Как определить и подобрать мощность резистора (сопротивления)

Резисторы есть в любой электрической схеме. Но в разных схемах протекают различной величины ток. Не могут же одни и те же элементы работать при 0,1 А и при 100 А. Ведь при прохождении тока сопротивление греется. Чем выше ток, тем более интенсивный нагрев. Значит, и резисторы должны быть на разную величину тока. Так и есть. Отображает их способность работать при различных токах такой параметр, как мощность резистора. На деталях покрупнее она указывается прямо на корпусе. Для мелких корпусов есть другой метод определения (см. ниже).

Виды резисторов

Корпусы рассматриваемого типа изделий могут иметь цилиндрическую или прямоугольную форму. По характеристикам поведения можно выделить следующие типы этих элементов:

  1. Постоянные – обладают константным (не меняющимся) сопротивлением. Используются, если фрагмент цепи требует поддержания некоторого значения напряжения или токовой силы. Для подбора такого устройства приходится проводить замеры мультиметром и рассчитывать нужные значения параметров.
  2. Переменные – с возможностью регулировки сопротивления. Контроль может иметь вид ступеней или быть плавным. Могут быть применены, например, для регуляции уровня звука.
  3. Подстраивающиеся – вариация предыдущего типа, весьма нечасто нуждающаяся в ручной регулировке.
  4. Устройства, сопротивляемость которых вариабельна и зависит от температуры окружающей среды или освещенности.

Важно! Нелинейные компоненты почти у всех разновидностей изготавливаются из полупроводниковых материалов.

Для чего он нужен

Резистор предназначен для оказания сопротивления проходящему через систему току. Применяется в различных областях. Назначение устройства может быть следующим:

  • «Переделка» токовой энергии в напряжение (или обратно);
  • Ограничение поступающей силы до нужного уровня;
  • Создание разделителей (например, в измеряющих устройствах);
  • Решение специализированных проблем (например, снижение влияния радиопомех).

Важно! Самый простой вариант применения прибора – работа светодиода. Собственное сопротивление элемента слишком мало. Без ограничителя – резистора – проходящий ток моментально выведет элемент из строя.


Светодиод

Параметры резисторного элемента

Сопротивление резистора — формула для рассчета

К числу ключевых параметров данной группы деталей относятся:

  • сопротивление компонента;
  • допуск (степень вариативности номинального сопротивления) – может принимать значения до 20%;
  • ТКС – изменение сопротивляемости при нагреве или охлаждении воздуха на 1 градус (целесообразно, чтобы элементы одной электроцепи имели идентичное значение показателя);
  • мощность, показывающая, какое количество тепловой энергии может быть выделено в пространство при условии сохранения корректного функционирования элемента.

Важно! На то, сколько энергии будет рассеивать компонент, влияет его размер. Натренированный глаз способен к визуальному определению значения по габаритам резистора. Корреляция с величиной связана с тем, что когда ток течет через элемент с большим значением площади поверхности, теплота отдается в пространство с большей скоростью (если речь идет о воздухе).

Миниатюрные смд компоненты снабжаются маркировкой из полосок разного цвета. Расшифровку цветового кода можно посмотреть онлайн (например, на сайте производителя). Зачастую она дается и в прилагаемой технической документации.


Цветовая кодировка миниатюрных деталей

Теория

Для того, чтобы светодиоды не перегорели, важно правильно рассчитать ограничивающий резистор.

Математический расчёт

Необходимые вычисления можно сделать самостоятельно, при низких значениях вам не потребуется калькулятор. Либо при помощи специальной программы, проводящей подсчёты за вас. При расчёте сопротивления гасящего резистора нужно знать закон Ома. R = U-ULED /ILED U — напряжение сети;

ULED — значение напряжения, оптимального для работы диода I LED —ток, на который рассчитана работа элемента Чтобы не произошёл перегрев резистора во время работы, необходимо дополнительно рассчитывать оптимальную мощность для такого напряжения. P = (U-ULED)*ILED

В этой схеме резистор подключается к катоду светящегося элемента.

Расчет резисторов

Для корректного подбора компонента в цепь потребуется найти значения его ключевых показателей. При разных типах соединений нескольких компонентов параметры будут принимать различные значения.

Последовательное соединение

Ряд сопротивления резистора Е24

При использовании последовательной схемы итоговый показатель сопротивления равен сумме отдельных значений для каждого резистора. Пользуясь этим правилом, можно узнать, компонент с каким показателем надо приобрести. Например, требуется получить в цепи 220 Ом, есть устройство на 130 Ом. Следовательно, надо купить второе на 220-130=90 Ом. Ток, идущий в цепи, и ток на каждом резисторном элементе в этом случае имеют одно и то же значение.

Параллельное соединение

Формула для общего сопротивления:

R=R1*R2/(R1+R2).

Из нее можно узнавать целевое сопротивление элемента, который надо приобрести. Электроток в неразветвленной части сети в этом случае равен сумме токов отдельных веток.

Важно! В отличие от предыдущего случая, данная схема рекомендуема к использованию, если показатели для отдельных элементов превышают общее требуемое R.

Смешанное соединение

Оно включает в себя сочетания структур двух ранее обозначенных типов. Чтобы посчитать показатели для отдельных резисторов, схему понадобится упростить.


Разложение смешанной схемы на части

Мощность

Для выбора нужной детали надо знать, как правильно определить мощность резистора. Это можно сделать, опираясь на формулы:

P=U2/R=I2*R.

Нужно учитывать, что использование детали с параметром, превышающим рекомендуемый, допустимо, обратный случай – нет.

Особенности дешёвых LED

При подборе светодиода на рынке можно найти совершенно разные цены. Чем же отличаются дорогие диоды от дешёвых? Светодиоды за разную стоимость отличаются не только внешними особенностями, но и техническими характеристиками. У дешёвых светодиодов параметры сильно отличаются друг от друга, в то время, как у дорогих они уменьшаются плавно при изменении тока или напряжения сети. Кроме того, дешёвые аналоги могут служить недолго и свет будет более тусклым или режущим глаза. На что нужно обратить внимание при покупке светодиодной лампы и как ее установить читайте тут.

Типы и обозначения резисторов

В основном в продажу выпускаются изделия с типовыми значениями мощности рассеяния (0,05, 0,125, 0,25, 0,5, 1, 2 и 5 Ватт). Визуальные обозначения изделий с различными номиналами на электросхемах регламентированы ГОСТ. Перед сборкой надо проверить соответствие используемых деталей указанным на схеме номиналам. Выпускаются элементы и с другими мощностными показателями, отличными от стандартов. На практике они используются нечасто, в основном, под конкретную задачу.

Спецификации к проектируемой схеме, как правило, содержат указания, какими значениями основных параметров должен обладать резистор. Иногда указываются даже конкретная модель, а также допустимое значение отклонения от фиксируемого номинала.


Обозначение деталей с разным номиналом

Термисторы

Рис. 6. Термистор

Термисторы – это резисторы, сопротивление которых значительно изменяется при изменении температуры (Рис. 6).

Сопротивление NTC-термисторов плавно уменьшается при увеличении температуры. NTC являются готовыми датчиками температуры с диапазоном измерений -55… +200°C.

PTC-термисторы характеризуются скачкообразным изменением сопротивления при определенной температуре. Они применяются в качестве элементов защиты от перегрузки по току.

Ток удержания PTC (hold current) – это ток, при котором термистор гарантированно находится в проводящем состоянии.

Ток срабатывания PTC (trip current) – это ток, при котором термистор гарантированно переходит в непроводящее состояние.

Примеры

  • PTC-термисторы:
  • 1812 — серия MF-MSMF производства компании Bourns для рабочих токов от 0,3…5,2 А;
  • 1812 — серия 1812L от Littelfuse для рабочих токов 0,1…3,5 А.
  • NTC-термисторы:
    • серия B57236 от EPCOS с диапазоном сопротивлений 2,5…120 Ом;
    • 0603 — серия ERT-J1 от Panasonic с диапазоном сопротивлений 0,022…150 кОм.

    Нагрев детали в зависимости от сопротивления

    Выбирая подходящий резистор, обязательно надо обращать внимание на температурный диапазон, при котором возможна корректная эксплуатация детали. Она всегда указывается изготовителем. Чтобы резистор не вышел из строя, необходим своевременный выход теплоты в атмосферу. Элемент не должен перегреваться. Чем холоднее воздух (в рамках допустимого диапазона), тем дольше имеет шанс прослужить компонент. Нельзя позволять, чтобы поблизости от резистора скапливалось избыточное тепло.

    Когда температурный показатель достигает своего максимума в рамках диапазона, на сопротивлении начинается процесс выгорания верхнего маркируемого слоя. В таком случае необходимо принимать меры по снижению температуры, иначе у изделия выгорит наполнение, отвечающее за сопротивляемость, и оно станет полностью непригодным к дальнейшей эксплуатации.

    Если детали с требуемой размерностью под конкретную схему не обнаружилось, можно использовать вариант с превосходящим значением, если он подходит собираемому устройству. Резисторы, чьи данные по мощности не дотягивают до требуемых, применять в такой ситуации допустимо, только объединив их последовательно. Вообще знание эффектов параллельно и последовательно связанных резисторных элементов пригодится в ситуации, если под рукой не оказалось детали с идеально подходящими параметрами.

    Технические характеристики устройств

    Основная характеристика резистора – номинальное сопротивление Rн, которое указывается на схеме возле резистора и на его корпусе. Единица измерения сопротивления – ом, килоом и мегаом. Изготавливаются резисторы с сопротивлением от долей ома и до сотен мегаомов. Существует немало технологий производства резисторов, все они имеют и преимущества, и недостатки. В принципе, не существует технологии, которая позволила бы абсолютно точно изготавливать резистор с заданным значением сопротивления.

    Второй важной характеристикой является отклонение сопротивления. Оно измеряется в % от номинального R

    Существует стандартный ряд отклонения сопротивления: ±20, ±10, ±5, ±2, ±1% и далее вплоть до значения ±0,001%.

    Следующей важной характеристикой является мощность резисторов. При работе они нагреваются от проходящего по ним тока

    Если рассеиваемая мощность будет превышать допустимое значение, то устройство выйдет из строя.

    Резисторы при нагревании изменяют своё сопротивление, поэтому для устройств, работающих в широком диапазоне температур, вводится ещё одна характеристика – температурный коэффициент сопротивления. Он измеряется в ppm/°C, то есть 10-6 Rн/°C (миллионная часть от Rн на 1°C).

    Мощности резисторов

    Мощность рассеивания резистора по внешнему виду нагляднее всего определяется у советских цилиндрических изделий, они заметно различаются габаритами. Маркировка у них имеет такой стандарт:

    • первые буквы – вид элемента (к примеру, МЛТ – покрытый лаком металлопленочный);
    • затем дефис, первая цифра после него – мощностное значение;
    • затем указывалось сопротивление (в случае кОм целая часть отделялась от дробной буквой К: 1 К6 – 1,6);
    • отклонение в процентах – например, 6%.

    У импортных изделий маркировка имеет вид цветных полос, где каждый цвет обозначает определенное число. Существуют вариации с 3, 4, 5 полосками.

    Без знания мощностной характеристики подобрать подходящий элемент для монтажа электросхемы не выйдет. Использование нерелевантного по этому показателю резистора приведет к тому, что он будет перегреваться и быстро придет в нерабочее состояние.

    Рейтинг
    ( 2 оценки, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]