Описание процесса отключения электрической цепи переменного тока при коротком замыкании
При размыкании контактов выключателя ток не прерывается. Согласно закону Ленца в цепи возникает ЭДС ЕL=-Ldi/dt, препятствующая изменению тока. Последний находит для себя путь через газовый промежуток между расходящимися контактами выключателя, который перекрывается электрической дугой. Чтобы прервать ток, дуга должна быть погашена. В цепях переменного тока благоприятные условия для гашения дуги возникают каждый раз, когда ток приходит к нулю, т.е. 2 раза в течение каждого периода. Диаметр дугового столба, температура и ионизация газа резко уменьшаются. В некоторый момент времени ток приходит к нулю и дуговой разряд прекращается. Однако цепь еще не прервана.
После нуля тока в газовом промежутке, еще в некоторой мере ионизованном, продолжается процесс деионизации, т.е. процесс превращения его из проводника в диэлектрик, а в электрической цепи начинается процесс восстановления напряжения на контактах выключателя от относительно небольшого напряжения на дуге до напряжения сети. Эти процессы взаимосвязаны. Исход взаимодействия дугового промежутка с электрической цепью зависит от соотношения между энергией, подводимой к промежутку, и потерями энергии в нем, зависящими от дугогасительного устройства выключателя.
Если в течение всего переходного процесса потери энергии преобладают, дуга не возникнет вновь и цепь будет прервана. В противном случае дуга возникнет вновь и ток будет проходить еще в течение половины периода, после чего процесс взаимодействия повторится. Функция выключателя заключается не столько в том, чтобы «погасить» дугу, а скорее в том, чтобы исключить возможность ее нового зажигания путем эффективной деионизации промежутка различными искусственными средствами. При этом используется исключительное свойство газа — быстро, в течение нескольких микросекунд, превращаться из проводника в диэлектрик, способный противостоять восстанавливающемуся напряжению сети.
Для понимания устройства и работы выключателей необходимо ознакомиться с физическими процессами в дуговом промежутке в процессе отключения. В этой статье рассмотрены методы гашения дуги в воздушных и масляных выключателях.
Воздействие на человека и электрооборудование
Электрическая дуга представляет опасность для человека своим термическим воздействием, а также ультрафиолетовым действием излучающего света. Огромную опасность таит в себе высокое напряжение переменных токов. Если незащищённый человек окажется на критически близком расстоянии от токоведущих частей приборов, может произойти пробой электричества с образованием дуги. Тогда на тело, кроме воздействия тока, окажет действие термической составляющей.
Распространение дугового разряда по конструктивным частям оборудования грозит выжиганием электронных элементов, плат и соединений.
Физические процессы в дуговом промежутке выключателя при высоком давлении
Электрической дугой, точнее дуговым разрядом, называют самостоятельный разряд в газе, т.е. разряд, протекающий без внешнего ионизатора, характеризующийся большой плотностью тока и относительно небольшим падением напряжения у катода. Ниже рассмотрена дуга высокого давления, т.е. дуговой разряд при атмосферном и более высоком давлении.
Различают следующие области дугового разряда:
- область катодного падения напряжения;
- область у анода;
- столб дуги.
Область катодного падения напряжения представляет собой тончайший слой газа у поверхности катода. Падение напряжения в этом слое составляет 20-50 В, а напряженность электрического поля достигает 105106 В/см. Энергия, подводимая из сети к этой области, используется на выделение электронов с поверхности катода.
Механизм освобождения электронов может быть двояким:
- термоэлектронная эмиссия при тугоплавких и огнеупорных электродах (вольфрам, уголь), температура которых может достигнуть 6000 К и выше
- автоэлектронная эмиссия, т.е. вырывание электронов из катода действием сильного электрического поля при «холодном» катоде.
Плотность тока на катоде достигает 3000-10000 А/см5. Ток сосредоточен на небольшой ярко освещенной площадке, получившей название катодного пятна. Освобождающиеся электроны движутся через дуговой столб к аноду.
У анода положительные ионы приобретают ускорение в направлении к катоду. Электроны уходят в анод и образуют в тонком слое отрицательный заряд. Падение напряжения у анода составляет 10-20 В.
Процессы в дуговом столбе представляют наибольший интерес при изучении выключателей, поскольку для гашения дуги используют различные виды воздействия именно на дуговой столб. Последний представляет собой плазму, т.е. ионизованный газ с очень высокой температурой и одинаковым содержанием электронов и положительных ионов в единице объема.
Высокую температуру в дуговом столбе создают и поддерживают электроны и ионы, участвующие в тепловом хаотическом движении нейтральных молекул и атомов, но имеющие также направленное движение в электрическом поле вдоль оси дуги, определяемое знаком заряда частиц. Этому движению препятствует нейтральный газ. Происходят частые соударения электронов и ионов с нейтральными частицами. Поскольку длина свободного пробега электронов при высоком давлении мала, потеря энергии при упругих столкновениях с молекулами и атомами, приходящаяся на каждое столкновение, мала и недостаточна для ионизации частиц. Однако число столкновений, претерпеваемых электронами, весьма велико. В результате энергия электронов передается нейтральному газу в виде тепла.
Средняя энергия «электронного газа» не может сколько-нибудь заметно превысить среднюю энергию нейтрального газа, поскольку дополнительная энергия, приобретаемая электронами и ионами в своем направленном движении вдоль оси лугового столба, мала по сравнению с тепловой энергией газа. Следовательно, ионы, электроны, а также нейтральные атомы и молекулы находятся в тепловом равновесии. При этом удельная ионизация дугового столба полностью определяется температурой и при изменении одной из этих величин неизбежно изменяется и другая.
Поскольку при высоком давлении газа атомы и молекулы подавляющим образом преобладают над электронами и имеют почти ту же высокую температуру, большая часть возбужденных и ионизованных атомов и молекул получается при соударениях между нейтральными частицами, а не при столкновениях с электронами. Таким образом, электроны ионизуют не непосредственно при соударениях с нейтральными частицами (как это происходит в вакууме), а косвенно, повышая температуру газа в дуговом столбе. Такой механизм ионизации называют термической ионизацией. Источником энергии, необходимой для термической ионизации, является электрическое поле.
В дуговом столбе имеются потери энергии, которые в установившемся состоянии уравновешиваются энергией, получаемой из сети. Основная часть энергии уносится из дугового столба возбужденными и ионизованными атомами и молекулами. Вследствие разности концентраций заряженных частиц в дуговом столбе и окружающем пространстве, а также разности температур ионы диффундируют к поверхности дугового столба, где происходит их нейтрализация. Эти потери должны восполняться образованием новых ионов и электронов, связанным с затратой энергии. В установившемся состоянии градиент напряжения в столбе дуги всегда таков, что имеющая место ионизация компенсирует потери электронов через рекомбинацию. Градиент напряжения зависит от свойств газа, состояния, в котором он находится (спокойное, турбулентное), а также от давления и тока. При повышении давления газа градиент напряжения увеличивается вследствие уменьшения свободного пробега электронов. С увеличением тока градиент напряжения уменьшается, что объясняется увеличением площади сечения и температуры дугового столба. Дуговой столб стремится принять такое сечение, чтобы в рассматриваемых условиях потери энергии были минимальны.
Вольт-амперные характеристики дуги
Зависимость градиента напряжения Е=dU/dl в столбе дуги от тока при очень медленном изменении последнего представляет собой статическую характеристику дуги (рис.1,а), зависящую от давления и свойств газа.
Рис.1. Вольт-амперные характеристики дуги: а — статическая характеристика; б — динамические характеристики
В установившемся состоянии каждой точке характеристики соответствуют некоторое сечение и температура дугового столба. При изменении тока дуговой столб должен изменить свое сечение и температуру применительно к новым условиям. Эти процессы требуют времени, и поэтому новое установившееся состояние наступает не сразу, а с некоторым запозданием. Это явление называют гистерезисом.
Допустим, что ток внезапно изменился от значения I1 (точка 1) до значения I2 (точка 2). В первый момент дуга сохранит свои сечения и температуру, а градиент уменьшится (точка 2′). Подводимая мощность будет меньше необходимой для проведения тока I2. Поэтому сечение и температура начнут уменьшаться, а градиент увеличиваться, пока не наступит новое установившееся состояние в точке 2 на статической характеристике. При внезапном увеличении тока от значения I1 до значения I3 градиент напряжения увеличится (точка 3′). Подводимая к дуге мощность будет больше необходимой для проведения тока I3. Поэтому сечение и температура столба начнут увеличиваться, а градиент напряжения уменьшаться, пока не наступит новое установившееся состояние в точке 3 на статической характеристике.
При плавном изменении тока с некоторой скоростью градиент напряжения не успевает следовать за изменением тока в соответствии со статической характеристикой. При увеличении тока градиент напряжения превышает значения, определяемые статической характеристикой, а при уменьшении тока градиент напряжения меньше этих значений. Кривые E=f(I) при изменении тока с некоторой скоростью представляют собой динамические характеристики дуги (сплошные линии на рис.1,б).
Положение этих характеристик по отношению к статической характеристике (см. пунктирную кривую) зависит от скорости изменения тока. Чем медленнее происходит изменение тока, тем ближе расположена динамическая характеристика к статической. В заданных условиях дугового разряда может быть только одна статическая характеристика. Число динамических характеристик не ограничено.
При анализе электрических цепей принято оперировать понятием сопротивления. Поэтому говорят и о сопротивлении дуги, понимая под этим отношение напряжения у электродов к току. Сопротивление дуги непостоянно. Оно зависит от тока и многих других факторов. По мере увеличения тока сопротивление дуги уменьшается.
Рис.2. Напряжение на дуге при переменном токе: а — напряжение дуги как функция тока; 6 — напряжение дуги как функция времени
Вольт-амперная характеристика дуги переменного тока показана на рис.2,а. В течение четверти периода, когда ток увеличивается, кривая напряжения лежит выше статической характеристики. Следующую четверть периода, когда ток уменьшается, кривая напряжения лежит ниже статической характеристики.
Дуга зажигается в точках 1 и 3 и угасает в точках 2 и 4. На рис.2,б показана характеристика дуги как функции времени. Интервалы 2-3 и 4-1 соответствуют неустойчивому состоянию, при котором происходит интенсивное взаимодействие дуги с постоянными цепи R, L и С. Эти короткие интервалы времени, продолжительность которых составляет несколько микросекунд, используются для интенсивной деионизации промежутка между контактами выключателя, чтобы воспрепятствовать новому зажиганию дуги. В зависимости от условий процесс взаимодействия может закончиться двояко: или дуга погаснет и цепь будет прервана, или дуга возникнет вновь и процесс взаимодействия повторится через половину периода при более благоприятных условиях.
Строение
Электрическая дуга состоит из трёх основных зон:
- катодной;
- анодной;
- плазменного столба.
В сварочных дугах размеры катодной и анодной зоны незначительные, по сравнению с длиной столба. Толщина этих зон составляет тысячные доли миллиметра. В зоне катодного падения напряжения (на конце отрицательного электрода) наблюдается наличие катодных пятен, которые образуются в результате сильного нагревания.
На рисунке 4 изображена схема строения дуги, создаваемой сварочным аппаратом.
Рис. 4. Строение сварочной дуги
Обратите внимание: с целью достижения наглядности, на картинке сильно преувеличены электродные зоны. В действительности их толщина измеряется в микронах.
Гашение дуги в воздушных выключателях
В воздушных выключателях дуга гасится в потоке воздуха высокого давления. Гасительное устройство выключателя (рис.3,а) представляет собой камеру, в которой помещены два сопла, служащие одновременно контактами. Выхлопные стороны сопел соединены с областью низкого давления. При разведении контактов вследствие разности давлений возникает поток воздуха, направленный в сопла симметрично в обе стороны.
Рис.3. Дугогасительное устройство воздушного выключателя с двухсторонним дутьем: а — схема; б — распределение давления вдоль оси
На рис.3,б показано распределение давления вдоль оси. В середине промежутка между соплами имеется точка торможения потока, давление в которой обозначено через рo.
В обе стороны от этой точки давление уменьшается и достигает в горловинах сопел приблизительно половины рo. За горловинами давление продолжает падать до давления выхлопа.
Процесс гашения дуги протекает следующим образом. Между размыкающимися контактами возникает дуга, которая под действием воздушного потока быстро переносится вдоль оси. При этом опорные пятна дуги перемещаются внутрь сопел по потоку, как показано на рис.3. Дуга в промежутке между соплами имеет цилиндрическую форму.
Рис.4. Распределение температуры в поперечном направлении на участке между соплами: а — дуга; в — тепловой пограничный слой
Распределение температуры в поперечном направлении показано на рис.4. В зоне дуги а она составляет приблизительно 20000 К и резко спадает к тепловому пограничному слою в, образующемуся около дуги. Здесь температура изменяется в пределах от 2000 К до температуры холодного воздуха. По мере подхода тока к нулю диаметр цилиндрической части дуги быстро уменьшается. При токе, равном нулю, он меньше 1 мм. Однако температура в этой части дуги еще очень высока (15000 К).
Важнейшим фактором, способствующим гашению дуги, является турбулентность в пограничном слое между дугой и окружающим ее относительно холодным воздухом. Вследствие высокой температуры дуги плотность газа в столбе приблизительно в 20 раз меньше, чем в окружающей среде. Поэтому скорость газа внутри дугового столба значительно выше скорости в соседних слоях (скорость обратно пропорциональна корню квадратному из плотности). Вследствие диффузии частиц из области с большой скоростью в область с малой скоростью и обратно в пограничном слое возникают значительные срезывающие силы, образуются вихри и весь объем приобретает высокую турбулентность. В дуговой столб вносится относительно холодный неионизованный газ, вследствие чего столб теряет свою однородность. Он расщепляется на тысячи тончайших проводящих нитей, непрерывно изменяющих свою форму и положение (рис.5).
Рис.5. Влияние турбулентности на столб дуги вблизи нуля тока (схема)
Они имеют высокую температуру и высокую удельную ионизацию и окружены холодным слабо ионизованным газом. Известно, что скорость диффузии из цилиндрического объема обратно пропорциональна квадрату диаметра. Чем тоньше ионизованные нити, тем быстрее происходит обмен частиц с окружающей более холодной и менее ионизованной средой. Турбулентность увеличивает диффузию во много раз. Она проявляется особенно резко в горловинах сопел, где скорость плазмы максимальна — 6000 м/с. После нуля тока в течение короткого промежутка времени, исчисляемого микросекундами, происходит распад проводящего канала и дальнейшее уменьшение температуры определяется тепловым пограничным слоем, остывание которого происходит значительно медленнее.
Рис.6. Схема замещения, поясняющая влияние сопротивления дуги и емкости
Рис.7. Взаимодействие дуги с электрической цепью
Существенное влияние на процесс отключения оказывает сопротивление дуги и емкость, включенная параллельно дуговому промежутку (рис.6). Если пренебречь сопротивлением дуги, ток i0=Imsinɷt подходит к нулю практически линейно (рис.7). Однако сопротивление дуги не равно нулю. Поэтому ток iB в дуговом промежутке выключателя уменьшается:
(1)
где t0 — момент размыкания контактов.
Как видно из рисунка, напряжение на дуге изменяется в соответствии с вольт-амперной характеристикой. Скорость снижения тока существенно уменьшается в течение последних 5…10 мкс до прихода его к нулю. Это время мало, но оно в несколько раз больше постоянной времени дуги и поэтому существенно влияет на состояние дуги при нуле тока (точка 1). Дуга легко угасает. Сопротивление дуги видоизменяет и кривую ПВН. Процесс восстановления напряжения начинается в точке 1; напряжение достигает максимума в точке 2, когда iL=iC=0.
Этап возможного теплового пробоя
Если температура газа в промежутке не снизится до некоторого критического значения, определяемого свойством газа и давлением, промежуток сохранит свою проводимость после нуля тока (точка 1) и под действием ПВН возникнет ток остаточной проводимости (рис.8).
Рис.8. Погасание дуги с задержкой, вызванной появлением тока остаточной проводимости
При благоприятных условиях он невелик и быстро затухает (точка 2). Однако если процесс охлаждения недостаточно интенсивен, ток остаточной проводимости увеличивается; происходит повторный разогрев плазмы, возобновляется процесс ионизации и дуга возникает вновь. Это явление получило название теплового пробоя, так как электрический пробой невозможен, поскольку промежуток ионизован и не приобрел еще электрической прочности.
Произойдет такой пробой или нет, зависит от исхода двух взаимосвязанных процессов, протекающих в промежутке, из которых один определяется интегралом во времени подводимой мощности (произведения тока и напряжения на промежутке), а второй — интегралом во времени потерь, вызванных теплопроводностью и конвекцией. Это означает, что процесс взаимодействия продолжится до тех пор, пока ток не исчезнет или дуга не возникнет вновь. Явление теплового пробоя характерно для первых 20 мкс после нуля тока в условиях, когда скорость восстанавливающеюся напряжения велика, например при неудаленных КЗ.
Этап возможного электрического пробоя
Если тепловой пробой не произошел, межконтактный промежуток продолжает подвергаться воздействию ПВН. Дуговой канал имеет еще повышенную температуру и пониженную плотность. Спустя несколько сотен микросекунд после нуля тока, когда ПВН достигает максимального значения, наступает этап возможного электрического пробоя. В основе его лежит не баланс энергий, а процесс образования электронов в электрическом поле. Если увеличение концентрации электронов превысит некоторое критическое значение, то произойдет образование искры, которая перейдет в дуговой разряд.
Гашение дуги в масляных выключателях
В масляных выключателях контакты размыкаются в масле, однако вследствие высокой температуры дуги, образующейся между контактами, масло разлагается и дуговой разряд происходит в газовой среде. Приблизительно половину этого газа (по объему) составляют пары масла. Остальная часть состоит из водорода (70%) и углеводородов различного состава. Газы эти горючи, однако в масле горение невозможно из-за отсутствия кислорода. Количество масла, разлагаемого дугой, невелико, но объем образующихся газов велик. Один грамм масла дает приблизительно 1500 см3 газа, приведенного к комнатной температуре и атмосферному давлению.
Гашение дуги в масляных выключателях происходит наиболее эффективно при применении гасительных камер, которые ограничивают зону дуги, способствуют повышению давления в этой зоне и образованию газового дутья сквозь дуговой столб. На рис.9 приведена схема простейшей гасительной камеры.
Рис.9. Схема простейшей гасительной камеры масляного выключателя
В процессе отключения контактный стержень 1 перемещается вниз. Между контактами 1 и 2 возникает дуга. Происходит интенсивное газообразование и давление в камере быстро увеличивается. Относительно холодный газ, образующийся на поверхности масла, перемешивается с плазмой дуги. Пограничный слой приходит в турбулентное состояние, способствующее деионизации. Однако дуга не может погаснуть до тех пор, пока расстояние между контактами не достигнет некоторого минимального значения, определяемого восстанавливающимся напряжением. Этот минимальный промежуток образуется, когда подвижный контакт еще находится в камере. Когда стержень покидает пределы камеры, газы с силой выбрасываются наружу. Возникает газовое дутье, направленное по оси, способствующее гашению дуги.
После погасания дуги контактный стержень продолжает свое движение, чтобы обеспечить необходимое изоляционное расстояние в отключенном положении.
Напряжение на дуге масляного выключателя по крайней мере в 3 раза больше, чем у воздушного выключателя. Электрическая прочность промежутка восстанавливается быстрее (со скоростью около 2 кВ/мкс). Поэтому при одинаковом токе КЗ дугогасительное устройство масляного выключателя может быть рассчитано на вдвое большее напряжение и вдвое большее волновое сопротивление, чем устройство воздушного дутья.