Измерение потенциалов точек электрической цепи и построение потенциальной диаграммы


Сакович А.Л. Точки равного потенциала

Рассмотрим способы нахождения точек одинакового потенциала более подробно. Пусть нам дана электрическая цепь, состоящая из сопротивлений R1, R2, …, R8 (рис. 1 а). Проведем через точки подключения цепи прямую АВ (рис. 1 б).

1 способ. Если схема содержит проводники с одинаковым сопротивлением, расположенные симметрично относительно определенной оси или плоскости, то концы этих проводников имеют одинаковый потенциал. При этом точки будут симметричными относительно прямой АВ, если равны сопротивления участков цепи между данными точками и любыми точками этой прямой.

Используя этой признак, можно сделать вывод, что точки С1 и С2 (рис. 1 б) будут симметричны относительно прямой АВ, если R1 = R2 (сопротивления между точкой А и С1 и между точкой А и С2 равны) и R5 = R6 (сопротивления между точкой В и С1 и между точкой В и С2 равны). Аналогично, точки С3 и С4 будут симметричны относительно прямой АВ, если R3 = R4 и R7 = R8.

2 способ. Точки имеют одинаковый потенциал, если равны отношения сопротивлений между данными точками и точками подключения.

Например, точки С1 и С2 (рис. 1 а) имеют одинаковый потенциал, если . Аналогично, точки С3 и С4 имеют одинаковый потенциал, если .

Покажем на примерах, как можно использовать эти способы для преобразования электрических цепей.

Метод объединения равнопотенциальных узлов:точки с одинаковыми потенциалами можно соединять в узлы.

а) Если провести через точки подключения прямую АВ (рис. 3 а), то равны сопротивления участков АС1 и АС2 (R1 = R3), и равны сопротивления участков ВС1 и ВС2 (R2 = R4). Следовательно, точки С1 и С2 симметричны относительно прямой АВ и имеют равные потенциалы.

Точки с одинаковыми потенциалами можно соединять в узлы (рис. 3, б). Резисторы R1 и R3 соединены параллельно, и резисторы R2 и R4 – параллельно, участки 1/3 и 2/4 последовательно. Следовательно,

б) Если провести прямую АВ (рис. 3 а), то сопротивления участков АС1 и АС2 не равны , следовательно, точки С1 и С2 не симметричны относительно прямой АВ. НО точки С1 и С2имеют равные потенциалы, т.к. .

Точки с одинаковыми потенциалами можно соединять в узлы (рис. 3 б). Резисторы R1 и R3 соединены параллельно, и резисторы R2 и R4 – параллельно, участки 1/3 и 2/4 последовательно. Следовательно,

Пример 2. Найдите сопротивление проволочного куба между точками А1 и В3 (рис. 4). Сопротивление каждого ребра R.

Точки с одинаковыми потенциалами можно соединять в узлы (рис. 6). Три резистора R соединены параллельно между точками А1 и А2 (В1, А4), шесть резисторов R – параллельно между точками А2 (В1, А4) и А3 (В2, В4), три резистора R – параллельно между точками А3 (В2, В4) и В3, участки между этими точками соединены последовательно. Следовательно,

Пример 3. Найдите сопротивление проволочного куба между точками А1 и В2 (рис. 4). Сопротивление каждого ребра R.

Точки с одинаковыми потенциалами можно соединять в узлы (рис. 7 б). Используя рекуррентный метод, схему можно упростить (рис. 7 в или г).

Точки А2 и В4имеют равные потенциалы, т.к. . Точки с одинаковыми потенциалами можно соединять в узлы (рис. 7 д). Резисторы на участке А1А2 соединены параллельно, и резисторы на участке А2В2 – параллельно, а эти участки соединены последовательно. Следовательно,

Если возможно объединение двух равнопотенциальных узлов, то возможен и обратный переход.

Метод разделения узлов: узел схемы можно разделить на два или несколько узлов, если получившиеся при этом узлы имеют одинаковые потенциалы.

Обязательным условием при этом является проверка получившихся при разделении узлов на равенство потенциалов (симметричность или пропорциональность сопротивлений).

Пример 4. Найдите сопротивление цепи, которая представляет собой каркас из одинаковых отрезков проволоки (рис. 8) сопротивлением R каждый.

Разделим узел в середине каркаса на два узла О1 и О2 так, как показано на рис. 9 а. Это можно сделать, так как точки О1 и О2 имеют равные потенциалы: равны сопротивления участков AO1, AO2, и равны сопротивления участков BO1, BO2. Перерисуем схему в стандартный вид (рис. 9 б). Используя рекуррентный метод, схему можно упростить (рис. 9 в), т.к. сопротивление участка C1F1 равно , аналогично . Тогда общее сопротивление цепи равно .

Обратите внимание. С точки зрения геометрии точки О3 и О4 симметричны относительно прямой а (рис. 9 г), но потенциалы этих точек не равны, т.к. сопротивления участков АО3 и АО4 не равны, а отношения сопротивлений участков АО3 и АО4 не равны отношению сопротивлений участков ВО3 и ВО4.

Пример 5. Найти сопротивление цепи, которая представляет собой каркас из одинаковых отрезков проволоки (рис. 10) сопротивлением R каждый.

Разделим узел в середине каркаса на три узла О1, О2 и О3 так, как показано на рис. 11 а. Это можно сделать, так как точки О1, О2 и О3 имеют равные потенциалы: равны сопротивления участков AO1 и BO1, участков AO2 и BO2, и участков AO3 и BO3, следовательно, отношения сопротивления этих участков равны.

Перерисуем схему в стандартный вид (рис. 11, б). Используя рекуррентный метод, схему можно упростить (рис. 11 в), т.к. сопротивление участка C1F1 равно , аналогично , сопротивление . Тогда общее сопротивление цепи равно

Литература

  1. Зильберман А. Расчет электрических цепей // Квант. – 1988. – № 8. – С. 30-34.
  2. Петросян В.Г., Долгополова Л.В., Лихицкая И.В. Методы расчета резисторных схем постоянного тока // Физика. – 2002. – № 14, 18, 22.
  3. Хацет А. Методы расчета эквивалентных сопротивлений // Квант. – 1972. – № 2. – С. 54-59.

Что еще нужно знать электрику — рекомендации, советы, правила

Здесь мы узнаем некоторые правила, которые облегчат дальнейшую работу. Какие-то из них ближе к советам и хитростям, но некоторые знать и выполнять обязательно.

В первую очередь мы вспомним закон Ома, который поможет нам рассчитать силу тока и подобрать подходящее сечение провода. Формулировка закона выглядит так: «сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению», что в переводе на русский звучит как » чем выше напряжение, тем выше ток, но при увеличении сопротивления ток понижается» и выражается формулой I=U/R, где I — сила тока, U — напряжение и R — сопротивление. Знание этой формулы облегчит нам выбор подходящего сечения провода.


Закон Ома

Еще из полезного — немного о проводах. В последнее время в провода однофазной сети часто добавляют третий, заземляющий, провод. Так вот, земля всегда желтого цвета с зеленой полоской. Ее сложно отлить от нуля при помощи индикатора или тестера, но очень легко это сделать по цветовой маркировки. Добавлю к сказанному, что нуль принято подключать на провод синего цвета.

А это правило следует запомнить и всегда выполнять. Нередко провода соединяют методом скрутки, это принятая практика и, в принципе, вполне допустимо. Но есть один нюанс — скручивать между собой допустимо лишь провода из однородных металлов (к примеру медь с медью). При скручивании меди с алюминием, в месте скрутки со временем появляется оксидная пленка, что ведет к повышению сопротивления и возможному возгоранию.


При скручивании меди с алюминием, в месте скрутки со временем появляется оксидная пленка

Магнитные свойства электрического тока были отрыты случайно в 1820 г. датским физиком Гансом Христианом Эрстедом (не путать с Андерсеном). В результате одного из опытов он заметил, что проводник, по котором протекает, отклоняет магнитную стрелку. Узнав об этом открытии, Франсуа Араго, делает о нем устное заявление на заседании Французской Академии. В результате опытов, члены Академии выводят законы электромагнетизма, которые в дальнейшем будут взяты за основу при создании современных электромагнитных приборов (электродвигатели, трансформаторы, генераторы. Даже радиоволны по своей сути — это электромагнитное излучение сверхвысокой частоты).

Вот мы и разобрались немного с основами электротехники (скажу более — некоторые места были посвящены даже радиотехнике), которая на поверку оказалась вовсе не такой непонятной и запутанной. Теперь получив необходимый багаж знаний, можно продолжать двигаться в этом направлении дальше. Тут главное — побольше уверенности! А мы в свою очередь будем постоянно выкладывать все новые и новые советы и интересную информацию по теме.

Видео


Кофе капсульный Nescafe Dolce Gusto Капучино, 3 упаковки по 16 капсул

1305 ₽ Подробнее


Кофе в капсулах Nescafe Dolce Gusto Cappuccino, 8 порций (16 капсул)

435 ₽ Подробнее

Видеокамеры Full HD

Представление напряжения

Легче всего понять напряжении, представив давлении в трубе. При более высоком напряжении (давлении) будет течь более сильный ток

Хотя важно понимать, что напряжение (давление) может существовать без тока (потока), но ток не может существовать без напряжения (давления)

Напряжение часто называют разностью потенциалов, потому что между любыми двумя точками в цепи будет существовать разница в потенциальной энергии электронов. Когда электроны протекают через батарею, их потенциальная энергия увеличивается, но когда они протекают через лампочку, их потенциальная энергия будет уменьшаться, эта энергия покинет цепь в виде света и тепла.

Возьмите, например, обычную 1,5-вольтовую батарею AA, между двумя клеммами (+ и -) есть разность потенциалов 1,5 Вольт.

Напряжение или разность потенциалов — это просто измерение количества энергии (в джоулях) на единицу заряда (кулона). Например, в 1,5-вольтовой батарее AA каждый кулон (заряд) будет получать 1,5 вольт или джоулей энергии.

Напряжение =

1 вольт = 1 джоуль на кулон

100 вольт = 100 джоулей на кулон

1 кулон = 6 200 000 000 000 000 000 электронов (6,2 × 10 18 )

Наведенное напряжение

Наведенное напряжение на неработающем токопроводе измеряется при наложении закороток, предусмотренных проектом. Измерения ведут на середине пролета между закорот-ками. Переносным вольтметром поочередно замеряют напряжение между разными фазами и между фазами и землей.  

Симметричные жесткие токопроводы на опорных изоляторах.  

Наведенное напряжение W может быть значительным, и для его ограничения при работах на отключенной цепи устанавливаются закоротки в начале и конце токопровода, а при необходимости и в промежуточных его точках с таким расчетом, чтобы наведенное напряжение не превышало 250 В, требуемых по условиям безопасности.  

Наведенное напряжение U может быть значительным, и для его ограничения при работах на отключенной цепи устанавливаются закоротки. Количество и месторасположение закороток выбирается с таким расчетом, чтобы значение U не превышало 250 В.  

Наведенное напряжение V может быть значительным и для его ограничения при работах на отключенной цепи устанавливаются закоротки в начале и конце токопровода при необходимости и в промежуточных его точках с таким расчетом, чтобы наведенное напряжение не превышало 250 В, требуемых по условиям безопасности.  

Если наведенное напряжение высоко, нужно заземлять два конца. В этом случае в экране возникают наведенные токи, что приводит к дополнительному нагреву кабеля. Однако потери в экране все же гораздо меньше, чем потери в центральной токопроводящей жиле, и максимальный дополнительный нагрев находится в пределах от 1 до 3 С.  

Это наведенное напряжение усиливается и регистрируется. Можно считать, что вращающееся поле Н обусловливает когерентность прецессии спинов, в результате чего возникает макроскопический магнитный момент, прецессирующий с частотой VQ. В другом варианте схемы возбуждающая и приемная катушки объединены и процесс переориентации ядер детектируется как поглощение энергии ВЧ-поля.  

Переменное напряжение U.  

Это наведенное напряжение переменного тока подвергается в мостовом преобразователе станции катодной защиты однопо-лупериодному выпрямлению, увеличивает защитный ток и тем самым вызывает снижение потенциала труба — грунт. Поскольку рабочий ток в высоковольтной воздушной линии или на участке электрифицированной железной дороги изменяется во времени, происходит синхронное изменение и наведенного напряжения и вместе с ним выпрямленного переменного тока, вследствие чего потенциал труба — грунт непрерывно колеблется. Оптимальная настройка станции катодной защиты в таких условиях становится затруднительной или даже невозможной. Преобразователи, стойкие к воздействию высокого напряжения, и в этом случае оказываются выгодными, потому что их дроссели резко уменьшают наведенное переменное напряжение. В итоге потенциал труба — грунт стабилизируется.  

Полярность наведенного напряжения в зависимости от взаимного расположения и направления намотки катушек может совпадать ( быть согласной) или не совпадать ( быть встречной) с принятой положительной полярностью напряжения второй катушки.  

Величины наведенных напряжений у полупроводниковых реле значительно меньше, чем у электромеханических реле. Мертвые зоны этих защит также имеют меньшие величины, и вследствие этого потеря направленности действия реле в рассматриваемом случае все же может быть.  

Фаза наведенного напряжения смещена по отношению к току на 90 и может, таким образом, значительно отличаться от фазы напряжения, наведенного электростатически. Действие высших гармоник тока линии передачи пропорционально частоте, как это видно из соотношения (31.4), и может приводить к нарушению работы телефонных линий, тем более что телефонные линии чувствительны к ним больше, чем к основной гармонике.  

Опасности наведенных напряжений и защите от них посвящена глава, здесь ограничимся лишь примерами. Опасность таких напряжений особенно велика, если автомашина перевозит пожаро — и взрывоопасные грузы.  

Для снижения наведенных напряжений на трубопроводах используют главным образом заземляющие устройства. Защитные заземления устанавливают в таких местах на трубопроводах, где наведенные электрифицированной железной дорогой напряжения трубопровода превышают допустимые.  

В зоне наведенного напряжения при работе на проводах ( тросах), выполняемых с не имеющей изолирующего звена телескопической вышки или другого механизма для подъема людей, их рабочие площадки соединяются посредством переносного заземления с проводом ( тросом), а сама вышка или механизм заземляются. Провод ( трос) при этом должен быть заземлен на ближайшей опоре.  

Измерение тока

В отличие от напряжения, которое замеряется в двух точках, величина тока замеряется в одной точке. Так как сила тока (или говорят просто ток) по нашей аналогии есть скорость течения воды, то эту скорость нужно замерять только в одной точке.

Нам нужно распилить водопровод и вставить в разрыв некий счетчик, который будет подсчитывать литры и минуты. Както так.

Аналогично если вернемся в реальный мир нашей электрической модели, то получим тоже самое. Чтобы замерить величину электрического тока, нам нужно подключить в разрыв электрической цепи нехитрый прибор — амперметр. Амперметр также входит в состав мультиметра. Вы также можете почитать в моей статье.

Щупы мультиметра нужно переставить в режим измерения тока. Затем перекусываем наш проводник, и подключаем обрывки провода к мультиметру и вуаля — на экране мультиметра будет показана величина тока.

Разность потенциалов

Поскольку электрический ток является упорядоченным движением заряженных частиц, то для определения величины тока необходимо знать, как величину энергии частиц, так и силу стороннего воздействия на них.

Сущность понятия потенциальной разницы

Для изучения свойств заряженных частиц, помещенных в электростатическое поле, введено понятие потенциала. Оно означает отношение энергии заряда, помещенного в электростатическое поле, к его величине.

При переносе заряженной частицы в другую точку поля меняется его потенциальная энергия, а величина заряда остается неизменной. Для переноса требуется затратить некоторое количество энергии. Данная энергия по переносу единицы заряда получила название электрического напряжения. Соответственно, больший запас энергии будет ускорять перенос, то есть, чем больше напряжение, тем больше ток в цепи.

В данном случае разность потенциалов – это численное равенство напряжению между точками нахождения единичного заряда. Для общего случая здесь должна добавляться работа сторонних сил, которая называется электродвижущей силой (ЭДС). По своей сути, электричество – это работа стороннего источника (генератора) по поддержанию в электросхеме заданных уровней напряжения и тока.

Единица разности потенциалов

Что такое потенциал в электричестве

В честь ученого (Алессандро Вольта), впервые доказавшего существование разницы потенциалов, единица измерения названа Вольт. В международной системе единиц напряжение обозначается символами:

  • В – в русскоязычной литературе;
  • V – в англоязычной литературе.

Кроме этого, существуют кратные обозначения:

  • мВ – милливольт (0.001 В);
  • кВ – киловольт (1000 В);
  • МВ – мегавольт (1000 кВ).

Поток вектора магнитной индукции

Электростатическое поле характеризуется напряженностью, которая вместе с вектором электромагнитной индукции составляет электромагнитное поле.

Если заряженная частица движется в электромагнитном поле, то полную силу, которая воздействует на частицу, определяют по закону Лоренца:

где:

  • q – величина заряда;
  • v – скорость движения;
  • E – величина электрического поля;
  • В – вектор магнитной индукции.

Обратите внимание! В указанной формуле приведены векторные величины. Крестом обозначено векторное произведение.

Силу F воздействия на частицу принято называть силой Лоренца.

Поток вектора магнитной индукции

Данная формула является наиболее общей и может использоваться для вычисления при условии точечного заряда (в том числе единичного).

Теорема Гаусса для магнитного поля

Электрическое поле — что это такое, понятие в физике

Теорема Гаусса является одной из самых основных в электродинамике законов. Существуют теоремы Гаусса для электрического и магнитного полей, которые входят в состав уравнений Максвелла.

При помощи данного закона устанавливается связь между напряженностью электрического поля и заряда в случае произвольной поверхности. Теорема (закон) Гаусса гласит, что в произвольной замкнутой поверхности поток вектора электрического поля пропорционален заряду, заключенному внутри поверхности.

Для магнитного поля теорема Гаусса говорит о том, что поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю.

Выражение для потенциала поля точечного заряда

Поскольку потенциал равен интегралу от напряженности поля, то можно подставить под знак интеграла выражение для напряженности поля единичного заряда. После интегрирования и преобразования выражение для поля точечного заряда принимает вид:

где:

  • ε0 – электрическая постоянная;
  • r – расстояние.

Приведенное выражение свидетельствует, что величина энергии растет пропорционально степени заряженности и падает пропорционально расстоянию.

Проводники в электростатическом поле

Размещение проводника в электростатическом поле приводит к тому, что поле начнет действовать на носители заряда внутри проводящего предмета. Носители начинают перемещаться до тех пор, пока электростатическое поле вне поверхности ни обратится в нуль.

Поскольку поле внутри вещества отсутствует, то во всех точках проводящего материала энергия будет постоянной, а поверхность эквипотенциальной. Векторы напряженности поля направлены под прямым углом в любой точке поверхности проводника.

Проводник в электростатическом поле

Под действием поля заряды внутри проводника отсутствуют, поскольку они сосредоточены исключительно на поверхности. Этот факт используется при экранировке – защите тел от влияния внешних электромагнитных и электростатических полей. Для экранирования может использоваться не только сплошной проводящий материал, но и сетка, так называемая «клетка Фарадея».

Также свойство перемещения заряженных частиц (электронов) используется в электростатических генераторах для получения напряжения в несколько миллионов вольт.

Электроемкость уединенного проводника

Для связи величин заряда и напряжения введено понятие электрической емкости. Для уединенного проводника (такого, на который отсутствует влияние других заряженных тел) значение емкости – величина постоянная и равная отношению количества заряда к потенциалу. Другими словами, емкость показывает, какой заряд нужно сообщить проводнику, чтобы его потенциальная энергия увеличилась на единицу.

Электроемкость не зависит от степени заряженности. Роль играют только:

  • форма;
  • геометрические размеры;
  • диэлектрические свойства среды.

Так же, как и емкость электрического конденсатора, электроемкость проводника будет обозначаться в фарадах.

Обратите внимание! На практике электроемкость проводника составляет очень малую величину. Для увеличения значения, особенно при производстве конденсаторов, как элементов с нормированным значением емкости, разработаны особые технологии.

Падение потенциала вдоль проводника

На концах проводника, помещенного в электрическое поле, начинает наблюдаться разность потенциалов. Вследствие этого электроны начинают перемещаться в сторону увеличения разности. В проводнике возникает электрический ток.

Свободные электроны продвигаются вдоль проводника до тех пор, пока разница ни будет равна нулю. На практике для поддержания заданной величины тока цепи запитываются от источников напряжения или тока.

Разница заключается в следующем:

  • Источник тока поддерживает в цепи постоянный ток вне зависимости от сопротивления нагрузки;
  • Источник напряжения поддерживает на своих зажимах строго постоянную ЭДС, независимо от величины потребляемого тока.

Разница потенциалов (падение напряжения) пропорциональна расстоянию от концов проводника, то есть обладает линейной зависимостью.

Опыт Вольта

Первым доказал существование разности потенциалов Алессандро Вольта. Для опытов были взяты два диска, выполненных из меди и цинка и насаженных на стержень электроскопа. При соприкосновении меди и цинка листочки электроскопа расходятся, свидетельствуя о наличии электрического заряда.

На основании своих опытов ученый изготовил первый источник электрического напряжения – вольтов столб.

Измерение контактной разности потенциалов

Основная проблема заключатся в том, что контактная разность потенциалов не может быть измерена напрямую, вольтметром, хотя значение ЭДС в цепи с соединением двух различных проводников может составлять от долей до единиц вольт.

Контактная потенциальная разница существенно влияет на вольтамперную характеристику измеряемой цепи. Наглядным примером может служить полупроводниковый диод, где подобное явление возникает на границе соприкосновения полупроводников с разным типом проводимости.

В чем измеряется напряжение

Мы измеряем напряжение в единицах «Вольт», которые обычно обозначаются просто буквой «V» на чертежах и технической литературе. Часто необходимо количественно определить величину напряжения, это делается в соответствии с единицами СИ, наиболее распространенные величины напряжения, которые вы увидите:

  • мегавольт (мВ)
  • киловольт (кВ)
  • вольт (В)
  • милливольт (мВ)
  • микровольт (мкВ)

Напряжение всегда измеряется в двух точках с помощью устройства, называемого вольтметром. Вольтметры являются либо цифровыми, либо аналоговыми, причем последний является наиболее точным. Вольтметры обычно встроены в портативные цифровые мультиметровые устройства, как показано ниже, они являются распространенным и часто важным инструментом для любого электрика или инженера-электрика. Обычно вы найдете аналоговые вольтметры на старых электрических панелях, таких как распределительные щиты и генераторы, но почти все новое оборудование будет поставляться с цифровыми счетчиками в качестве стандарта.

Портативный цифровой мультиметр с функцией вольтметра

На электрических схемах вы увидите устройства вольтметра, обозначенные буквой V внутри круга, как показано ниже:

Потенциал электрического поля

Важным свойством электрического поля, как поля не имеющего вихрей и созданного одними неподвижными источниками, является его потенциальность

Электрическое поле называется потенциальным, если работа, которую совершает носитель заряда в таком поле, при перемещении его по любому замкнутому контуру равняется нулю.

Гравитационное поле силы тяжести также является потенциальным

Если поднять груз определенной массы на некоторую высоту, а затем опустить его обратно на поверхность Земли, в прежнюю точку, то полная механическая работа будет также равна нулю.

Причем, совершенно не важно по какой траектории осуществлялся подъем и спуск груза. Источником такого гравитационного поля является в этом примере Земля (тело с массой во много раз большей чем масса поднимаемого груза).

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]