Тепловая энергия занимает особое место в человеческой деятельности, поскольку она используется во всех секторах экономики, сопровождает большинство промышленных процессов и жизнедеятельность людей. В большинстве случаев отработанное тепло теряется безвозвратно и без какой-либо экономической выгоды. Этот потерянный ресурс уже ничего не стоит, поэтому повторное его использование будет способствовать как уменьшению энергетического кризиса, так и защите окружающей среды. Поэтому новые способы преобразования тепловой в электрическую энергию и конверсия отработанного тепла в электричество сегодня как никогда актуальны.
Виды генерации электроэнергии
Преобразование природных источников энергии в электричество, тепло или кинетическую энергию требует максимальной эффективности, особенно на газовых и угольных электростанциях, чтобы снизить объемы выбросов СО2. Существуют различные способы преобразование тепловой энергии в электрическую, зависящие от типов первичной энергии.
Среди ресурсов энергии уголь и природный газ используются для выработки электроэнергии путем сжигания (тепловая энергия), а уран путем ядерного деления (ядерной энергии), чтобы использовать энергию пара для вращения паровой турбины. Десять крупнейших стран производителей электроэнергии на 2022 год представлены на фото.
Таблица эффективности работы существующих систем преобразование тепловой энергии в электрическую.
№ | Выработка электроэнергии из тепловой энергии | К.П.Д., % |
1 | Тепловые электростанции, ТЭЦ | 32 |
2 | Атомные станции, АЭС | 80 |
3 | Конденсационная электростанция, КЭС | 40 |
4 | Газотурбинная электростанция, ГТЭС | 60 |
5 | Термоэмиссионные преобразователи, ТЭП | 40 |
6 | Термоэлектрические генераторы | 7 |
7 | МГД-генераторы электроэнергии совместно с ТЭЦ | 60 |
Выбор метода преобразования тепловой энергии в электрическую и его экономическая целесообразность зависят от потребностей в энергоносителях, наличия природного топлива и достаточности площадки строительства. Вид генерации варьируется во всем мире, что приводит к широкому диапазону цен на электроэнергию.
Термоэлектрические генераторы промышленного применения
В качестве источника тепла для современных промышленных ТЭГ чаще всего применяют тепловую энергию, выделяемую при сжигании природного газа. Также используется тепловая энергия, отводимая от двигателей внутреннего сгорания, тепловая энергия пара, другие доступные источники тепла на промышленных объектах. Выходная мощность генераторов определяется типом и числом термоэлектрических модулей, входящих в состав генератора, а также конструкцией радиаторов. Линейка выпускаемых ТЭГ промышленного назначения обеспечивает возможность получения электрической мощности от 2 до 200 Вт от одного генератора. Следует отметить, что производитель указывает выходную мощность для наихудших условий эксплуатации и среднестатистически можно ожидать результаты, превосходящие гарантированные в полтора раза и более. При выполнении условий согласования можно суммировать вырабатываемую мощность от нескольких генераторов.
В упрощенном виде термоэлектрический генератор можно представить в виде металлической теплораспределительной пластины со стороны источника тепла, термоэлектрического генераторного модуля (ТГМ) и охлаждающего радиатора, отводящего тепло, проходящее через модуль в окружающим среду и создающего необходимый для работы ТГМ перепад температур (рис. 1). Вся конструкция должна сжиматься с усилием, обеспечивающим надежную передачу тепла от источника в окружающую среду с одной стороны и не допускающей превышения допустимого усилия при тепловом расширении конструкции.
Рис. 1. Базовая конструкция термоэлектрического генератора
На рисунке видно, что сжатие обеспечивается с помощью резьбовых соединений и рессорной пружины. Пружины могут быть также иной конструкции, например витой или дисковой. Целью конструкции является обеспечение равномерности усилия сжатия в заданном интервале температур. Благодаря своей простоте базовая конструкция обладает высокой надежностью и долговечностью (срок службы может превышать 10 лет).
Проблемы традиционной электроэнергетики
Технологии преобразования тепловой энергии в электрическую, такие как ТЭС, АЭС, КЭС, ГТЭС, ТЭП, термоэлектрические генераторы, МГД-генераторы имеют разные преимущества и недостатки. Исследовательский институт электроэнергетики (EPRI) иллюстрирует плюсы и минусы технологий генерации на природных энергетических ресурсах, рассматривая такие критические факторы, как строительство и затраты на электроэнергию, на землю, требования к воде, выбросы CO2, отходы, доступность и гибкость.
Результаты EPRI подчеркивают, что при рассмотрении технологий производства электроэнергии нет единого подхода к решению всех проблем, но при этом все же больше преимуществ у природного газа, который является доступным для строительства, имеет низкую себестоимость электроэнергии, создает меньше выбросов, чем уголь. Однако не все страны имеют доступ к обильному и дешевому природному газу. В некоторых случаях доступ к природному газу находится под угрозой из-за геополитической напряженности, как это было в случае с Восточной Европой и некоторыми странами Западной Европы.
Технологии возобновляемых источников энергии, такие как ветровые турбины, солнечные фотоэлектрические модули производят эмиссионное электричество. Однако для них, как правило, требуется много земли, результаты их эффективности являются неустойчивыми и зависят от погоды. Уголь, основной источник тепла, является самым проблемным. Он лидирует по выбросам CO2, требует много чистой воды для охлаждения теплоносителя и занимает большую площадь под строительство станции.
Новые технологии направлены на снижение ряда проблем, связанных с технологиями производства электроэнергии. Например, газовые турбины, объединенные с резервным аккумулятором, обеспечивают резерв на случай непредвиденных обстоятельств без сжигания топлива, а периодически возникающие проблемы в области возобновляемых ресурсов могут быть смягчены за счет создания доступного крупномасштабного хранилища энергии. Таким образом, сегодня нет ни одного безупречного способа преобразования тепловой энергии в электрическую, который мог бы обеспечить надежную и экономически эффективную электроэнергию с минимальным воздействием на окружающую среду.
Энергия тепла и холода: зачем нужны термоэлектрики
Термоэлектрики — материалы, способные преобразовывать электрическую энергию в разницу температур или, наоборот, из разницы температур получить электричество — давно известны ученым, но новые технологии могут расширить сферу их применения. Сейчас термоэлектрики используются, например, для создания холода под действием напряжения. Правда, здесь речь идет не об обычных бытовых холодильниках, а о том, что через некоторые устройства, состоящие из полупроводниковых материалов, пропускается электрический ток и в результате возникает активное охлаждение. Такие устройства можно использовать, в том числе и в быту. Например, в корзинках для пикника, которые можно подключить к прикуривателю автомобиля, и от 12 вольт получать достаточно холода, чтобы продукты не испортились.
Что касается генерации электроэнергии, то здесь использование термоэлектрических материалов пока на стадии экспериментальных моделей. Например, термоэлектрическое устройство устанавливается на автомобиль, и бросовое тепло, потерянное или в результате торможения, или в результате работы двигателя на холостом ходу, преобразуется в некоторую мощность. Около 40% потерянного тепла можно таким образом перевести в дополнительное электричество, в дополнительное питание бортовой системы.
Такого же типа устройства могут быть использованы в ЖКХ. Если в доме имеются нагревательные системы, значит есть и условия для создания разницы температур. А термоэлектрические материалы уже преобразуют избыточную часть тепла в дополнительное электричество. Правда, пока они это делают с очень малым КПД (6–7%).
Реклама на Forbes
Но и этого может хватить для обеспечения энергией телевизора или компьютера.
Термоэлектрические материалы были открыты довольно давно. Сначала немецкий ученый Томас Иоганн Зеебек обнаружил взаимосвязь между теплом и электричеством. Затем термоэлектрические явления более подробно изучил французский физик Жан Пельтье. Сумма законов Зеебека и Пельтье послужила основой для первого экспериментального наблюдения термоэлектрического эффекта. Его в середине XIX века произвел российский физик Эмилий Христианович Ленц. Он взял спай из проволок висмута и сурьмы, поместил на него каплю воды, пропустил электричество, и капля замерзла.
С тех пор прошло довольно много времени, прежде чем термоэлектрические материалы нашли практическое применение. Произошло это благодаря нашему соотечественнику академику Абраму Федоровичу Иоффе, который еще в 1940-е годы высказал идею, что термоэлектрические материалы из очень тяжелых элементов могут быть достаточно эффективны для применения. Иоффе предложил два соединения: теллурид висмута и теллурид свинца. Свои работы он опубликовал на рубеже 1940-1950-х годов, после чего началось развитие исследований в области термоэлектрических материалов с целью создать своего рода отрасль промышленности, которая эти термоэлектрические материалы будет выпускать.
Для того чтобы определить, насколько велика эффективность тех или иных термоэлектрических материалов, нужна была система измерения. И тогда придумали такую безразмерную величину, которая называется «добротность термоэлектрического материала». Она учитывает эффект передачи носителей заряда и эффект передачи носителей тепла в одном соединении.
Для соединений, предложенных академиком Иоффе, величина добротности составила примерно 0,6. Благодаря усилиям по легированию, допированию этих соединений, они за довольно короткое время были доведены до большей эффективности, равной уже 0,9, и началось промышленное производство.
С тех пор все попытки улучшить эффективность термоэлектрического материала были бесплодными, пока в середине 90-х годов XX века новую идею не выдвинул Слэк, американский физик из Ренселеровского политехнического университета. Он сказал, что раз огромную роль играют два процесса: транспорта носителей зарядов, то есть электронов или дырок, и транспорта фононов, то есть транспорта тепла, — то нужно создать такое соединение, в котором эти два типа транспорта будут разделены. И он придумал концепцию с названием «фононное стекло — электронный кристалл».
На базе этой концепции, которая уточнялась, видоизменялась (превратившись в «фононную жидкость и электронный кристалл»), в течение последних 15 лет были созданы новые термоэлектрические материалы. У каждого из них есть свои плюсы и минусы, но, если суммировать все, что мы имеем на сегодняшний день, то для того чтобы создать холод под действием электричества, нет ничего лучше теллурида висмута. А вот для того чтобы создавать электричество под действием температур в диапазоне 200-600 градусов, были найдены новые соединения.
Вопрос в том, как довести эти соединения до промышленных технологий.
Чем эти новые соединения интересны? Например, они не содержат такого элемента, как теллур, который является одним из самых редких элементов на Земле. А до сих пор без теллура не обходится производство ни одного термоэлектрического материала. То есть появилась возможность заменить его на более доступные вещества: железо, медь, сурьму, никель, серу, селен.
Появились и новые направления использования термоэлектрических материалов. Еще в 50-е — начале 60-х годов XX века их стали использовать в космосе. Идея заключалась в том, что тепло, необходимое для работы термоэлектрического материала, должен дать радиоактивный источник. Были созданы такие устройства, в которых образец плутония, саморазогреваясь, давал достаточно тепла для того, чтобы на автономных системах — спутниках, космических объектах — работали термоэлектрические материалы и давали бортовое питание.
Сегодня мы хорошо понимаем, что использование радиоактивных материалов небезопасно и уж никак нельзя перенести этот опыт на то, что мы называем объектами народного хозяйства или объектами быта — безопасность здесь превыше всего. Тем не менее, существуют идеи использования альтернативных источников тепла (например, инфракрасного излучения Солнца) для работы термоэлектрических материалов и преобразования тепловой энергии в электрическую.
На сегодняшний день ведется много разработок по всему миру, в том числе в МГУ и питерском Физтехе. Они показывают, что идеи, выдвинутые Слэком в середине 1990-х годов, все еще живы, и на их основе можно создать новые термоэлектрические материалы с более высоким КПД.
Уровень развития термоэлектрических разработок пока таков, что весь рынок составляет порядка $6 млрд в год, и его сильного увеличения пока не предвидится. Тем не менее, эффективность термоэлектрического материала, как материала, который работает, по сути дела, автономно, обеспечивая небольшое, но заметное замещение углеводородных источников энергии, нельзя сбрасывать со счетов.
Тепловые электростанции
На ТЭС пар высокого давления и температуры, полученный от нагрева воды при сжигании твердого топлива (главным образом угля), вращает турбину, подключенную к генератору. Таким образом он преобразует свою кинетическую энергию в электрическую. Рабочие компоненты тепловой электростанции:
- Котел с газовой топкой.
- Паровая турбина.
- Генератор.
- Конденсатор.
- Охлаждающие башни.
- Циркуляционный водяной насос.
- Насос подачи воды в котел.
- Принудительные вытяжные вентиляторы.
- Сепараторы.
Типовая схема тепловой электростанции представлена ниже.
Паровой котел служит для преобразования воды в пар. Этот процесс осуществляется путем нагрева воды в трубах с нагревом от сжигания топлива. Процессы горения непрерывно проводятся в камере сгорания топлива с подачей воздуха извне.
Паровая турбина передает энергию пара для вращения генератора. Пар с высоким давлением и температурой толкает лопатки турбины, установленных на валу, так, что он начинает вращаться. При этом параметры перегретого пара, поступающего в турбину, снижается до насыщенного состояния. Насыщенный пар попадает в конденсатор, а роторная мощность применяется для вращения генератора, вырабатывающего ток. Сегодня почти все паровые турбины представляют собой конденсаторный тип.
Конденсаторы — это устройства для преобразования пара в воду. Пар течет снаружи труб, а охлаждающая вода течет внутри труб. Такая конструкция называется поверхностным конденсатором. Скорость передачи тепла зависит от потока охлаждающей воды, площади поверхности труб и разности температур между водяным паром и охлаждающей водой. Процесс изменения водяного пара происходит при насыщенном давлении и температуре, в этом случае конденсатор находится под вакуумом, потому что температура охлаждающей воды равна внешней температуре, максимальная температура конденсата воды вблизи температуры наружного воздуха.
Генератор преобразует механическую энергию в электрическую. Генератор состоит из статора и ротора. Статор состоит из корпуса, который содержит катушки, а магнитная полевая роторная станция состоит из сердечника, содержащего катушку.
По виду вырабатываемой энергии ТЭС делятся на конденсационные КЭС, которые производят электрическую энергию и теплоэлектроцентрали ТЭЦ, совместно выпускающие тепловую (пар и горячая вода) и электрическую энергию. Последние, имеют возможности преобразования тепловой энергии в электрическую с высоким КПД.
Примеры термоэлектрических генераторов промышленного применения
Универсальный термоэлектрический генератор Б4-М
Универсальный генератор Б4-М позволяет получать напряжение питания 12 В при установке на вертикальные горячие поверхности с температурой +250 °С и обеспечивающие мощность теплового потока через генератор 300 Вт. Генератор обеспечивает непрерывную круглосуточную работу без постоянного наблюдения за его функционированием. Степень защиты ТЭГ Б4-М от прикосновения к токоведущим частям, попадания твердых посторонних тел и жидкости — IP35 по ГОСТ 14254-96. Генератор предназначен для работы в помещении и на открытом воздухе при любой погоде. Генератор снабжен бронерукавом, служащим защитой проводов выходного напряжения от механических повреждений и перегрева (рис. 2). На бронерукаве также установлен разъем выходного напряжения.
Рис. 2. Внешний вид и состав ТЭГ Б4-М (1 — рабочая поверхность; 2 — кожух; 3 — отверстия для крепежа; 4 — ребра радиатора; 5 — разъем подключения переходного устройства
В реальных условиях эксплуатации в силу ряда факторов достаточно сложно обеспечить постоянную температуру источника тепла. В этой связи для защиты от перегрева и повышения надежности генератор имеет встроенную тепловую защиту, предотвращающую выход из строя генератора при нагреве установочной поверхности до +300 °С. Основные технические характеристики ТЭГ Б4-М приведены в таблице 1.
В процессе проектирования систем с применением термоэлектричесих генераторов возникает вопрос: какими будут выходные параметры генератора при температурах ниже номинальной? На рис. 3 приведена зависимость выходной мощности генератора Б4-М на согласованной нагрузке от температуры источника тепла. На графике видна область срабатывания тепловой защиты после роста температуры источника тепла свыше +260 °С, при котором происходит уменьшение теплового потока через термоэлектрический модуль и, как следствие, снижение вырабатываемой электрической мощности. Испытания производились при комнатной температуре, в условиях естественной конвекции. Для нормальной работы ТЭГ Б4-М необходимо охлаждение радиатора, поэтому важно обеспечить свободное прохождение воздуха вдоль его ребер. Эксплуатация генератора на открытом воздухе, как правило, дает лучшие результаты за счет присутствия дополнительного естественного обдува радиатора, при этом защищать генератор от дождя и снега необходимости нет, так как попадание влаги на радиатор дополнительно охлаждает его и, соответственно, увеличивает вырабатываемую мощность устройства. Для питания электронных устройств рекомендуется применять соответствующий стабилизатор напряжения.
Рис. 3. Типовые результаты испытаний генератора Б4-М
Термоэлектрический генератор ТЭГ-5
Модернизация инфраструктуры промышленных предприятий и внедрение современных систем энергоучета зачастую ограничены отсутствием электрического питания в местах установки различных приборов телеметрии и передачи данных. При этом во многих случаях в наличии есть паропровод. Для получения источника электрической энергии от тепловой энергии пара служит термоэлектрический генератор ТЭГ-5 (рис. 4), устанавливаемый на паропроводах промышленных объектов и имеющий выходную мощность 5 Вт, гарантированную производителем для самых неблагоприятных сочетаний условий эксплуатации. Основные технические характеристики приведены в таблице 2.
Рис. 4. Генератор ТЭГ-5: сверху габаритные размеры; внизу внешний вид
Термоэлектрический генератор на газовом топливе ТЭГ-15
Термоэлектрический генератор на газовом топливе ТЭГ-15 (рис. 5) предназначен для получения электрической энергии для питания аппаратуры учета расхода газа путем преобразования тепловой энергии сжигания газового топлива в электрическую. Генератор успешно эксплуатируется на газораспределительных пунктах и обеспечивает автономное питание систем сбора и передачи информации, независимое от внешних источников электрической энергии.
Рис. 5. Термоэлектрический генератор ТЭГ-15 на газораспределительных пунктах
Применение термоэлектрических генераторов на газовом топливе позволяет снизить затраты, исключив необходимость подключения к линиям электроснабжения пунктов размещения измерительной и передающей аппаратуры. Генераторы снабжены аккумуляторными батареями и устройством контроля заряда и работы устройства. Как указано в таблице 3, номинальная мощность генератора составляет 15 Вт. Этой мощности достаточно для питания современных электронных приборов учета расхода и параметров газа. В случае необходимости получения большей мощности или резервирования генераторы могут каскадироваться.
Атомные электростанции
АЭС используют тепло, выделяемое во время ядерного деления, для нагрева воды и производства пара. Пар используется для вращения больших турбин, которые генерируют электричество. При делении атомы расщепляются, образуя более мелкие атомы, высвобождая энергию. Процесс протекает внутри реактора. В его центре находится ядро, в котором содержится уран 235. Топливо для АЭС получают из урана, имеющего в своем составе изотоп 235U (0,7%) и неделящегося 238U (99,3 %).
Ядерный топливный цикл представляет собой серию промышленных этапов, связанных с производством электроэнергии из урана в ядерных энергетических реакторах. Уран — относительно распространенный элемент, который встречается во всем мире. Он добывается в ряде стран и обрабатывается до использования в качестве топлива.
Виды деятельности, связанные с производством электроэнергии, в совокупности относятся к ядерному топливному циклу по преобразованию тепловой энергии в электрическую на АЭС. Ядерный топливный цикл начинается с добычи урана и заканчивается удалением ядерных отходов. При переработке использованного топлива в качестве опции для ядерной энергии, его этапы образуют настоящий цикл.
Уранплутониевый топливный цикл
Чтобы подготовить топливо для использования на АЭС, осуществляются процессы по добыче, переработке, конверсии, обогащению и выпуску твэлов. Топливный цикл:
- Выгорание урана 235.
- Шлакование – 235U и (239Pu, 241Pu) из 238U.
- В процессе распада 235U расход его уменьшается, а из 238U при выработке э/энергии получаются изотопы.
Себестоимость твэлов для ВВР примерно 20 % себестоимости вырабатываемого электричества.
После того как уран проведет около трех лет в реакторе, используемое топливо может пройти еще один процесс использования, включая временное хранение, переработку и рециркуляцию до удаления отходов. АЭС обеспечивает прямое преобразование тепловой энергии в электрическую. Тепло, выделяемое во время ядерного деления в активной зоне реактора, используется для превращения воды в пар, который вращает лопасти паровой турбины, приводя в действие генераторы, вырабатывающие электричество.
Пар охлаждается, превращаясь в воду в отдельной структуре на силовой установке, называемой градирней, которая использует воду из прудов, рек или океана для охлаждения чистой воды паросилового контура. Затем охлажденную воду повторно используют для получения пара.
Доля выработки электроэнергии на АЭС, по отношению к общему балансу выработки их разных видов ресурсов, в разрезе некоторых стран и в мире — на фото ниже.
Газотурбинная электростанция
Принцип работы газотурбинной электростанции аналогичен работе паротурбинной электростанции. Единственное различие заключается в том, что на паротурбинной электростанции для вращения турбины используется сжатый пар, а в газотурбинной силовой установке — газ.
Рассмотрим принцип преобразования тепловой энергии в электрическую в газотурбинной электростанции.
В газотурбинной электростанции воздух сжимают в компрессоре. Затем этот сжатый воздух проходит через камеру сгорания, где образуется газовоздушная смесь, повышается температура сжатого воздуха. Эта смесь с высокой температурой и высоким давлением проходит через газовую турбину. В турбине она резко расширяется, получая кинетическую энергию достаточную для вращения турбины.
В газотурбинной электростанции вал турбины, генератор переменного тока и воздушный компрессор являются общими. Механическая энергия, создаваемая в турбине, частично используется для сжатия воздуха. Газотурбинные электростанции часто используются в качестве резервного поставщика вспомогательной энергии на гидроэлектростанции. Он генерирует вспомогательную мощность во время запуска гидроэлектростанции.
Создан материал, превращающий тепло в электричество с рекордной эффективностью
Исследователи из Австрии, Японии и Китая представили термоэлектрический преобразователь с эффективностью почти в два раза выше существующих аналогов. Статья исследователей была опубликована в журнале Nature.
Термоэлектрические материалы могут преобразовывать тепло в электрическую энергию . Это связано с так называемым эффектом Зеебека: если существует разница температур между двумя концами такого материала, то он может создавать электрический ток в цепи, в которую включен. Количество электрической энергии, которое может быть произведено при заданной разности температур, измеряется значением добротности ZT: чем выше этот показатель, тем лучше его термоэлектрические свойства.
Лучшие термоэлектрики на сегодняшний день имеют значение ZT от 2,5 до 2,8. Разработанный учеными новый материал в два раза превышает эти показатели: его ZT колеблется от 5 до 6. Этот рекордный композит представляет собой тонкие слои железа, ванадия, вольфрама и алюминия, нанесенные на кристалл кремния.
«Хороший термоэлектрический материал должен демонстрировать сильный эффект Зеебека, и он должен отвечать двум важным требованиям, которые очень трудно совместить, — подчеркивает один из исследователей, профессор Института физики твердого тела Венского технического университета Эрнст Бауэр. — С одной стороны, он должен как можно лучше проводить электричество, а с другой — как можно хуже переносить тепло. Это сложная задача, поскольку электропроводность и теплопроводность обычно тесно связаны».
Атомы в слоях этого материала расположены в регулярной гранецентрированной кубической решетке. Однако при нанесении тонкого слоя на кристалл кремния наблюдается удивительный эффект: их структура радикально меняется. Хотя атомы все еще имеют кубическую решетку, теперь она оказывается объемно-центрированной, и распределение различных типов атомов становится совершенно случайным. Эта смесь регулярности и нерегулярности расположения атомов также изменяет электронную структуру, которая определяет движение электронов в твердом теле.
Электрический заряд движется через материал особыми порциями — фермионами Вейля — безмассовыми частицами, переносящими возмущение кристаллической решетки и электроны. С другой стороны, колебания решетки, которые переносят тепло из мест с высокой температурой в места с низкой температурой, замедляются из-за неравномерностей в кристаллической структуре. Поэтому теплопроводность материала уменьшается.
Новый материал, по словам ученых, настолько эффективен, что его можно было бы использовать для обеспечения энергией датчиков или даже небольших компьютерных процессоров. Вместо того чтобы подключать небольшие устройства к кабелям, они могли бы генерировать свое собственное электричество из перепадов температур.
Преимущества и недостатки газотурбинной электростанции
Конструкция газотурбинной электростанции намного проще, чем паротурбинная электростанция. Размер газотурбинной электростанции меньше, чем у паротурбинной электростанции. На газотурбинной электростанции нет котельного компонента, и, следовательно, система менее сложная. Отсутствует пар, поэтому не требуются конденсатор и градирня.
Проектирование и строительство мощных газотурбинных электростанций намного проще и дешевле, капитальные затраты и эксплуатационные расходы в значительной степени меньше стоимости аналогичной паротурбинной электростанции.
Постоянные потери на газотурбинной электростанции значительно меньше по сравнению с паротурбинной электростанцией, поскольку в паровой турбине силовая установка котла должна работать непрерывно, даже когда система не подает нагрузку в сеть. Газотурбинная электростанция может быть запущена практически мгновенно.
Недостатки газотурбинной электростанции:
- Механическая энергия, создаваемая в турбине, также используется для запуска воздушного компрессора.
- Поскольку основная часть механической энергии, создаваемой в турбине, используется для управления воздушным компрессором, общая эффективность газотурбинной электростанции не такая высокая, как эквивалентная паротурбинная электростанция.
- Выхлопные газы в газотурбинной электростанции сильно отличаются от котла.
- До фактического запуска турбины воздух должен быть предварительно сжат, что требует дополнительного источника питания для запуска газотурбинной электростанции.
- Температура газа достаточно высока на газотурбинной электростанции. Это приводит к тому, что срок службы системы меньше, чем у эквивалентной паровой турбины.
Из-за более низкой эффективности газотурбинная электростанция не может использоваться для коммерческого производства электроэнергии, она обычно используется для подачи вспомогательной энергии на другие обычные электростанции, например, такие как гидроэлектростанция.
Термоэмиссионные преобразователи
Они также называются термоэлектронным генератором или термоэлектрическим двигателем, которые непосредственно преобразуют тепло в электричество, используя термоэмиссию. Тепловая энергия может быть преобразована в электроэнергию с очень высокой эффективностью через индуцированный температурой процесс электронного потока, известный как термоэлектронное излучение.
Основным принципом работы термоэлектронных преобразователей энергии является то, что электроны испаряются с поверхности нагретого катода в вакууме и затем конденсируются на более холодном аноде. После первой практической демонстрации в 1957 году термоэлектронные преобразователи энергии использовались с различными источниками тепла, но все они требуют работы при высоких температурах — выше 1500 К. В то время как работа термоэлектронных преобразователей энергии при относительно низкой температуре (700 К — 900 К) возможна, эффективность процесса, которая обычно составляет > 50%, значительно уменьшается, поскольку количество излучаемых электронов на единицу площади от катода зависит от температуры нагрева.
Для традиционных катодных материалов, таких как металлы и полупроводники, число испускаемых электронов пропорционально квадрату температуры катода. Однако недавнее исследование демонстрирует, что температура тепла может быть снижена на порядок при использовании графена в качестве горячего катода. Полученные данные показывают, что катодный термоэлектронный преобразователь на основе графена, работающий при 900 К, может достичь КПД 45%.
Принципиальная схема процесса электронной термоэлектронной эмиссии представлена на фото.
TIC на основе графена, где Tc и Ta — температура катода и температура анода, соответственно. Основываясь на новом механизме термоэлектронной эмиссии, исследователи предполагают, чтобы конвертер энергии катода на основе графена мог найти свое применение при повторном использовании тепла промышленных отходов, которое часто достигает температурного диапазона от 700 до 900 K.
Новая модель, представленная Ляном и Энгом, может принести пользу конструкции преобразователя энергии на основе графена. Твердотельные преобразователи энергии, которые в основном являются термоэлектрическими генераторами, обычно работают неэффективно в низкотемпературном диапазоне (с КПД менее 7%).
Термоэлектрический генератор ГТГ-200
ГТГ-200 (рис. 6) является автономным источником электроэнергии, работающим на природном газе, пропане или пропан-бутановой смеси. Применяется для комплектации автономных источников питания (АИП) мощностью 200–2000 Вт.
Рис. 6. Устройство термоэлектрического генератора ГТГ-200
Высокая вырабатываемая генератором мощность определяется применением в нем среднетемпературных термоэлектрических генераторных модулей серии Mars, обеспечивающих выходную мощность до 45 Вт (базовый вариант 40 Вт) и предназначенных для применения совместно с источником тепла с температурой +530 °С и мощностью теплового потока 650 Вт. Основные параметры этого генераторного модуля приведены в таблице 4, внешний вид на рис. 7, нагрузочная характеристика на рис. 8.
Рис. 7. Среднетемпературный генераторный модуль серии Mars
Гарантийный срок эксплуатации генераторного модуля серии Mars составляет 10 лет.
Рис. 8. Типовая вольт-амперная характеристика генераторного модуля Mars
Генераторы термоэлектрические ГТГ-200 применяются в качестве необслуживаемых автономных источников электроэнергии постоянного тока и тепла в составе независимых автономных источников энергопитания для станций катодной защиты газопроводов от коррозии, питания изолированных от стационарного электроснабжения узлов учета, питания средств автоматики, телемеханики и технологической связи магистральных газопроводов. Генераторы работают на природном или сжиженном газе. Для управления работой термоэлектрического генератора ГТГ-200 в составе автономного источника питания применяется блок стабилизации напряжения и управления, предназначенный для:
- стабилизации и ограничения зарядного напряжения аккумуляторных батарей;
- включения и отключения электромагнитного клапана подачи газа в генератор;
- подачи напряжения на высоковольтный блок для электроискрового «поджига» газовой горелки генератора;
- контроля вырабатываемой генератором мощности;
- обеспечения параллельной работы нескольких генераторов.
Условия эксплуатации генератора ГТГ-200:
- климатическое исполнение О;
- категория размещения 2 по ГОСТ 15150-69;
- температура окружающего воздуха –50…+50 °С;
- относительная влажность воздуха до 98%.
Основные параметры прибора приведены в таблице 5, а внешний вид с воздуховодом и газоотводящей трубой — на рис. 9.
Рис. 9. Внешний вид генератора ГТГ-200
Термоэлектрические генераторы
Утилизация отходов энергии стала популярной целью для исследователей и ученых, которые придумывают инновационные методы для достижения этой цели. Одним из наиболее перспективных направлений является термоэлектрические устройства на основе нанотехнологий, которые выглядят, как новый подход к экономии энергии. Прямое преобразование тепла в электричество или электричество в тепло известно, как термоэлектричество, основанное на эффекте Пельтье. Если быть точным, эффект называется именем двух физиков — Жана Пельтье и Томаса Зеебека.
Пельтье обнаружил, что ток, посылаемый в два разных электрических проводника, которые соединены на двух переходах, приведет к нагреву одного соединения, в то время как другое соединение охладится. Пельтье продолжил исследования, установил, что каплю воды можно заставить замерзнуть на стыке висмута-сурьмы (BiSb), просто изменив ток. Пельтье также обнаружил, что электрический ток может протекать, когда имеет место разность температур размещается поперек соединения разных проводников.
Термоэлектричество является чрезвычайно интересным источником электроэнергии из-за его способности преобразовывать тепловой поток непосредственно в электричество. Он представляет собой преобразователи энергии, которые легко масштабируются и не имеют движущихся частей или жидкого топлива, что делает их применимыми практически в любой ситуации, когда большое количество тепла, как правило, направляется в отходы, от одежды до крупных промышленных объектов.
Наноструктуры, используемые в материалах полупроводниковых термоэлементах, помогут поддерживать хорошую электропроводность и уменьшить теплопроводность. Таким образом, производительность термоэлектрических устройств может быть увеличена за счет использования материалов на основе нанотехнологий, с применением эффекта Пельтье. Они обладают улучшенными термоэлектрическими свойствами и хорошими поглощающими способность солнечной энергии.
Применение термоэлектричества:
- Поставщики энергии и датчики в диапазонах.
- Сжигающая масляная лампа, управляющая беспроводным приемником для удаленной связи.
- Нанесение небольших электронных устройств, таких как MP3-плееры, цифровые часы, чипы GPS/GSM и импульсные счетчики с теплотой тела.
- Быстро охлаждающие сиденья в роскошных автомобилях.
- Уборка отработанного тепла в автомобилях путем преобразования его в электричество.
- Преобразование отработанного тепла на заводах или промышленных объектах в дополнительную мощность.
- Солнечные термоэлектрики могут быть более эффективнее, чем фотоэлектрические элементы для выработки электроэнергии, особенно в районах с меньшим солнечным светом.
МГД-генераторы электроэнергии
Магнитогидродинамический генератор мощности генерируют электроэнергию посредством взаимодействия движущейся жидкости (обычно ионизированный газ или плазма) и магнитного поля. С 1970 года в нескольких странах были проведены исследовательские программы МГД с особым акцентом на использование угля в качестве топлива.
Основополагающий принцип генерации MHD-технологий элегантен. Как правило, электропроводящий газ образуется при высоком давлении путем сжигания ископаемого топлива. Затем газ направляется через магнитное поле, в результате чего внутри него действует электродвижущая сила в соответствии с законом индукции Фарадея (названным в честь английского физика и химика XIX века Майкла Фарадея).
Система МГД представляет собой тепловой двигатель, включающий расширение газа от высокого до низкого давления так же, как и в обычном газовом турбогенераторе. В системе МГД кинетическая энергия газа преобразуется непосредственно в электрическую энергию, так как ей разрешено расширяться. Интерес к генерированию МГД был первоначально вызван открытием того, что взаимодействие плазмы с магнитным полем может происходить при гораздо более высоких температурах, чем это возможно во вращающейся механической турбине.
Предельные характеристики с точки зрения эффективности в тепловых двигателях были установлена в начале XIX века французским инженером Сади Карно. Выходная мощность МГД-генератора для каждого кубического метра его объема пропорциональна продукту газопроводности, квадрату скорости газа и квадрату силы магнитного поля, через который проходит газ. Для того, чтобы МГД-генераторы работали конкурентоспособно, с хорошей производительностью и разумными физическими размерами, электропроводность плазмы должна быть в диапазоне температур выше 1800 К (около 1500 С или 2800 F).
Выбор типа МГД-генератора зависит от используемого топлива и применения. Обилие запасов угля во многих странах мира способствуют развитию углеродных систем МГД для производства электроэнергии.
Электрическая работа и мощность. Преобразование электрической энергии в тепловую энергию
ЭЛЕКТРИЧЕСКАЯ РАБОТА И МОЩНОСТЬ.
ПРЕОБРАЗОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В ТЕПЛОВУЮ ЭНЕРГИЮ.
Если электрическую цепь замкнуть, то в ней возникнет электрический ток. При этом расходуется энергия источника питания, и он совершает работу по перемещению заряда по всей замкнутой цепи.
Согласно закона Ома для участка цепи:
Величину, которая характеризует скорость совершения работы, называют мощностью.
Мощность, отдаваемая источником:
Мощность потерь энергии внутри источника:
Мощность потребителей:
Единица измерения мощности: [Вт*с] = [Дж]
На практике используют более крупную единицу: [кВт*ч] = 3600000 Вт*с
Когда в цепи с сопротивлением R существует ток, электроны, перемещаясь под действием поля, сталкиваются с ионами кристаллической решетки проводника. При этом кинетическая энергия электронов передается ионам, что приводит к увеличению амплитуды колебательного движения ионов, и, следовательно, к нагреванию проводника. Количество теплоты, выделенной в проводнике:
Q = I*Rt.
Приведенная зависимость носит название закона Ленца — Джоуля: количество теплоты, выделяемой при прохождении тока в проводнике, пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.
Преобразование электрической энергии в тепловую имеет большое практическое значение и широко используется в различных нагревательных приборах, как в промышленности, так и в быту. Однако часто тепловые потери являются нежелательными, так как они вызывают непроизводительные расходы энергии, например, в электрических машинах, трансформаторах и других устройствах, что снижает их КПД.
ТОКОВАЯ НАГРУЗКА ПРОВОДОВ И ЗАЩИТА ИХ ОТ ПЕРЕГРУЗОК
Рассмотрим процесс нагревания проводов в электрической цепи. В первый момент, когда температура провода равна температуре окружающей среды, вся теплота, выделенная током, идет на нагрев провода. В результате его температура быстро повышается. По мере ее роста увеличивается количество теплоты, отдаваемой проводом среде, а количество теплоты, расходуемой на нагрев, уменьшается. Наконец, наступает момент установления температурного баланса: количество отдаваемой энергии равно количеству полученной энергии и повышение температуры провода прекращается.
Температуру провода, соответствующую моменту баланса, называют установившейся.
Время, в течение которого провода нагреваются до установившейся температуры, зависит от их геометрических размеров и условий охлаждения. Нагрев провода допускается до температур порядка 60—80° С. В соответствии с допустимой температурой вводится понятие допустимого тока.
Допустимым называют ток, при котором устанавливается наибольшая допустимая температура.
Коротким замыканием называют соединение двух неизолированных проводов различного потенциала.
При нормальном режиме работы (рис. 2.1, а):
При коротком замыкании (рис. 2.2,б) :
Ток короткого замыкания может практически в десятки и сотни раз превышать номинальный ток цепи, что может вызвать тепловые и механические повреждения ее отдельных элементов. Для защиты цепи от перегрузок служат плавкие предохранители (вставки), которые при определенном токе плавятся, разрывая электрическую цепь.
Схема включения предохранителя показана на рис. 2.2.
Под номинальным понимают такой режим работы, при котором напряжение, ток и мощность в элементах электрической цепи соответствует тем значениям, на которые они рассчитаны заводом-изготовителем. При этом гарантируются наилучшие условия работы (экономичность, долговечность и т. д.).
Кроме номинального режима работы источника существуют:
- режим короткого замыкания режим холостого хода.
Режимом короткого замыкания называют режим, при котором напряжение на внешних зажимах источника равно нулю.
Режимом холостого хода источника называют режим, при котором ток в нем равен нулю.
ПОТЕРИ НАПРЯЖЕНИЯ В ПРОВОДАХ
При передаче энергии по проводам большой протяженности (рис. 2.10) приходится считаться с их сопротивлением, на котором происходит заметное падение напряжения:
При заданном напряжении U1 на входе линии напряжение на нагрузке при номинальном токе нагрузки: ДU = U 1 – U 2
Падение напряжения ДU не должно превышать определенных значений. Так, для осветительной нагрузки Значение ДU не должно превышать 2% от номинального напряжения. Найдем по заданному значению ДU необходимую площадь сечения провода S:
Нагрузка линии задается в виде потребляемой мощности, поэтому абсолютное значение потерь напряжения заменяется относительным:
Тогда,
КПД линии электропередачи:
РАСЧЕТ СЛОЖНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ
Сложной называют электрическую цепь, не сводящуюся к последовательному и параллельному соединению потребителей.
В качестве примера рассмотрим сложную цепь рис. 2.13.
Задача сводится к определению токов во всех ее ветвях, в нашем случае токов I1 I2 I3 . Значения ЭДС и сопротивлений заданы.
Существует несколько методов расчета сложных цепей. Рассмотрим некоторые из них.
МЕТОД УЗЛОВЫХ И КОНТУРНЫХ УРАВНЕНИЙ.
(МЕТОД УРАВНЕНИЙ КИРХГОФА)
Методика решения задачи этим методом.
Направление токов выбирают произвольно. Если в результате решения отдельные токи окажутся отрицательными, то это будет означать, что в действительности они проходят в направлении, противоположном выбранному. Для определения трех неизвестных токов необходимо составить три независимых уравнения, связывающих эти токи. На основании первого закона Кирхгофа для узла «с»:
I1 + I2 – I3 = 0
Уравнение для узла «f» имеет вид:
I3 — I2 — I1 = 0,
то есть совпадает с уравнением для узла «с».
Если сложная цепь имеет n узлов, то число уравнений, которые можно составить на основании первого закона Кирхгофа, на единицу меньше:
n — 1.
Недостающее уравнение можно получить на основании второго закона Кирхгофа. Для контура abcf при обходе по часовой стрелке:
Если направление обхода контура совпадает с направлением ЭДС и токов, то эти ЭДС и соответствующие падания напряжений берутся со знаком «плюс».
При составлении уравнений по второму закону Кирхгофа контуры нужно выбирать так, чтобы каждый из них отличался хотя бы одной ветвью.
Вывод: метод уравнений Кирхгофа сводится к составление системы уравнений в соответствии с первым и вторым законами Кирхгофа и решение этой системы относительно неизвестных токов.
Если электрическая цепь содержит «В» ветвей, то в общем случае необходимо определить «В» токов, т. е. токи в каждой из ветвей. Следовательно общее число уравнений по первому и второму законам Кирхгофа должно быть равно «В».
При числе узлов «У» — число независимых уравнений по первому закону Кирхгофа будет «У – 1», следовательно, остальные «П» уравнений должны быть составлены по второму закону Кирхгофа:
П = В — (У — 1).
Общее число уравнений, составленных по первому и второму законам Кирхгофа, равно числу ветвей, т. е. числу неизвестных токов; это позволяет найти токи во всех ветвях электрической цепи.
МЕТОД КОНТУРНЫХ ТОКОВ
Если сложная цепь содержит довольно много узлов и контуров, то ее расчет с помощью первого и второго законов Кирхгофа будет связан с решением большого числа уравнений. Вводя понятие о контурных токах, можно свести уравнения, составленные по законам Кирхгофа, к системе уравнений, составленных только для независимых контуров.
Под контурными токами понимают условные токи, замыкающиеся в соответствующих контурах.
Контурный ток обозначается буквой I с римским индексом, отвечающим номеру независимого контура. Контурный ток равен току в ветви, по которой он протекает индивидуально.
Рассмотрим схему цепи, представленную на рис. 2.14.
Эта схема имеет два независимых контура I и II, в каждом из которых проходят токи I1 и I11. Направления этих токов выбирается произвольными, например по часовой стрелке. Из рассмотрения схемы (рис. 2.14) видно, что реальные токи во внешних ветвях равны контурным: I1 = I1 I3 = I11
Ток во внутренней ветви равен разности контурных токов: I2 = I1 — I11
Для определения контурных токов составим два уравнения:
Собственным сопротивлением контура называется сумма всех сопротивлений в каждом независимом контуре.
Собственное сопротивление обозначается буквой R с двойным индексом соответственно номеру того контура, к которому относится.
Взаимным сопротивлением контуров называется сопротивление, входящее одновременно в каждый из двух смежных контуров.
Взаимное сопротивление обозначается буквой R с двумя индексами соответственно номерам смежных контуров.
Контурной ЭДС называется алгебраическая сумма всех ЭДС в каждом независимом контуре.
Вывод: метод контурных токов сводится к составлению и решению системы уравнений, получаемых только по второму закону Кирхгофа применительно к понятиям контурных токов, сопротивлений и ЭДС.
МЕТОД УЗЛОВОГО НАПРЯЖЕНИЯ.
Часто в сложной цепи имеется всего два узла, как, например, в схеме рис. 2.14. В этом случае расчет цепи значительно упрощается, так как достаточно определить так называемое узловое напряжение Uаб.(рис.2.15) После этого токи в ветвях находятся следующим образом:
Все токи в ветвях направляются к узлу, потенциал которого условно принимается за нуль. Узловое напряжение:
где G – проводимость соответствующих ветвей.
Если ЭДС источника направлена к узлу, то произведение ЕG берется со знаком «минус». Токи в ветвях определяются так:
Вывод: метод узлового напряжения сводится к составлению системы уравнений, составленных только по первому закону Кирхгофа; из этих уравнений определяются напряжения в узлах схемы электрической цепи относительно некоторого базисного узла, потенциал которого изначально принимается равным нулю, а токи в ветвях, соединяющих узлы, находят по закону Ома.
МЕТОД НАЛОЖЕНИЯ (СУПЕРПОЗИЦИИ)
Этот метод основан на принципе наложения, который утверждает: ток в любой ветви линейной электрической цепи, содержащей несколько источников ЭДС, равен алгебраической сумме токов в этой ветви при действии каждого источника в отдельности. При этом остальные источники заменяются резисторами, имеющими сопротивления, равные внутренним сопротивлениям замененных источников ЭДС.
Справедливость этого принципа следует непосредственно выражения:
Действительно, если в этом выражении положить все ЭДС, кроме Е1, равным нулю, то получим частичный ток I/к в К-й ветви, вызванный действием только ЭДС. E1
Если считать Е2 ≠ 0, а остальные ЭДС равны нулю, то получим частичный ток I//К, вызванный действием только ЭДС Е2 и т. д.
Алгебраическая сумма всех частичных токов даст действительный ток, протекающий в к-й ветви.
Принцип наложения применим и к напряжениям, так как они линейно связаны с токами. К расчету же мощности этот принцип применять нельзя, так как мощность является не линейной, а квадратичной формой тока или напряжения: если по участку цепи с сопротивлением R протекает ток I = I1 + I2, то мощность равна:
Р = RI2 = R (I1 + I2)2
а не RI12 + RI22, как формально следовало бы из принципа наложения.
Вывод: метод наложения позволяет найти токи в ветвях без составления и решения системы уравнений, а непосредственно по закону Ома. При этом вначале находят частичные токи от действия каждого источника ЭДС в отдельности, принимая остальные ЭДС равными нулю и оставляя в схеме только их внутренние сопротивления, а затем — действительные токи как алгебраические суммы частичных токов.
Получить текст