Классифицировать электрические сети принято по области применения (по назначению), масштабным признакам (обеспечивающие крупные регионы и небольших потребителей тока), а также по роду тока.
По области применения различают следующие электрические сети:
— Общего назначения (электроснабжение промышленных, бытовых, транспортных, сельскохозяйственных потребителей. — Автономного электроснабжения (автономных и мобильных объектов: самолетов, транспортных средств, автономных станций, судов, космических аппаратов и т.п.). — Технологических объектов (электроснабжение инженерных сетей и производственных объектов).
Контактной сетью называют специальные электрические сети, которые служат для передвижения электроэнергии на двигающиеся вдоль сети транспортные средства (троллейбус, локомотив, трамвай, метро).
Характерным для электросети является то, что она связывает при помощи линий электропередач территориально отдаленные пункты потребителей и источников.
Распределительные сети электрической энергии — назначение
Системы распределения электрической энергии или распределительные сети предназначены для
- Доставки электрической энергии напряжением от 6 кВ до 10 кВ, потребителю.
- Распределение электрической энергии по подстанциям 380 В -35 кВ.
- Сбор мощностей теплофикационных и гидравлических подстанций мощностями до сотни мегаватт.
Стоит отметить, что в современных условиях при постоянном росте потребления электроэнергии, стало условным деление электрических сетей передачи и распределения электроэнергии по напряжению на системообразующие, системы передачи (протяженные) и системы распределения электроэнергии. Если раньше к системам распределения относились лишь сети напряжением до 35 кВ, то на сегодня к этой классификации можно отнести отдельные сети, 110 и даже 220 кВ.
Именно поэтому, на сегодня, к системам распределения электрической энергии относятся
- Электрические сети напряжением от 6 до 150 кВ, иногда до 220 кВ.
- Две или три уровня напряжения после трансформации: сети СН — среднего напряжение 110-150 кВ, которые питаются от сетей ВН (высокого напряжения) 330-750 кВ. Сети низкого напряжения (НН) от 6 до 35 кВ, которые питаются от сетей СН через трансформаторные подстанции СН\НН или напрямую. Через трансформацию ВН\НН.
- Низшим уровнем напряжения распределительных сетей являются сети напряжением 220-660 В, получаемого при дополнительной трансформации 6-35 кВ\220-66- кВ.
Классификация промышленных электропотребителей
Промышленные предприятия могут быть классифицированы по следующим основным признакам:
- по суммарной установленной (номинальной) мощности электроприемников : а) малые предприятия — до 5 мВт; б) средние предприятия — 5..75 мВт; в) крупные предприятия — свыше 75 мВт:
- по принадлежности к соответствующей отрасли промышленности (металлургические, машиностроительные, нефтехимические и др.);
- по тарифным группам и условиям определения мощности средств компенсации реактивной мощности в электрических сетях предприятия: а) с присоединенной трансформаторной мощностью 750 кВ’А и выше — I группа; б) с присоединенной трансформаторной мощностью менее 750 кВА — II группа. Предприятия I тарифной группы оплачивают полученную электроэнергию в основном по двухставочному тарифу (за потребленную мощность — основная ставка, за потребленную электроэнергию — дополнительная тарифная ставка). Мощность компенсирующих устройств выбирается одновременно с основными элементами системы электроснабжения. Предприятия II тарифной группы оплачивают полученную электроэнергию по одноставочному тарифу. Мощность компенсирующих устройств, которые необходимо установить в электрической сети предприятия, указывается энергосистемой;
- по категории надежности электроснабжения. При существующем разделении электроприемников по требованиям надежности электроснабжения на I, II и III категории конкретное предприятие можно отнести к той или иной категории или категориям надежности, оценивая процентный состав приемников разных категорий;
- по категории энергетических служб. Всего существует 12 категорий энергетических служб. Конкретная категория определяется величиной суммарной плановой трудоемкости годового плана планово-предупредительного ремонта энергетического оборудования и сетей предприятия. Именно эта величина наиболее объективно отражает масштабы и сложность энергетического хозяйства любого предприятия и обуславливает штаты отдела главного энергетика и его подразделений.
Большая часть промышленных предприятий размещается в городах.
Являясь основными потребителями электроэнергии, города в зависимости от численности населения, подразделяются на: крупнейшие— более 500 тыс. чел; крупные— 250—5 00 тыс.; большие — 100—250 тыс.; средние— 50—100 тыс.; малые — до 50 тыс. чел.
В свою очередь территория города по назначению подразделяется на следующие зоны: ‘промышленную — для размещения производственных предприятий; коммунально-складскую — для размещения транспортных предприятий (автобаз, троллейбусных и трамвайных парков); внешнего транспорта — для размещения транспортных сооружений, вокзалов, портов, станций; селитебную — для размещения жилых районов, общественных зданий и сооружений, мест отдыха населения.
Основу застройки городов составляют гражданские здания, представляющие собой объекты непроизводственной сферы народного хозяйства: жилые дома, общежития, гостиницы, предприятия торговли и общественного питания, школы и дошкольные учреждения, предприятия бытового обслуживания и коммунального хозяйства и др.
Расположение потребителей (электроприемников) на генплане (плане) предприятия или города, величина и характер их электрических нагрузок, характеристика электроприемников с точки зрения надежности обеспечения их электроэнергией являются основными исходными данными, определяющими выбор соответствующей системы электроснабжения.
Конфигурация распределительных сетей
По конфигурации распределительные сети могут быть:
- Разомкнутыми (радиальными и магистральными);
- Замкнутыми.
По схеме мы видим, что радиальная схема больше по длине и на реализацию радиальной схемы требуется больше, проводников, коммутационного оборудования, опор, изоляторов и т.п. оборудования. Как следствие, радиальная схема РС дороже магистральной схемы. Но по той, же схеме, мы видим, что при выходе из строя любого промежуточного участка магистральной сети, обесточит следующие участки сети, что говорит о её меньшей надежности.
Примечание: На самом деле, на практике применяются комбинированные схемы распределительных сетей, называемые резервные распределительные сети.
Выбор кабеля и использование УЗО
Для безопасности электрических сетей в зданиях монтируют противопожарные устройства УЗО и выставляют на приборе определенные значения. В жилом доме для общих линий ток утечки устанавливают 100 мА. У отдельных линий минимальное значение — 10 мА. При повышении показателя устройство защитного отключения (УЗО) обесточивает здание.
Прокладку электропроводки осуществляют безопасными и разрешенными ГОСТом кабелями. Алюминиевый провод для внутренней электрической сети не применяют. Его используют для подведения электричества к дому. Наиболее предпочтительный вариант для внутренней проводки — медный кабель. К его преимуществам относят:
- высокую плотность тока;
- выносливость на излом и хорошую износостойкость;
- при окислении обладает небольшим сопротивлением;
- по сравнению с алюминием не сжимается, поэтому в соединениях не образуются зазоры.
К бюджетному варианту относят марку ВВГ. Также существуют другие типы, обладающие различными свойствами:
Марка кабеля | Назначение |
Негорючий | Сниженное выделение газа и дыма. |
ВВГнг с тремя жилами по 6 мм2. | Для кабель-канала в жилых домах. |
ВВГнг (3х2,5) | Для скрытой коробки по розеткам и распределительным коробкам. |
ВВГнг (3х1,5) | Подводят к осветительным приборам и выключателям. |
ПВ1 | Для электрощита. |
ПВС (3х2,5) | Для электроприборов. |
Для внутренних стационарных проводок чаще всего применяют одножильный медный провод, так как он надежнее и прочнее многожильного аналога.
Кабели для внутренней электрической сети
Источник: https://yato-tools.ru
Резервированные распределительные сети
Для создания надежной системы обеспечения электроэнергией, распределительные сети среднего напряжения (СН) делают по резервным схемам, одновременно используя и радиальную и магистральную схемы.
На рисунках мы видим реализации, радиально-магистральную схему резервной распределительной сети (рис 1.3) и кольцевую замкнутую схему сети с единым центром питания.
На следующем фото видим, одинарную и двойную конфигурации сети при двустороннем питании.
А это схема распределительной сети, выполненная по сложно-замкнутой конфигурации с двумя источниками питания (ЦП).
Примечание: ЦП – подстанция. Она принимает электрическую энергию, понижает высокое напряжение распределительной сети способом трансформации (понижающие подстанции) и распределяет электрическую энергию потребителям. Стоит отметить, что есть и повышающие подстанции.
Производство
Электричество начинается в электростанциях, которые работают для преобразования механической энергии турбины в электрическую энергию с использованием генератора (за исключением солнечной энергии, которая использует для этого фотоэлектрические элементы).
Электростанции преобразуют энергию из таких видов топлива, как уголь или природный газ, или потоков энергии, таких как ветер и солнечный свет. Эта совокупность установок генерируют много электроэнергии и часто находится далеко от спроса на ток.
Следующая система решает проблему передачи.
Распределительные сети низкого напряжения (НН)
Распределительные сети низкого напряжения (НН) напряжением 380-10000 Вольт, являются самыми массовыми. В пределах одного сетевого предприятия может насчитываться ни одна сотня трансформаторных подстанций и пунктов. Именно по этому, в таких сетях используются недорогие трансформаторы без автоматики регулирования напряжения.
©Elesant.ru
Другие статьи раздела: Электрические сети
- Автоматы защиты
- Виды опор линий электропередачи по материалу
- Виды опор по назначению
- Воздушные линии электропередачи проводами СИП
- Деревянные опоры воздушных линий электропередачи
- Железобетонные опоры линий электропередачи
- Железобетонные опоры линий электропередачи
- Защита человека от поражения электрическим током, прямое и косвенное прикосновение
- Как получает электроэнергию потребитель низкого напряжения 380 Вольт
- Колодцы кабельной сети этапы установки
Передача
Электрическая передача осуществляется с помощью линий.
Электричество, выходящее из электростанции, проходит через специальное оборудование. Эта система оборудования увеличивает напряжение с пропорциональным уменьшением тока (количество электронов, которые текут в секунду). Это увеличение напряжения осуществляется повышающим трансформатором. Это преобразование позволяет току течь на большие расстояния, при этом типичное максимальное расстояние составляет около 500 километров.
Причина, по которой используются повышающие трансформаторы, заключается в том, что при прохождении больших расстояний через проводящий провод электричество неизбежно потеряет энергию из-за сопротивления в проводах. Эта проблема по существу решается (не полностью, а до приемлемого уровня) использованием высоковольтных линий электропередачи.
Соответствующие потери мощности в линиях при повышении напряжения уменьшаются на квадрат тока, что означает, что если ток упал в 2 раза, потери мощности уменьшаются в 4 раза.
Большие высоковольтные линии электропередач являются важным компонентом сети, поскольку они транспортируют электроэнергию с небольшими потерями энергии.
Самые современные линии передачи не используют трансформаторы, а построены на мощных полупроводниковых элементах преобразующих в постоянный ток.
Эти линии передачи постоянного тока считаются более выгодными. Однако для перехода на передачу постоянного тока потребуется не один десяток лет.