Стабилизатор напряжения на транзисторе (параметрический стабилизатор).

Главная > Теория > Стабилизатор напряжения на транзисторе

Для работы электронной аппаратуры необходимо напряжение, обладающие точно заданными характеристиками. Но в промышленной сети напряжение постоянно меняется. Его уровень зависит от подключенных в систему предприятий, зданий и оборудования. Функционирование любого прибора напрямую зависит от напряжения, колебания данного параметра влияют на качество работы, например, при перепадах приемник может начать хрипеть или гудеть. Для того чтобы решить данную проблему, используют стабилизаторы на транзисторе.


Стабилизатор импульсного типа

Принцип работы стабилизатора

Принцип работы заключается в поддержании выходного напряжения в заданных узких пределах, независимо от тока нагрузки и величины входа.

По принципам построения стабилизирующие устройства делятся на следующие группы:

  • Параметрические;
  • Компенсационные;
  • Импульсные.

Параметрические стабилизаторы основаны на использовании вольт-амперной характеристики стабилизирующего элемента, где выбирается участок с малым дифференциальным сопротивлением (при изменении тока на значительную величину напряжение на элементе остается постоянным).


Вольт-амперная характеристика стабилитрона

Более сложные компенсационные конструкции используют обратную связь, величина которой пропорциональна разнице выходного напряжения и эталонного.

К сведению. Импульсные устройства основаны на принципе накопления энергии в реактивном элементе – емкости или индуктивности.

Простой параметрический стабилизатор напряжения

Стабилизатор тока на транзисторе

Простейшая конструкция содержит всего два элемента:

  • Стабилизирующий диод – стабилитрон;
  • Токоограничительный резистор.

Такая схема стабилизатора имеет ограниченное применение, поскольку работает в ограниченном диапазоне сопротивления нагрузки – ток через стабилитрон должен быть больше нагрузки как минимум в 3-10 раз.


Параметрическая схема

Стабилизатор напряжения с применением транзистора

Что такое стабилизатор напряжения

Если дополнить конструкцию со стабилитроном эмиттерным повторителем, получится параметрический стабилизатор на транзисторе и стабилитроне с лучшими параметрами в отношении тока нагрузки.

В данной схеме напряжение на нагрузке определяется разностью между падением на стабилитроне и переходе база-эмиттер. Стабилизация происходит потому, что разность потенциалов перехода база-эмиттер слабо зависит от тока эмиттера.

Включение усилительного элемента позволяет увеличить ток нагрузки в Вst раз, где Вst – статический коэффициент передачи. Используя составной элемент (схема Дарлингтона), можно еще больше увеличить допустимый ток нагрузки до нескольких ампер.


Схема Дарлингтона

Схема параметрического стабилизатора напряжения на транзисторе обладает недостатками. Некоторая нестабильность напряжения на переходе база-эмиттер ухудшает коэффициент стабилизации конструкции в целом. Снижение мощности нагрузки ниже определенного минимума вызывает повышение выходного напряжения (для кремниевых компонентов на 0.6 Вольт, поскольку ток базы становится равным нулю).

Способы сократить время выключения транзистора

Если у нас стоит базовый резистор и мы управляем транзистором от вывода микроконтроллера с питанием 3.3 В, то получается что мы включаем транзистор током с 3.3 В , а выключаем транзистор током через тот же резистор, но током с напряжения 0.7 В, то есть ток базы на выключение транзистора получится меньше.


Рисунок 4. Время выключения транзистора 1200 нсек

Это одна из причин почему выключается транзистор медленней. Для увеличения скорости выключения транзистора мы можем применить такую схему.


Рисунок 5. Время выключения транзистора 400 нсек

В схеме на рисунке 5, при выключении, когда выходной сигнал с микроконтроллера становится равным 0 В, получается что оба резистора 300 Ом и 200 Ом соединяются параллельно и суммарное сопротивление становится меньше, что приводит к увеличению тока базы транзистора при выключении. Это увеличивает скорость выключения транзистора.

Еще один способ увеличить скорость выключения транзистора, это сократить глубину насыщения транзистора при включении. Диод подключенный от базы на коллектор уменьшит глубину насыщения. Вначале включения на коллекторе высокое напряжение, диод закрыт и весь ток базового резистора течет через эмиттерный переход транзистора. Когда напряжение на коллекторе станет ниже напряжения базы, этот диод начнет шунтировать эмиттерный переход и часть тока базового резистора потечет через диод при этом ток через эмиттерный переход уменьшится и это сократит глубину насыщения транзистора.


Рисунок 6. Задержка выключения транзистора составляет около 20 нсек

Принципы расчета характеристик

Параметрический стабилизатор напряжения

Для простейшего расчета характеристик требуются следующие данные:

  • Напряжение питания;
  • Ток нагрузки;
  • Выходное напряжение.

Порядок расчета:

  1. Исходя из выходных параметров, определяется тип стабилизирующего элемента;
  2. Выбирается ключевой элемент по критериям:
  • Коэффициент стабилизации Вst≥Iн/Iст;
  • Допустимое напряжение коллектор-эмиттер больше максимального входного;
  • Максимальный ток коллектора должен быть больше нагрузки.

Компенсационные стабилизаторы

В компенсационных стабилизаторах производится сравнение эталонного (опорного) потенциала с выходным. Разница через контур отрицательной обратной связи поступает на базу ключевого транзистора, управляя величиной его открытия.

Точность стабилизации зависит от точности формирования опорного напряжения. Так как устройство сравнения потребляет малый ток, то опорный потенциал можно сформировать при помощи параметрического стабилизатора на стабилитроне и резисторе.


Компенсационная схема

Еще больше повысить эксплуатационные характеристики можно, используя источник тока вместо токоограничительного резистора. В качестве такого источника наиболее удобно применять полевой транзистор. Компенсационные устройства обладают хорошими характеристиками, поэтому большинство производителей элементной базы выпускает готовые модули, позволяющие создавать конструкции с минимумом элементов.

Основные технические характеристики LM338

Простой регулируемый источник питания

Первая схема — типовое подключение обвязки LM338. Схема обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.

Переменный резистор R1 используется для плавного регулирования выходного напряжения.

Простой 5 амперный регулируемый источник питания

Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.

Регулируемый источник питания на 15 ампер

Как уже было сказано ранее микросхема LM 338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:

В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.

Переменный резистор R8 предназначен для плавной регулировки выходного напряжения

Источник питания с цифровым управлением

В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.

Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.

Схема контроллера освещения

Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.

Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.

Зарядное устройство 12В на LM338

Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.

Схема плавного включения (мягкий старт) блока питания

Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С1 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.

Схема термостата на LM338

LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.

Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.

Информация взята с joyta.ru

Купить Регулируемые стабилизаторы напряжения LM338 за $2.65

Импульсные стабилизаторы

Использование простых конструкций на транзисторах имеет недостаток – на ключевом элементе выделяется большая мощность рассеивания, которая тем больше, чем больше разница между входным и выходным параметром.

Главное отличие импульсных устройств – в том, что транзисторы работают в ключевом режиме, управляя накоплением и отдачей энергии реактивными элементами. Энергия, запасенная дросселем или конденсатором, позволяет не только стабилизировать напряжение, но и повышать его или инвертировать полярность.

Собранные на дискретных элементах импульсные преобразователи сложны в конструировании и регулировке. Сейчас выпускаются схемы, выполненные в виде интегральных микросхем, которым требуется импульсный ключ только для увеличения мощности. Устройства практически не требуют регулировки и обладают высокой надежностью.


Микросхема импульсных устройств

Стабилизированный регулируемый блок питания с защитой от перегрузок

Множество радиолюбительских блоков питания (БП) выполнено на микросхемах КР142ЕН12, КР142ЕН22А, КР142ЕН24 и т.п. Нижний предел регулировки этих микросхем составляет 1,2…1,3 В, но иногда необходимо напряжение 0,5…1 В. Автор предлагает несколько технических решений БП на базе данных микросхем.

Интегральная микросхема (ИМС) КР142ЕН12А (рис.1) представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2…37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.

Рис.1. ИМС КР142ЕН12А

На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе. Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DA1 и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга. В авторском варианте DA1 установлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2.


Рис.2. Регулируемый БП на ИМС КР142ЕН12А

Схема на составном транзисторе

Параметрический стабилизатор напряжения на транзисторе ограничивает ток нагрузки не только за счет допустимого тока ключевого элемента. Задолго до наступления момента предельного режима стабилизация ухудшается, поскольку ограничивается статическим коэффициентом передачи ключевого транзистора.

Увеличить ток нагрузки можно, применяя составные элементы, включенные по схеме Дарлингтона. В таком включении общий коэффициент передачи равняется произведениям коэффициентов обоих транзисторов. Мощные усилительные транзисторы Дарлингтона часто выпускаются в едином корпусе, не требуя дополнительных соединений.

Схема на транзисторе и стабилитроне

Подключение ключевого элемента к простейшему устройству на стабилитроне позволяет с минимальными затруднениями увеличить ток нагрузки. Применение полевого транзистора вместо биполярного позволяет уменьшить рассеиваемую мощность, снизить падение на полупроводниковых переходах, увеличивая таким образом КПД конструкции.

Важно! При использовании полевых транзисторов рука и инструмент должны быть заземлены.

Какой выбрать стабилизатор напряжения, зависит от предъявляемых требований по значению тока нагрузки, коэффициенту стабилизации, габаритам конструкции.

Во многом это зависит от личных предпочтений. Компенсационные и параметрические устройства просты для понимания, легко собираются и настраиваются. Импульсные устройства более сложные технически. Хотя существует множество готовых интегральных микросхем импульсных стабилизаторов, отсутствие четкого понимания их работы может затруднить поиск неисправностей. Выбранная с некоторым запасом по току конструкция может простоять под нагрузкой неограниченное время.

Стандартные напряжения стабилитронов

В продаже представлены стабилитроны с характеристическим напряжением от чуть более 1 В до нескольких сотен вольт. Для каждого значения напряжения обычно доступно одно или несколько значений мощности в диапазоне от чуть менее 0,5 Вт до более 5 Вт. Среди наиболее распространенных семейств стабилитронов — серия маломощных BZX55 с напряжением VZ от 2,4 В до 75 В и максимальной рассеиваемой мощностью до 500 мВт. Семейство силовых стабилитронов BZX85 также широко используется с напряжением VZ от 2,7 до 100 В и максимальной рассеиваемой мощностью до 1300 мВт. Про отечественные Д814 и Д815 говорить смысла нет, так как они уже сошли с радиолюбительской сцены.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]