщения, что увеличивает ее быстродействие.

Быстродействие транзистора зависит только от скорости перезарядки барьерной емкости. Причиной инерционности биполярного транзистора являются конечное время переноса зарядов от эмиттерного перехода к коллекторному и паразитные емкости указанных переходов. А быстродействие, в свою очередь, зависит от того, насколько сильны инерционные свойства.

Быстродействие транзистора определяется временем переключения транзисторных ключей, а удельная проводимость(и быстродействие), зависит от концентрации носителей заряда и от их подвижности.

Быстродействие транзистора определяется временем переключения транзисторных ключей, или вентилей, которое обратно пропорционально потребляемой мощности Р:=А/Р. Здесь А — работа ключа на одно переключение. Повышение мощности в целях ускорения переключения, как правило, требует увеличения расстояния между отдельными элементами схемы для соблюдения необходимого теплового режима, что приводит к уменьшению плотности размещения элементов и увеличению задержки на распространение сигнала по линиям.

Мощность, рассеиваемая в кристалле в виде теплоты, должна быть меньше тепловой мощности, которая может быть отведена.

От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы могут обладать низким уровнем шума (особенно на низких частотах), так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда и канал полевого транзистора может быть отделен от поверхности полупроводникового кристалла. Процессы рекомбинации носителей в p-n переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника сопровождаются возникновением низкочастотных шумов.

Сферы применения тех и других транзисторов

Различия между полевыми и биполярными транзисторами четко разделяют области их применений. Например в цифровых микросхемах, где необходим минимальный ток потребления в ждущем состоянии, полевые транзисторы применяются сегодня гораздо шире. В аналоговых же микросхемах полевые транзисторы помогают достичь высокой линейности усилительной характеристики в широком диапазоне питающих напряжений и выходных параметров.

Схемы типа reel-to-reel удобно реализуются сегодня с полевыми транзисторами, ведь легко достигается размах напряжений выходов как сигналов для входов, совпадая почти с уровнем напряжения питания схемы. Такие схемы можно просто соединять выход одной с входом другой, и не нужно никаких ограничителей напряжения или делителей на резисторах.

Что касается биполярных транзисторов, то их типичными сферами применения остаются: усилители, их каскады, модуляторы, детекторы, логические инверторы и микросхемы на транзисторной логике.

Принцип действия

Полупроводники занимают промежуточное состояние между проводниками и диэлектриками. В обычном состоянии они не проводят электрический ток, но их сопротивление падает с ростом температуры. Чем она выше, тем больше энергии, которую получает вещество.

В атомах полупроводника электроны отрываются от «родительского» атома и улетают к другому, чтобы заполнить там «дырку», которую оставил такой же электрон. Получается, что внутри такого материала одновременно происходят два процесса: полет электронов (n-проводимость, от слова negative – отрицательный), и образование «дырок» (p-проводимость от слова positive – положительный). В обычном куске кремния эти процессы уравновешены: количество дырок равно количеству свободных электронов.

Однако с помощью специальных веществ можно нарушить это равновесие, добавив «лишние» электроны (вещества – доноры) или «лишние» «дырки» (вещества акцепторы). Таким образом можно получить кристалл полупроводника с преобладающей n-проводимостью, либо p-проводимостью.

Если два таких материала приложить друг к другу, то в месте их соприкосновения образуется так называемый p-n переход. Дырки и электроны проходят через него, насыщая соседа. То есть там, где был избыток дырок, идет их заполнение электронами и наоборот.

В какой-то момент в месте соприкосновения не останется свободных носителей заряда и наступит равновесие. Это своего рода барьер, который невозможно преодолеть, этакая пустыня. Этот слой принято называть обедненным слоем.

Теперь, если приложить к такому материалу напряжение, то оно поведет себя интересным образом: при прямой его направленности обедненный слой истончится и через него пойдет электроток, а при обратном – наоборот, расширится.

Как говорится, если для чайников, то p-n переход обладает способностью пропускать ток только в одном направлении. Это своего рода «обратный клапан» для электрической сети. На этом их свойстве основана работа всех полупроводниковых приборов.

Существует две основные разновидности транзисторов: полевые (иногда их называют униполярными) и биполярными. Различаются они по устройству и принципу действия.

Биполярный транзистор

Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.

Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.

В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.

Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.

Проверка биполярных типов

Ниже схема проверки npn, pnp транзисторов тестером, после нее распишем процедуру по пунктам.

Биполярный транзистор снабжен p-n линиями — условно, это диоды, а точнее, 2 таковых расположенных встречно, точка их пересечения — «база».

Один условный диод сконструирован контактами базы/коллект., иной — базы/эмит. Для анализа хватит посмотреть сопр. (прямо и обратно) указанных участков: если там нет неполадок, то деталь без изъянов.

Проверка своими руками без выпаивания биполярного pnp, npn транзистора предполагает прозвонку 3 комбинаций ножек:

Вариант p-n-p

Структуры (типы) показывает стрелка эмит. участка: p-n-p/n-p-n (к базе/от нее). Начнем с проверки первого варианта. Раскрываем p-n-p деталь подачей на базу минусового напряжения. На мультиметре селектор ставим на замеры Ом на о, допускается также выставлять на «прозвонку».

Жила «−» (черная) — на ножку базы. Плюс (красная) — поочередно к коллект., эмит. Если участки не поврежденные, то отобразят около 500–1200 Ом.

Дальше опишем, как прозвонить обратное сопр.: «+» – на базу, «−» — на колл. и эмит. Должно отобразиться высокое сопр. на обоих p-n участках. У нас появилась «1», то есть для выставленной рамки в «2000» значение превышает 2000. Значит, 2 перехода без обрывов, изделие исправное.

Будет интересно➡ Описание принципиальной электрической схемы с примером

Аналогично, как описано, можно прозвонить на исправность транзистор, не выпаивая из схемы. Реже есть сборки, где к переходам применено основательное шунтирование, например, резисторами. Тогда, если отобразится слишком низкое сопр., потребуется выпаивать деталь.

Структура n-p-n

Элементы n-p-n проверяются аналогично, только на базу от тестера идет щуп «+».

Признаки неисправности

Если сопр. (прямое и обратное) одного из участков (p-n) стремится к бесконечности, то есть на о и выше на дисплее «1», значит, данный участок имеет обрыв, транзистор не годный. Если же «0» — изделие также с изъяном, пробит участок. Прямое сопр. там должно быть 500–1200 Ом.

Полевой транзистор

Если в биполярном транзисторе управление происходило с помощью тока, то в полевом – с помощью напряжения. Состоит он из пластинки полупроводника, которую называют каналом. С одной стороны к ней подключен исток – через него в канал входят носители электрического тока, а с другой сток – через него они покидают канал.

Сам канал как бы «зажат» между затвором, который обладает обратной проводимостью, то есть если канал имеет n-проводимость, то затвор – p-проводимость. Затвор электрически отделен от канала. Изменяя напряжение на затворе, можно регулировать зону p-n перехода. Чем она больше, тем меньше электрической энергии проходит через канал. Существует значение напряжения, при котором затвор полностью перекроет канал и ток между истоком и стоком прекратится.

Наиболее наглядная иллюстрация в этом случае – садовый шланг, который проходит через камеру небольшого колеса. В таком случае, даже когда в него подается небольшое давление воздуха (напряжение затвор-исток), оно значительно увеличивается в размерах и начинает пережимать шланг, перекрывается просвет шланга и прекращается подача воды (увеличивается зона p-n перехода и через канал перестает идти электроток).

Описанный выше тип полупроводникового прибора является классическим и называется транзистором с управляющим p-n переходом. Часто можно встретить аббревиатуру JFET – Junction FET, что просто перевод русского названия на английский.

Другой тип полевого триода имеет небольшое различие в конструкции затвора. На слое кремния с помощью окисления образуется слой диэлектрика оксида кремния. Уже на него методом напыления металла наносят затвор. Получаются чередующиеся слои Металл -Диэлектрик – Полупроводник или МДП-затвор.

Такой полевой транзистор с изолированным затвором обозначается латинскими буквами MOSFET.

Существует два вида МДП-затвора:

  1. МДП-затвор с индуцированным (или инверсным) каналом в обычном состоянии закрыт, то есть при отсутствии напряжения на затворе электроток через канал не проходит. Для того, чтобы открыть его, к затвору необходимо приложить напряжение.
  2. МДП-затвор со встроенным (или собственным) каналом в обычном состоянии открыт, то есть при отсутствии напряжения на затворе электроток через канал проходит. Для того, чтобы закрыть его, к затвору необходимо приложить напряжение.

Типы МОП-транзисторов

Униполярные транзисторы делятся на p-канальные или n-канальные. Они могут иметь:

Собственный (встроенный) канал. Без напряжения канал открыт. Для закрытия канала необходимо подать ток определенной полярности.

Индуцированный (инверсный) канал. При отсутствии приложенного электротока он закрыт. Для его открытия прикладывают напряжение нужной полярности. Для n-канальных транзисторов отпирающим является напряжение, положительное относительно истока. Его величина должна быть больше порогового значения, установленного для данного транзистора. Для p-канальных моделей отпирающим будет отрицательное относительно истока напряжение, приложенное к затвору.

Основные характеристики

Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.

В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.

Хотя на первый взгляд кажется, что здесь важен принцип «чем больше, тем лучше», но в действительности это не так. Скорее, тут применимо изречение «лучше меньше, да лучше». В среднем биполярные транзисторы имеют коэффициент передачи тока базы в пределах 10 – 50.

Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.

Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.

Поэтому оптимальным считается максимальная рабочая частота сигнала, в 10-20 раз ниже предельного усиления частоты транзистора.

Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.

Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.

История появления транзисторов

На заре прошлых веков конца 19 века ученые физики и практики (Гутри, Браун, Эдисон, Боус, Пикард, Флеминг) разных стран совершили принципиальное открытие и получили патенты на «детектор», «выпрямитель» — так тогда называли диод. Вслед за диодом последовало эпохальное открытие транзистора. Перечисление имен ученых разных стран, приложивших голову и руки к открытию транзистора, заняло бы много строк.

Основными теоретиками считаются Шокли, работавший в Bell Telephone Laboratories, а также его коллеги Бардин и Браттейн.


Слева направо: Шокли, Бардин и Браттейн

В итоге их работ, в 1947 году, получен первый образец работающего точечного германиевого транзистора, и на его основе, в том же году, был разработан первый усилитель, имевший коэффициент усиления 20 дБ (в 10 раз) на частоте 10 Мгц.

Серийный выпуск точечных транзисторов фирмой Western Electric начался в 1951 году и достиг около 10 000 штук в месяц в 1952 году. В СССР первый точечный транзистор был создан в 1949 г. Серийный выпуск точечных транзисторов был налажен в 1952 году, а плоскостных — в 1955 году. Затем последовали следующие открытия в теории и технологиях: транзисторы на выращенных переходах (1950 г.), сплавные транзисторы (1952 г.), диффузные мета-транзисторы (1958 г.), планарные транзисторы (1960 г.), эпитаксиальные транзисторы (1963 г.), многоэмиттерные транзисторы (1965 г.) и т. д.

Как же появился среди них наш герой — транзистор Дарлингтона (далее по тексту ТД)? Дарлингтон (англ. Darlingtone) — город в в Великобритании. Однако и люди могут иметь фамилии по имени городов или наоборот. Таким является сотрудник все той же фирмы Bell — Сидни Дарлингтон


Сидни Дарлингтон

Зачем же потребовалась эта «сладкая парочка»? Дело в том, что первые транзисторы имели весьма посредственные характеристики, если смотреть на сегодняшние успехи. Прежде всего — невысокий коэффициент усиления. Сейчас это кажется странным — подумаешь, каскадное соединение — это элементарно! Но тогда, в 1953 году — это были пионерские работы.

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

Биполярный транзистор

Автор: Владимир Васильев · Опубликовано 9 сентября 2015 · Обновлено 29 августа 2018

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.


Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

NPN-транзистор

Биполярный транзистор может иметь коллектор с эмиттером из материала N-типа. Тогда база делается из материала P-типа. И в этом случае, транзистор npn работает точно, как pnp, за исключением полярности – это транзистор обратной проводимости. Транзисторы на основе кремния подавляют своим числом все остальные типы биполярных транзисторов.

Будет интересно➡ Как расшифровать цветовую маркировку транзисторов?

Донорным материалом для коллектора и эмиттера может служить As, имеющий “лишний” электрон. Также изменилась технология изготовления транзисторов. Сейчас они планарные, что дает возможность использовать литографию и делать интегральные схемы. По планарной технологии изготавливаются как pnp, так и npn-транзисторы, в том числе и мощные. Сплавные уже сняты с производства.

Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Схемы включения транзисторов

Обычно биполярный транзистор всегда используется в прямом включении – обратная полярность на КЭ переходе ничего интересного не дает. Для прямой схемы подключения есть три схемы включения: общий эмиттер (ОЭ), общий коллектор (ОК), и общая база (ОБ). Все три включения показаны ниже.

Они поясняют только сам принцип работы – если предположить, что рабочая точка каким-то образом, с помощью дополнительного источника питания или вспомогательной цепи установлена. Для открывания кремниевого транзистора (Si) необходимо иметь потенциал ~0,6 В между эмиттером и базой, а для германиевого хватит ~0,3 В.

Общий эмиттер

Напряжение U1 вызывает ток Iб, ток коллектора Iк равен базовому току, умноженному на β. При этом напряжение +E должно быть достаточно большим: 5 В-15 В. Эта схема хорошо усиливает ток и напряжение, следовательно, и мощность. Выходной сигнал противоположен по фазе входному (инвертируется). Это используется в цифровой технике как функция НЕ.

Если транзистор работает не в ключевом режиме, а как усилитель малых сигналов (активный или линейный режим), то при помощи подбора базового тока устанавливают напряжение U2 равным E/2, чтобы выходной сигнал не искажался. Такое применение используется, например, при усилении аудиосигналов в усилителях высокого класса, с низкими искажениям и, как следствие, низким КПД.

Общий коллектор

По напряжению схема ОК не усиливает, здесь коэффициент усиления равен α ~ 1. Поэтому эта схема называется эмиттерный повторитель. Ток в цепи эмиттера получается в β+1 раз больше, чем в цепи базы. Эта схема хорошо усиливает ток и имеет низкое выходное и очень высокое входное сопротивление.

Тут самое время вспомнить о том, что транзистор называется трансформатором сопротивления. Эмиттерный повторитель имеет свойства и рабочие параметры, очень подходящие для пробников осциллографов. Здесь используют его огромное входное сопротивление и низкое выходное, что хорошо для согласования с низкоомным кабелем.

Полезный материал: что такое полупроводниковый диод.

Общая база

Эта схема отличается наиболее низким входным сопротивлением, но усиление по току у нее равно α. Схема с общей базой хорошо усиливает по напряжению, но не по мощности. Ее особенностью является устранение влияния обратной связи по емкости (эфф. Миллера). Каскады с ОБ идеально подходят в качестве входных каскадов усилителей в радиочастотных трактах, согласованных на низких сопротивлениях 50 и 75 Ом. Каскады с общей базой очень широко используются в технике СВЧ и их применение в радиоэлектронике с каскадом эмиттерного повторителя очень распространено.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]