4 простых схемы для изготовления индикатора фазы на светодиодах своими руками


В любой технике в качестве отображения режимов работы используют светодиоды. Причины очевидны – низкая стоимость, сверхмалое энергопотребление, высокая надёжность. Поскольку схемы индикаторов очень просты, нет необходимости в покупке фабричных изделий.

Из обилия схем, для изготовления указателя напряжения на светодиодах своими руками, можно подобрать наиболее оптимальный вариант. Индикатор можно собрать за пару минут из самых распространённых радиоэлементов.

Все подобные схемы по назначению делят на индикаторы напряжения и индикаторы тока.

Работа с сетью 220В

Рассмотрим простейший вариант – проверка фазы.

Эта схема представляет собой световой индикатор тока, которым оснащают некоторые отвёртки. Такое устройство даже не требует внешнего питания, поскольку разность потенциала между фазовым проводом и воздухом или рукой достаточна для свечения диода.

Для отображения сетевого напряжения, например, проверки наличия тока в разъёме розетки, схема ещё проще.

Простейший индикатор тока на светодиодах 220В собирается на ёмкостном сопротивлении для ограничения тока светодиода и диода для защиты от обратной полуволны.

Другие разновидности преобразователей

Вообще говоря, амплитудный преобразователь реализуется проще двухполупериодного — выпрямление вместе с интегрированием выполняются также на одном ОУ. К выпрямителю добавляем второй ОУ, как масштабный усилитель. Выбор такой схемы гарантирует линейность преобразования вплоть до милливольт и в то же время простую и предсказуемую регулировку усиления, необходимую нам для установки масштаба преобразования. Индикацию показаний можно переложить на любой самый дешевый вольтметр, если соответствующим образом подогнать масштаб усиления.
Другой вариант — двухполупериодная схема выпрямителя среднего значения — более корректнен при измерениях сетевого напряжения. У такой схемы меньше зависимость выходной величины от искажений сигнала и наличия помех — амплитудный детектор, который у нас получается в первом случае, запросто может «насосать» всяческих случайных всплесков сетевого напряжения. Рассмотренная нами выше простейшая аналоговая схема относится именно к двухполупериодной разновидности, но далее мы рассмотрим более совершенный вариант с однополярным выходом.

И тут мы обнаружим, что такой улучшенный вариант двухполупериодной схемы менее удобен, если коэффициент усиления приходится регулировать в процессе калибровки «по месту». В рассмотренной далее схеме (сделанной по экономичному варианту также на двух ОУ) усиление и выпрямление совмещены и усиление определяется сразу несколькими резисторами, связанными друг с другом. Сломаете голову, пытаясь все совместить да еще и подогнать под стандартные ряды сопротивлений. Эту проблему можно обойти, если отказаться от калибровки аналоговыми методами и перенести ее в цифру: сигнал с выпрямителя подается на АЦП микроконтроллера (да хоть бы и на Arduino), управляющий дисплеем.

Еще один источник погрешностей связан с тем, что для целей преобразования в цифру следует выходной сигнал сгладить — тем или иным способом заинтегрировать. В рассмотренном выше варианте отличным интегратором служит сама головка за счет механической инерции ее поворотной системы, а здесь придется действовать схемотехническими методами. Рассмотрим оба этих варианта по отдельности.

Однополупериодный (амплитудный) преобразователь

Практическая схема однополупериодного преобразователя сигнала с трансформаторного датчика с масштабирующим усилителем показана на рисунке ниже. Схема собрана на обычном недорогом сдвоенном ОУ LM258. К ОУ не предъявляется никаких особых требований, за исключением диапазона питания, и, желательно, достаточно высокой нагрузочной способности (к выбору ОУ мы еще вернемся). В качестве выпрямительного диода здесь также указан диод Шоттки, но, как мы уже говорили, это совершенно необязательный выбор: годится любой кремниевый диод с достаточно малым обратным током (не более единиц микроампер). Резисторы 5-процентные мощностью от 0,25 Вт; переменный резистор R6 лучше в подстроечном исполнении (многооборотный «под отвертку»). Конденсаторы С1-С2 — обычные керамические. Интегрирующий электролит C3 (его номинальное напряжение не имеет значения, так как сигнал у нас мизерный, но на всякий случай его лучше выбирать не менее величины положительного напряжения питания +Uп) — по идее, конечно, лучше танталовый или полимерный, но такой может показаться слишком дорогим, потому в крайнем случае можно обойтись обычным алюминиевым. Конденсаторы C1 и C2 предназначены для ослабления помех по питанию и должны устанавливаться поблизости от выводов 4 и 8 корпуса сдвоенного ОУ.


На первом ОУ, как вы уже поняли, собран амплитудный детектор — однополупериодный выпрямитель с диодом в обратной связи ОУ. Как мы уже говорили, такое подключение обеспечивает линеаризацию характеристики диода вплоть до единиц милливольт на входе, при условии его достаточно малого обратного тока (у указанного BAT41 он составляет не более 100 нА). Запоминающий конденсатор C3 подзаряжается, если величина сигнала на входе превысит уже накопленное напряжение на нем, в противном случае диод останется закрытым. То есть напряжение на C3 равно значению амплитуды входного напряжения (точнее, амплитуды положительных всплесков входного напряжения). При этом в «чистом» виде (в отсутствие нагрузки) такой амплитудный детектор не имеет цепи разряда запоминающего конденсатора, и на нем — теоретически навсегда — будет оставаться последнее максимальное значение входного напряжения. Нас такое не устраивает, поэтому к амплитудному детектору добавлена разрядная цепь в виде резистора R3. Постоянная времени этой цепи (около 2 секунд) выбрана достаточно большой, но по результатам практических испытаний емкость C3 (отмечена звездочкой) может быть уменьшена. Чем меньше постоянная времени, тем более короткие всплески входного напряжения можно отловить, но тем больше дребезг показаний из-за случайных причин и просачивания частоты 50 Гц на выход.
На втором ОУ собран масштабирующий усилитель по стандартной схеме неинвертирующего усилителя на ОУ. В данном случае его коэффициент усиления выбран таким, чтобы получить на выходе напряжение в вольтах, численно равное амперам тока, протекающего через измеряемый проводник. В формулах, приведенных на рисунке, число 0,084 — это идеализированная величина амплитуды переменного сигнала 60 мВ, поступающего с датчика. Т.е. нам надо получить коэффициент усиления около 12. В реальности сигнал может гулять из-за разброса датчиков и сопротивлений резисторов, влияния цепей заряда (т.е. выходного сопротивления ОУ) и разряда, собственного сопротивления запоминающего конденсатора и его утечек, а также неидеальностей ОУ на величины напряжений на входе и выходе усилителя. Потому с помощью подстроечного резистора R6 предусмотрена регулировка усиления примерно от 11 до 15.

Питание здесь (как и во всех остальных схемах этой статьи) обязательно двухполярное, а конкретные значения положительного и отрицательного напряжений полностью зависят от желаемого размаха на выходе. Условие «1 В (на выходе) = 1 А (на входе)» ставит нас в достаточно жесткие рамки по выбору питания и соответственно, модели ОУ. Так, выбранный LM258 максимально может выдать на выходе напряжение примерно на 2 вольта меньше питания, так что при положительном питании 16 вольт максимальный измеряемый ток составит около 14 А (соответствует мощности сетевой нагрузки примерно в 3 кВт).

Вспомним однако, что от желаемого размаха зависит лишь величина +U

п, и, поскольку питание ОУ необязательно должно быть симметричным, величина —
U
п может быть выбрана минимально допустимой для выбранного типа ОУ. А ограничение на максимальный размах питания для ОУ действует на суммарное напряжение (от плюса до минуса), т.е мы можем существенно увеличить положительное напряжение питания, уменьшив отрицательное. Для LM258 минимальное значение питания около 1,5 В, но у других ОУ с широким диапазоном питания оно может быть выше (до 3-4 вольт), потому с некоторым запасом примем отрицательное напряжение по абсолютной величине равным 5-6 вольт. Таким образом у ОУ с допустимым размахом питания 30-32 вольта мы можем установить положительное питание, например, 24 вольта и при соблюдении того самого условия «1 В (на выходе) = 1 А (на входе)» получить максимальный измеряемый ток 22 ампера, что соответствует нагрузке примерно в 5 кВт. Правда, с конструкцией источника питания для такой схемы придется повозиться, к чему мы вернемся далее.

А сейчас еще раз обратимся к вопросу выбора ОУ, исходя из приведенных соображений: следует смотреть на допустимый диапазон питания (не менее 30 вольт от плюса до минуса) и уж затем на остальные характеристики. В первую очередь смотрим на допустимое сопротивление нагрузки — оно должно быть не менее 1-2 кОм (выходной ток не менее примерно 10 мА на каждый канал сдвоенного ОУ). По этим параметрам мы и выбирали LM258, заодно как один из самых дешевых в своем классе (без оговорок заменяется на LM358, отличающийся лишь диапазоном рабочих температур). Можно взять классический µA747, он подойдет еще лучше (выходной каскад у него мощнее), но этот антиквариат в каталоге «Чипа-дипа» почему-то выставлен дороже. Если уж двигаться в сторону более дорогих, то имеет смысл подобрать ОУ со свойством rail-to-rail по выходу, тогда размах выходной шкалы сразу возрастет на пару вольт при том же питании (годится, например, OP295 ценой в пару-тройку сотен рублей и несколько разновидностей еще дороже).

К условию «1 В (на выходе) = 1 А (на входе)» мы подтягивали схему затем, чтобы ее можно было подключить к любому вольтметру постоянного тока. В том числе к китайским одноплатникам со светодиодной индикацией, которые на Ali приобретаются за копейки. Выбирайте только такие (см. фото ниже), которые питаются от отдельного источника, а не от измеряемого сигнала, и имеют шкалу от нуля вольт. Учтите, что эти дешевые приборчики все равно при низких входных напряжениях будут врать, какие-то гарантии дают только фирменные измерительные головки (см. здесь и здесь или здесь), но они принципиально дороже.


Как видите, здесь мы старались достичь цели максимально дешевым путем, отказавшись от программируемого контроллера и дорогого индикатора, зато нагрузив себя проектированием нестандартного питания. В следующей схеме мы осуществим иной подход, зато с питанием там никаких изысков выдумывать не придется.

Двухполупериодный преобразователь (выпрямитель среднего значения)

Сначала уточним задачу. В данном случае мы выходной сигнал собираемся послать на АЦП микроконтроллера (МК), управляющего индикатором. Пусть это будет банальный аналоговый вход Arduino, для которого опорное напряжение равно 5 В. Т.е. на выходе нашей схемы мы должны получить не более 5 В при максимальном значении входного тока. Договоримся считать его равным 27 амперам (примерно 6 кВт мощности в сети 220 В). Итого, при условии, что на каждый ампер приходится 0,06 вольта среднего значения сигнала с датчика, коэффициент усиления схемы должен составлять около 3 (5/27/0,06).


Схема выпрямителя среднего значения с этими параметрами представлена на рисунке. За подробностями работы схемы отсылаю к монографии В. С. Гутникова по приведенной выше ссылке. Отметим, что помеченные желтым резисторы R2, R4 и R5 должны быть из ряда с точностью 1% (градуировка E96). Конечно, можно просто попробовать нужные величины сопротивлений отобрать или составить из обычных 5-10-процентных, но опыт показывает, что времени и усилий это потребует гораздо больше, чем приобретение сразу нужных номиналов. Если точно резисторы не подгонять, то положительный и отрицательный полупериоды по усилению не совпадут, что породит дополнительный источник погрешностей. С той же целью резистор R3 подгоняется таким образом, чтобы входное сопротивление усилителя на втором ОУ было примерно одинаковым для положительной и отрицательной полуволн.
Расчетные формулы приведены на рисунке, по ним вы можете подобрать резисторы, исходя из имеющихся у вас номиналов, если не достанете указанные на схеме. Для нашего любимого типа ОУ (LM258) следует выбирать резистор R2 не менее 2 кОм (и не более примерно 50-100 кОм), и отталкиваясь от него, рассчитать величины остальных резисторов. ОУ здесь выбирать значительно проще предыдущего случая — достаточно, чтобы он обеспечивал возможность работы от двухполярного питания, величиной не менее, чем ±7 вольт (примерно 14-15 вольт размаха), чему соответствует гораздо больше подходящих недорогих типов, чем в предыдущем случае.

Разрисовывать подключение к МК и расписывать управление дисплеем мы не будем, так как вариантов может быть масса, а задача совершенно стандартная и примеров ее выполнения не счесть. Укажем только для особо непонятливых, что в обработчике данных с АЦП следует ввести соответствующий масштабный коэффициент, переводящий единицы кода в величину тока в амперах (число с плавающей точкой). Если все обстоит примерно так, как мы предполагаем по имеющимся данным, то коэффициент этот должен иметь величину где-то в районе 0,026 (1024/27).

Заметим еще, что в случае применения АЦП можно и интегрирование перевести в цифру — даже АЦП Arduino способно выдавать около 10 тыс. отчетов в секунду, чего в принципе достаточно для набора представительного ряда мгновенных значений 50-герцового сигнала (примерно 200 отсчетов на период). Заодно мы можем получить истинное действующее (среднеквадратическое) значение выходного сигнала.

Проверка постоянного напряжения

Нередко возникает необходимость прозвонить низковольтную цепь бытовых приборов, либо проверить целостность соединения, например, провод от наушников.

В качестве ограничителя тока можно использовать маломощную лампу накаливания либо резистор на 50-100 Ом. В зависимости от полярности подключения загорается соответствующий диод. Этот вариант подходит для цепей до 12В. Для более высокого напряжения потребуется увеличить сопротивления ограничивающего резистора.

Принцип действия индикаторной отвертки

Универсальный и доступный всем слоям населения индикатор напряжения должен быть в арсенале каждого хозяина. Устранение неисправностей электрической проводки с использованием надежных, компактных устройств, идентифицирующих напряжение в сети, позволяет исключить опасность для здоровья и жизни мастера. Устройство индикаторной отвертки отличается простотой и небольшим количеством деталей.

К основным конструктивным элементам устройства, который может показать фазу и ноль, относятся:

  • корпус, состоящий из изолированной рукоятки, стержня, в торце которого размещено жало отвертки;
  • резистор с высоким сопротивлением;
  • индикаторная лампочка;
  • пружина;
  • контактная пластина.

Принцип работы индикаторной отвертки контактного типа основан на прохождении электрического тока через жало после его прикосновения к фазному проводу, резистор и лампочку, вызывая ее свечение, а также последующем его уходе при помощи сенсорного контакта по направлению к земле через тело мастера. Большое сопротивление резистора приводит к получению низкого напряжения. Его величина неощутима и безопасна для здоровья, жизни людей.

Индикатор для микросхем (логический пробник)

Если возникает необходимость проверить работоспособность микросхемы, поможет в этом простейший пробник с тремя устойчивыми состояниями. При отсутствии сигнала (обрыв цепи) диоды не горят. При наличии логического ноля на контакте возникает напряжение около 0,5 В, которое открывает транзистор Т1, при логической единице (около 2,4В) открывается транзистор Т2.

Такая селективность достигается, благодаря различным параметрам используемых транзисторов. У КТ315Б напряжение открытия 0,4-0,5В, у КТ203Б – 1В. При необходимости можно заменить транзисторы другими с аналогичными параметрами.

Что такое индикаторная отвертка?

Это инструмент, предназначенный для обнаружения напряжения в электросети, в том числе скрытой. Внешне модель может выглядеть как обычная плоская отвертка с прозрачной ручкой или же иметь другой вид. Однако щуп в виде плоской биты обязателен – именно им проверяют контакты.

Обязательна также изоляция ручки – металлическая часть прибора не должна соприкасаться с незащищенной кожей человека, а любые металлические детали на ручке не должны иметь прямого контакта со щупом.

Вариант для автомобиля

Простая схема для индикации напряжения бортовой сети автомобиля и заряда аккумулятора. Стабилитрон ограничивает ток аккумулятора до 5В для питания микросхемой логики.

Переменные резисторы позволяют выставить уровень напряжения для срабатывания светодиодов. Настройку лучше проводить от сетевого стабилизированного источника питания.

Оцените, пожалуйста, статью. Мы старались:)

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Цвета и обозначение проводов

Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.

На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.

На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.

По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.

В чем отличие проводов N и PE в электропроводке

По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого.

Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.

В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.

Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]