Какие материалы проводят электрический ток а какие нет?

При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью. Исходя из всего выше сказанного, все материалы поделились на три группы:

Каждая из групп нашла широкое применение в электротехнике.

Проводники

Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.

Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.

Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.

Полупроводники

Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.

К полупроводниковым материалам относят: кремний, германий, графит, гр афен, индий и т.д.

Диэлектрики

Ну и последняя группа материалов, это диэлектрики, вещества не способные проводить электрический ток. К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д. Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.

Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R, единица измерения [Ом] и проводимость, величина обратная сопротивлению. Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом. У диэлектриков сопротивление достигает десятков миллионов ом.

Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.

Найден металл, который пропускает электрический ток без производства тепла.

Полупроводники

Это особая группа веществ, которая проводит электрический ток при создании определенных условий. В кристаллической решетке полупроводников наблюдается крайне ограниченное наличие свободных носителей зарядов. Но при создании соответствующих условий, например, при воздействии света, понижении или повышении температуры, или каких-либо специфических факторов количество освобожденных носителей возрастает.

Вещества, которые проводят электрический ток и относятся к группе полупроводников обладают одной особенностью – под воздействием внешних факторов связанные электроны покидают свое место, и образуют т.н. «дырку». Она имеет положительный заряд. При создании электрического поля электроны и «дырки» двигаются навстречу друг другу, образуя электрический ток. Такая особенность называется электронно-дырочной проводимостью. Наиболее распространенными полупроводниками считаются кремний, германий, селен, галлий, теллур и т.д.

Вода не проводит электричество

Всем известно, что вода и электричество — весьма опасное сочетание. Однако сама по себе вода ток не проводит. Тогда почему вода считается хорошим проводником?

Чтобы в этом разобраться, нужно представить атом, который состоит из протонов, нейтронов и электронов. Соотношение нейтронов и электронов определяют заряд атома.

Если число протонов больше, чем электронов, заряд положительный, если наоборот — отрицательный. Поскольку атомы стремятся к нейтральному заряду, они отдают или забирают электроны.

При переходе электрона от отрицательно заряженного атома к атому с положительным зарядом образуется электрический ток.

Так как молекулы воды не имеют заряда, то и электричество они не проводят. Поэтому дистиллированная вода считается диэлектриком, то есть ток она не проводит. Однако такая вода встречается нечасто.

Вся вода, которая течёт из-под крана, содержится в реках, озёрах и морях, — это минеральный раствор той или иной концентрации.

В ней содержатся как положительно (кальций, магний, натрий, железо), так и отрицательно (хлор, сульфат, карбонат) заряженные частицы, поэтому такая вода хорошо проводит ток, и тем лучше, чем больше концентрация минеральных солей.

10 тайн мира, которые наука, наконец, раскрыла

«Движущиеся камни», странные ноги жирафов, поющие песчаные дюны и другие потрясающие загадки природы, которые нам удалось разгадать за последние несколько лет. 1.

Секрет «движущихся камней» в Долине Смерти С 1940-го года до недавнего времени Рейстрек-Плайя, высохшее озеро с ровным дном, находящееся в Долине Смерти в Калифорнии, было местом, где наблюдался феномен «движущихся камней».

Над этой тайной ломало голову множество людей. Годами или даже десятилетиями, некая сила, казалось, двигала… Читать далее…

Атом, люстр, нуктемерон, и ещё семь единиц времени, о которых вы не слышали

Когда люди говорят, что им «довольно момента», они наверняка не догадываются, что обещают освободиться ровно через 90 секунд.

Электрический ток в жидкости и фотоэффект • Библиотека

Самое интересное, привлекательное и полезное в фотоэффекте — это возможность получения электродвижущей силы, т. е. работы по перемещению электрических зарядов, которую совершают силы неэлектрического происхождения.

Действительно, при взаимодействии света с веществом происходит перераспределение электронов по энергетическим уровням. Если энергия кванта превышает ширину запрещенной зоны, электрон переходит из валентной зоны в зону проводимости.

В результате электрод, потерявший электрон, приобретает положительный заряд, что, собственно говоря, и является причиной возникновения электрического тока в цепи.

Однако не все так просто. Обычные материалы — металлы и диэлектрики — обладают достаточно большой шириной запрещенной зоны, что, по существу, оказывается препятствием для получения дешевого и экологически чистого источника энергии.

Поэтому должны приветствоваться любые попытки создать материал, характеризующийся максимальным отношением силы фототока к величине светового потока, падающего на поверхность рабочего вещества. К примеру, замечательные результаты дает монокристалл германия, но созданная таким образом солнечная батарея оказывается экономически невыгодной.

И это не единственное препятствие на пути энергетического прогресса. Недолговечность — вот что может испортить и действительно портит безоблачную жизнь потребителям безоблачной энергии.

Вместе с тем, решение этой фотоэлектрической проблемы, похоже, лежит на поверхности. Так получилось, что открытый при помощи жидкости фотоэффект теперь в большей степени связывает свою судьбу с полупроводниками.

Правда и то, что контакт полупроводника или металла с жидкостью (электролитом) позволил узнать о природе взаимодействия оптического излучения с веществом чрезвычайно много, а вот возможность использования контакта обычного металла с обычной жидкостью в практических целях осталась нетронутой.

Поэтому попытаемся внести свой вклад в изучение этого замечательного явления, тем более что такое сравнительно несложное исследование возможно в обычной учебной лаборатории.

Лампа, алюминиевая банка и пара приборов

Почти все, что нужно для изготовления экспериментальной установки, представлено на рисунке 1. Исследуемая жидкость находится в цилиндрической кювете, боковая поверхность которой (К

) диаметром 75 мм и высотой 45 мм изготовлена из алюминия. Это — один электрод фотоэлектрического прибора.

Из того же материала изготовлен второй цилиндрический электрод (к

) диаметром 10 мм и высотой 45 мм. Раз изучается влияние света от лампы (
Л
) на жидкость, то необходимо избежать попадания света на поверхность металлических электродов.

Для этого служат два экрана (Э

) и (
э
), изготовленные из светонепроницаемого пластика. Высоты экранов одинаковы и составляют 40 мм, внутренний диаметр большого экрана 40 мм, внешний диаметр малого экрана 20 мм.

Выбор алюминия в качестве электродов обусловлен тем, что толщина переходного слоя «алюминий — вода» обладает чрезвычайно большой электрической емкостью, и есть надежда, что процесс экспозиции удастся растянуть во времени.

В качестве рабочей жидкости, как предполагается, играющей самое активное участие в формировании фотоэлектрического эффекта, лучше всего использовать дистиллированную воду. Почему? Воды в природе очень много — это раз. Есть надежда избежать помех, обусловленных химическими процессами, — это два.

Между источником света (Л

) и кюветой с исследуемой жидкостью находится поглотитель (
П
) — чтобы избавиться от нагрева жидкости лампой. Источником света может быть практически любая энергосберегающая лампа, например лампа Е27-9W/C:4000 К.

Выбор поглотителя достаточно очевиден — это слой воды высотой полтора сантиметра, налитой в тонкостенную кювету. Есть надежда, что инфракрасное излучение от лампы таким поглотителем будет подавлено полностью.

В перспективе поглотитель можно заменить светофильтром, если потребуются спектрометрические измерения.

На входе установлено фотосопротивление (ФС

), позволяющее однозначно судить об освещенности поверхности исследуемой жидкости. Нужны еще два прибора. Один из них измеряет падение напряжения на сопротивлении нагрузки (
R
= 15 кОм), а второй измеряет сопротивление фоторезистора.

Пока только опыт (наблюдение)

Заправив кювету дистиллированной водой и подключив милливольтметр, начинаешь подозревать, что направление тока на рисунке 1 указано неверно. И так, и не так. На самом деле даже дистиллированная вода, сколь бы чистой она ни была, все равно химически взаимодействует с металлом. Именно это и имеет место сразу после того, как вы залили воду в кювету.

Включив источник света, обнаруживаешь достаточно странное обстоятельство: ток в цепи не только изменяется по величине, но и меняет направление (рис. 2). После выключения лампы ток медленно, очень медленно, возвращается в «отрицательную» область, но свое значение не восстанавливает.

Придется подождать десяток часов, прежде чем можно будет снова начать измерения.

Эксперимент первый. Выбор поглотителя

Через сутки после загрузки воды в кювету темновой ток (ток в цепи при отключенном источнике света) становится практически постоянным. Почему это происходит, пока неясно.

Сколь бы маломощна ни была лампа, играющая роль источника света, но нагрев жидкости в кювете все-таки возможен. А значит, нужен термометр, позволяющий контролировать и этот процесс. Конструкция кюветы позволяет установить небольшой градусник, а лучше термопару, без особых проблем.

К фототоку можно относиться двояким образом. Прежде всего, это процесс изменения тока в цепи, обусловленный оптическим облучением. Количественная характеристика этого процесса может тоже именоваться фототоком: можно договориться, что это ток в цепи в определенный момент времени минус ток в цепи в момент включения источника света.

Диэлектрики

В диэлектриках свободные носители заряда отсутствуют. Протекание электрического тока в таких веществах невозможно при стандартных внешних условиях. Наиболее популярными материалами, которые не проводят электрический ток является слюда, керамика, резина и каучуки.

Также к ним можно отнести воздух и определенные виды газов, но для них, определяющим будет являться степень загрязнения. При наличии достаточного количества свободных ионов, диэлектрические свойства они утрачивают. Таким образом нельзя слепо полагаться что какое-либо вещество является абсолютным диэлектриком и не проводит электричество. При определенных обстоятельства большая часть веществ, заведомо считающихся диэлектриками могут приобретать свойства полупроводников.

Так, например, оксид железа, который в обычных условиях препятствует протеканию электрического тока, при повышении давления и температуры переходит в состояние проводимости, при этом внутренняя его структура не нарушается.

Подводя итоги, отметим что качественное различие веществ, пропускающих или препятствующих протеканию электрического тока является их проводящее состояние. Для металлов оно является постоянным, а для диэлектриков и полупроводников возбужденной фазой. Количественное определение проводимости выражается через удельное электрическое сопротивление.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]