Некоторые материалы, используемые в электрических приборах и схемах электроснабжения, обладают диэлектрическими свойствами, то есть имеют большое сопротивление току. Эта способность позволяет им не пропускать ток, а поэтому их используют для создания изоляции токоведущих частей. Электроизоляционные материалы предназначены не только для разделения токоведущих частей, но и для создания защиты от опасного воздействия электрического тока. Например, шнуры питания электрических приборов покрыты изоляцией.
Электроизоляционные материалы и их применение
Электроизоляционные материалы широко применяются в промышленности, радио- и приборостроении, развитии электрических сетей. Нормальная работа электрического прибора или безопасность схемы электроснабжения во многом зависит от используемых диэлектриков. Некоторые параметры материала, предназначенного для электрической изоляции, определяют его качество и возможности.
Применение изоляционных материалов обусловлено правилами безопасности. Целостность изоляции является залогом безопасной работы с электрическим током. Весьма опасно использовать приборы с поврежденной изоляцией. Даже незначительный электрический ток может оказать воздействие на организм человека.
Свойства диэлектриков
Электроизоляционные материалы должны иметь определенные свойства, чтобы выполнять свои функции. Главным отличием диэлектриков от проводников является большая величина удельного объемного сопротивления (109–1020 ом·см). Электрическая проводимость проводников в сравнении с диэлектриками раз в 15 раз больше. Это связано с тем, что изоляторы по своей природе имеют в несколько раз меньше свободных ионов и электронов, которые обеспечивают токопроводимость материала. Но при нагревании материала их становится больше, что способствует увеличению токопроводимости.
Различают активные и пассивные свойства диэлектриков. Для изоляционных материалов наиболее важны пассивные свойства. Диэлектрическая проницаемость материала должна быть как можно меньшей. Это позволяет изолятору не вносить в схему паразитные емкости. Для материала, который используется в качестве диэлектрика конденсатора, диэлектрическая проницаемость должна быть, наоборот, как можно большей.
Вакуум как изолятор
Газовая среда при крайне низком давлении может создавать условия, когда газ просто не сможет образовывать заметный ток в межэлектродном зазоре. Такие условия называют изоляционным вакуумом. При столкновении с электронами или положительными ионами, которые вылетают из электродов, ионизация молекул газа под низким давлением происходит очень редко. Так называемый высокий вакуум при условии постоянного напряжения до 20 кВ на поверхности катода может обойтись без пробоя при напряженности поля порядка 5 МВ/см. Если речь идет об аноде, то напряженность должна быть в разы выше. И все же заметное увеличение напряжения способствует тому, что вакуумные электроизоляционные материалы утрачивают свой защитный потенциал. Пробой в данном случае может наступать в результате обмена заряженными частицами в связке катод-анод. Диэлектрики такого типа чаще используются в электронике. Их применяют и в целях ускорения электронов в обычных приборах, и в рентгеновских аппаратах для обеспечения высоковольтных приложений.
Параметры изоляции
К основным параметрам электроизоляции относят электрическую прочность, удельное электрическое сопротивление, относительную диэлектрическую проницаемость, угол диэлектрических потерь. При оценке электроизоляционных свойств материала учитывается также зависимость перечисленных характеристик от величин электрического тока и напряжения.
Электроизоляционные изделия и материалы обладают большей величиной электрической прочности в сравнении с проводниками и полупроводниками. Важна также для диэлектрика стабильность удельных величин при нагревании, повышении напряжении и других изменениях.
Коротко о главном
Изучив свойства теплоизоляционных материалов, можно сделать вывод, что каждый из них не идеален и не лишен недостатков. Идеального утеплителя, подходящего для любых целей, не существует. Выбирая оптимальный вариант, нужно учитывать материал утепляемой конструкции, её форму и положение в пространстве, условия эксплуатации и другие моменты. Например, для подземных частей здания не подойдут боящиеся влаги волокнистые материалы, а парную нельзя утеплять пенопластом, выделяющим вредные вещества при нагревании.
Классификация диэлектрических материалов
В зависимости от мощности тока, проходящего по проводнику, используют разные типы изоляции, которые отличаются своими возможностями.
По каким же параметрам делят электроизоляционные материалы? Классификация диэлектриков основана на их агрегатном состоянии (твердые, жидкие и газообразные) и происхождению (органические: естественные и синтетические, неорганические: природные и искусственные). Наиболее распространен тип твердых диэлектриков, которые можно увидеть на шнурах бытовой техники или любых других электрических приборов.
Твердые и жидкие диэлектрики, в свою очередь, делятся на подгруппы. К твердым диэлектрикам относятся лакоткани, слоистые пластики и различные виды слюды. Воски, масла и сжиженные газы представляют собой жидкие электроизоляционные материалы. Специальные газообразные диэлектрики используются намного реже. К этому типу также относится естественный электрический изолятор – воздух. Его использование обусловлено не только характеристиками воздуха, которые делают его прекрасным диэлектриком, но и его экономичностью. Применение воздуха в качестве изоляции не требует дополнительных материальных затрат.
Монтажная пена — почти универсальный герметик…
Проблема герметизации пустот и щелей в процессе строительства долгое время была в списке самых актуальных. А без применения новых современных технологий, оставалась бы там до сих пор…
Но с появлением монтажной пены, строители смогли вздохнуть с облегчением, потому что, этот вид герметика показал себя не только очень надежным в эксплуатации, но еще и удобным в применении материалом.
Стандартная упаковка монтажной пены представляет собой аэрозольную упаковку, — баллон, наполненный предполимером, который, по сути, является жидкой пластмассой, и пропеллентом, то есть, газом-вытеснителем.
Также, в упаковку монтажной пены входит насадка для нанесения герметика. С ее помощью, еще более эффективно решается проблема:
- заполнения любых видов отверстий даже в самых труднодоступных местах, — щелей, полостей или трещин
- герметизации стыков или пустот
- снижения воздухопроницаемости внешних стен здания
- улучшения звукоизоляции
- фиксации и изоляции оконных и дверных рам
- герметизации и фиксации прокладочных каналов для труб.
Твердые диэлектрики
Твердые электроизоляционные материалы – наиболее широкий класс диэлектриков, которые применяются в разных областях. Они имеют различные химические свойства, а величина диэлектрической проницаемости колеблется от 1 до 50000.
Твердые диэлектрики делятся на неполярные, полярные и сегнетоэлектрики. Их главные отличия состоят в механизмах поляризации. Этот класс изоляции обладает такими свойствами, как химическая стойкость, трекингостойкость, дендритостойкость. Химическая стойкость выражается в способности противостоять влиянию различным агрессивным средам (кислота, щелочь и т.д.). Трегингостойкость определяет возможность противостоять воздействию электрической дуги, а дендритостойкость – образованию дендритов.
Твердые диэлектрики применяются в различных сферах энергетики. Например, керамические электроизоляционные материалы наиболее часто используются в качестве линейных и проходных изоляторов на подстанциях. В качестве изоляции электрических приборов используют бумагу, полимеры, стеклотекстолит. Для машин и аппаратов чаще всего применяют лаки, картон, компаунд.
Для применения в различных условиях эксплуатации изоляции придают некоторые особые свойства путем сочетания разных материалов: нагревостойкость, влагостойкость, радиационная стойкость и морозостойкость. Нагревостойкие изоляторы способны выдерживать температуры до 700 °С, к ним относятся стекла и материалы на их основе, органосилиты и некоторые полимеры. Влагостойким и тропикостойким материалом является фторопласт, который негигроскопичен и гидрофобен.
Изоляция, стойкая к радиации используется в приборах с атомными элементами. К ней относятся неорганические пленки, некоторые виды полимеров, стеклотекстолит и материалы на основе слюды. Морозостойкими считаются изоляции, которые не теряют своих свойств при температуре до -90 °С. Особые требования предъявляются к изоляции, предназначенной для приборов, работающих в космосе или условиях вакуума. Для этих целей применяются вакуумно-плотные материалы, к которым относится специальная керамика.
… с уникальными возможностями
Технические характеристики монтажной пены действительно не имеют аналогов. Один из главных плюсов этого герметика — внесезонность. Учитывая диапазон температур, при которых происходит реакция полимеризации и монтажная пена не теряет качество уплотнения, — от -10 до +30. А это значит, что для большинства регионов страны, этот вид изоляции доступен, почти, круглый год.
При этом, монтажная пена:
- обладает одновременно теплоизоляционными, звукоизоляционными и уплотнительными свойствами
- обеспечивает монтажное соединение конструкций или их частей
- способна расширяться и застывать
- совместима с большинством традиционных строительных материалов, — бетоном, деревом, стеклом, камнем, за исключением силикона, тефлона, полипропилена и полиэтилена
- является экологично чистым материалом, не представляющим угрозы для людей и окружающей среды.
Жидкие диэлектрики
Жидкие электроизоляционные материалы часто применяются в электрических машинах и аппаратах. В трансформаторе роль изоляции играет масло. К жидким диэлектрикам также относят сжиженные газы, ненасыщенные вазелиновые и парафиновые масла, полиорганосилоксаны, дистиллированная вода (очищенная от солей и примесей).
Основными характеристиками жидких диэлектриков являются диэлектрическая проницаемость, электрическая прочность и электропроводность. Также электрические параметры диэлектриков во многом зависят от степени их очистки. Твердые примеси могут увеличивать электропроводность жидкостей за счет разрастания свободных ионов и электронов. Очистка жидкостей путем дистилляции, ионным обменом и т.д. приводит к возрастанию величины электрической прочности материала, тем самым снижая его электропроводность.
Жидкие диэлектрики разделяют на три группы:
- нефтяные масла;
- растительные масла;
- синтетические жидкости.
Наиболее часто используются нефтяные масла, такие как трансформаторное, кабельное и конденсаторное. Синтетические жидкости (кремнийорганические и фторорганические соединения) также используются в аппаратостроении. Например, кремнийорганические соединения морозоустойчивы и гигроскопичны, поэтому применяются в качестве изолятора в небольших трансформаторах, но их стоимость выше цены нефтяных масел.
Растительные масла практически не используются в качестве изоляционных материалов в электроизоляционной технике. К ним относятся касторовое, льняное, конопляное и тунговое масло. Эти материалы представляют собой слабополярные диэлектрики и используются в основном для пропитки бумажных конденсаторов и в качестве пленкообразующего вещества в электроизоляционных лаках, красках, эмалях.
Газообразные диэлектрики
Наиболее распространенными газообразными диэлектриками являются воздух, азот, водород и элегаз. Электроизоляционные газы делятся на естественные и искусственные. К естественным относится воздух, которые применяется в качестве изоляции между токоведущими частями линий электропередач и электрических машин. В качестве изолятора воздух имеет недостатки, которые делает невозможным его использование в герметичных устройствах. Из-за наличия высокой концентрации кислорода воздух является окислителем, и в неоднородных полях проявляется низкая электрическая прочность воздуха.
В силовых трансформаторах и высоковольтных кабелях в качестве изоляции используют азот. Водород, кроме электроизоляционного материала, также представляет собой принудительное охлаждение, поэтому часто используется в электрических машинах. В герметизированных установках чаще всего применяют элегаз. Заполнение элегазом делает устройство взрывобезопасным. Применяется в высоковольтных выключателях благодаря своим дугогасящим свойствам.
Гильзовая электроизоляция
Это материал из группы механических защитных устройств, который обеспечивает внешнюю физическую защиту. Обычно используются гибкие гильзы, которыми защищаются проводники силовых агрегатов, трансформаторы и кабели. По этому же принципу работает традиционная изоляционная лента, задача которой заключается в создании физической преграды. Гильзы также выступают прослойкой, никак не взаимодействующей с источником тока на электрохимическом уровне. Однако среди недостатков этого материала отмечается быстрый износ.
Органические диэлектрики
Органические диэлектрические материалы делятся на естественные и синтетические. Естественные органические диэлектрики в настоящее время используются крайне редко, так все больше расширяется производство синтетических, тем самым снижая их стоимость.
К естественным органическим диэлектрикам относят целлюлозу, каучук, парафин и растительные масла (касторовое масло). Большую часть синтетических органических диэлектриков представляют различные пластмассы и эластомеры, часто используемые в электрических бытовых приборах и другой технике.
Неорганические диэлектрики
Неорганические диэлектрические материалы делят на природные и искусственные. Наиболее распространенным из природных материалов является слюда, которая обладает химической и термической стойкостью. Также для электроизоляции используют флогопит и мусковит.
К искусственным неорганическим диэлектрикам относят стекло и материалы на его основе, а также фарфор и керамику. В зависимости от области применения искусственному диэлектрику можно придать особые свойства. Например, для проходных изоляторов используют полевошпатовую керамику, которая имеет высокий тангенс диэлектрических потерь.
Волокнистые электроизоляционные материалы
Волокнистые материалы часто применяются для изоляции в электрических аппаратах и машинах. К ним относят материалы растительного происхождения (каучук, целлюлозу, ткани), синтетический текстиль (нейлон, капрон), а также материалы из полистирола, полиамида и т. д.
Органические волокнистые материалы обладают высокой гигроскопичностью, поэтому редко используются без специальной пропитки.
В последнее время взамен органических материалов применяют синтетические волокнистые изоляции, которые обладают более высоким уровнем нагревостойкости. К ним относится стеклянное волокно и асбест. Стеклянное волокно пропитывают различными лаками и смолами для повышения его гидрофобных свойств. Асбестовое волокно обладает малой механичной прочностью, поэтому нередко в него добавляют хлопчатобумажное волокно.
Источник — fb.ru