Десять причин выбрать фольговые резисторы Vishay для вашего проекта

24 августа 2011

Технология Bulk Metal Foil была разработана в 1962 году Феликсом Зандманом (Dr. Felix Zandman) — основателем компании Vishay. Результатом работы компании стали фольговые резисторы с низким температурным коэффициентом сопротивления (ТКС) и высокой стабильностью параметров вне зависимости от изменений температуры [1]. Технология Bulk Metal Foil вывела компанию на рынок прецизионных сопротивлений и приборов на их основе и сделала ее одним из явных лидеров в этой области.

Технология Z-Foil, успешно реализованная в 2000 году, стала новым прорывом компании Vishay. Впервые было достигнуто абсолютное значение ТКС ±0,2 ppm/°С.

Стратегия развития компании [2] сфокусирована на вертикальной интеграции продуктов — применение технологии изготовления фольговых резисторов для датчиков (сопротивления, деформации, тока и др); применение датчиков в электронно-измерительных устройствах; интеграция датчиков и электронно-измерительных устройств, а также программного обеспечения в модули и измерительные системы.

Основные свойства резисторов Vishay и их ассортимент

На сегодняшний день фольговые резисторы превосходят резистивные компоненты других типов по точности, стабильности и надежности. Все это стало возможным благодаря уникальной конструкции, включающей использование специального резистивного сплава (C-Foil, K-Foil, а с 2000 года — Z-Foil), обеспечивающего уникальные свойства — предельно низкие температурные и мощностные коэффициенты сопротивления (ТКС и МКС меньше 10 ppm/°C) [3-5].

Типовые технические характеристики фольговых резисторов:

  • Низкий температурный коэффициент сопротивления: ±0,05ppm/°C (0…60°C), ±0,2 ppm/°C (-55…125°C);
  • Широкий диапазон номинальной мощности;
  • Высокое предельное рабочее напряжение 180В;
  • Высокая точность ±0,01…0,001%;
  • МКС в результате самонагрева 5ppm при номинальной мощности;
  • Защита от электростатики до 25кВ;
  • Стабильность при работе под нагрузкой ±0,005% (70°C, порядка 2000 часов работы при номинальной мощности);
  • Широкий диапазон номинальных сопротивлений;
  • Неиндуктивный, неемкостной дизайн;
  • Низкие значения токового шума -40дБ;
  • Коэффициент напряжения менее 0,1ppm/В;
  • Диапазон рабочих температур -55…125°C;
  • Возможность изготовить ЛЮБОЙ (1К892346) номинал в пределах номиналов сопротивления данной серии.

Компанией предлагаются прецизионные резисторы практически для любой области применения, в любом конструктивном исполнении [3, 5]. Ассортимент фольговых резисторов (таблица 1) включает в себя:

  • Резисторы для поверхностного монтажа (SMD);
  • Дискретные резисторы для монтажа в отверстия;
  • Делители напряжения (для монтажа в отверстия и SMD);
  • Резисторные сборки (для монтажа в отверстия и SMD);
  • Резисторы- датчики тока (current-sensing resistors);
  • Герметичные резисторы;
  • Потенциометры;
  • Гибридные микросхемы;
  • Герметичные резисторные сборки под заказ потребителя;
  • Высокотемпературные резисторы (рабочая температура более 220°C);
  • Резисторы для аудио.

Таблица 1. Ассортимент фольговых резистров Vishay Precision Group

Резисторы поверхностного монтажаВнешний видВыводные резисторы и сборкиВнешний вид
VSMP SeriesVH Series
VFCP SeriesZ201
SMRxD SeriesVHP Series
VCS2516ZVPR Series
CSM SeriesVHA Series
PRNDVCS Series
DSM/SMNVFP Series
VSMS Series
VFCD300144

В качестве услуги Vishay предлагает уникальный сервис Prototype Fastlane Service (PFS), позволяющий потребителю получить резисторы технологии Bulk Metal Foil любого номинала (например, 123,455487 Ом) в течение 76 часов.

Маркировка резисторов

Маркировка выводных резисторов

На корпус резистора наносится специальная маркировка, которая содержит информацию об основных параметрах резистора (как минимум номинальное сопротивление и допуск). Маркировка может выполняться текстом (текстовый код) или цветом (цветовой код) согласно ГОСТ 28883-90 «Коды для маркировки резисторов и конденсаторов» (в литературе также можно встретить упоминание об отмененном ГОСТ 28364-89).

Резисторы с одинаковым номинальным сопротивлением 470 Ом, но с различными типам маркировки: текстовой снизу и цветовой сверху

Согласно ГОСТ 28883-90 текстовый код должен состоять из трех, четырех или пяти знаков, причем один из знаков должен быть буквой, остальные — цифры. Буква обозначает множитель, на который нужно умножить указанные цифры. Запятая десятичного знака заменяется буквой. Ниже приведены значения букв:

БукваМножитель
R1 Ом
K103 Ом (1 кОм)
M106 Ом (1 МОм)
G109 Ом (1ГОм)
T1012 Ом (1ТОм)

Например: R47 – 0,47 Ом; 59R – 59 Ом; 5K9 – 5,9 кОм.

Цветовой код применяется для обозначения номинального сопротивления, допускаемого отклонения и температурного коэффициента (при необходимости). На корпус резистора наносят полоски. Каждая полоска может соответствовать значимой цифре, множителю, допускаемому отклонению или температурному коэффициенту. Первая полоса наносится у края резистора. Остальные полосы размещают так, чтобы первую полосу можно было безошибочно определить. Количество полос может быть от 3 до 6. Значения полосок показаны в таблице.

1 полоска2 полоска3 полоска4 полоска5 полоска6 полоска
Знач. цифраЗнач. цифраМножитель
Знач. цифраЗнач. цифраМножительТочность
Знач. цифраЗнач. цифраЗнач. цифраМножительТочность
Знач. цифраЗнач. цифраЗнач. цифраМножительТочностьТемператур. коэффициент
ЦветЗначимая цифраМножительДопуск, %Температурный коэффициент сопротивления, 10-6 °C
Серебрянный10-2± 10
Золотой10-1± 5
Черный01± 250
Коричневый110± 1± 100
Красный2102±2± 50
Оранжевый3103± 15
Желтый4104± 25
Зеленый5105± 0,5± 20
Голубой6106± 0,25±10
Фиолетовый7107± 0,1± 5
Серый8108± 1
Белый9109
Без окраски± 20

Определить сопротивление резистора по цветовой маркировке онлайн можно с помощью калькулятора цветовой маркировки.

Как видно из таблицы резистор с тремя полосками имеет допуск ± 20 %.

Полоска температурного коэффициента согласно ГОСТ 28883-90 наносится одним из следующих методов:

  • более широкая шестая полоска;
  • прерывистая шестая полоска;
  • спиральная линия.

Маркировка чип резисторов (SMD резисторов)

Для маркировки чип резисторов применяется текстовая маркировка. Резисторы размера 0402 не имеют маркировки из-за малых размеров.

Существует два типа марикровки чип резисторов:

  • трех и четырёх числовая маркировка – первые два или три числа обозначают значение, последнее — множитель;
  • маркировка EIA-96 – две цифры и буква, применяется для маркировки резисторов из ряда E96. Две цифры являются кодом трех цифр, буква – множитель.

Таблица кодов EIA-96

КодЗнач.КодЗнач.КодЗнач.КодЗнач.КодЗнач.КодЗнач.
011001714733215493166546481681
021021815034221503246647582698
031051915435226513326748783715
041072015836232523406849984732
051102116237237533486951185750
061132216538243543577052386768
071152316939249553657153687787
081182417440255563747254988806
091212517841261573837356289825
101242618242267583927457690845
111272718743274594027559091866
121302819144280604127660492887
131332919645287614227761993909
141373020046294624327863494931
151403120547301634427964995953
161433221048309644538066596976

Таблица множителей EIA-96

КодZY or RX or SAB or HCDEF
Множитель0.0010.010.1110100100010000100000

Определить сопротивление чип (SMD) резистора можно с помощью калькулятора маркировки SMD резисторов.

Если на smd резистотре нанесен 0 – это перемычка.

Области применения

Характеристики фольговых резисторов позволяют применять их в областях с высокой степенью ответственности, повышенными требованиями к качеству, точности или сроку службы, а также в тяжелых климатических условиях — медицинское оборудование, высокопроизводительное аудио оборудование, прецизионные измерительные системы, аэрокосмические или военные приложения [3, 5, 6].

Мостовые схемы

Данный тип приложений требует наличия четырех резисторов — три строятся по наиболее стабильной технологии, а четвертый работает в качестве чувствительного элемента, преобразуя значение физической величины в изменение напряжения на выходе мостовой схемы. При этом резисторы монтируются как можно ближе друг к другу, и их температуру во время измерений также стремятся сделать одинаковой. Фольговые резисторы идеально подходят для данной области применения благодаря исключительно низкому температурному и мощностному коэффициенту сопротивления, низкому шуму термоЭДС, малому времени рассасывания заряда.

Датчики тока

Резистор с очень низким сопротивлением с четырьмя точками подключения позволяет минимизировать потери мощности на измерительном сопротивлении, и применять для измерения тока тепловое излучение. Измерение очень больших токов данным методом требует от резистора достаточно больших размеров для обеспечения рассеяния тепла. Резисторы технологии Vishay Foil являются прекрасным решением, т.к. тонкий плоский слой фольги располагается на керамической подложке, которая в состоянии рассеять и отвести в нижележащую плату достаточное количество тепла. Низкий ТКС предотвращает дрейф параметров резистора при изменении температуры в результате нагрева при протекании большого тока.

Дифференциальные усилители

Коэффициент усиления обычного усилителя должен быть по возможности постоянным вне зависимости от условий внешней среды. Входной резистор и резистор обратной связи в данных схемах имеют отличные характеристики рассеяния тепла и протекающего тока, разогревающего резисторы. В дифференциальном усилителе речь идет уже о четырех, а иногда и о большем количестве резисторов — это означает, что все они должны проявлять практически идентичные характеристики в широком диапазоне значений. Резисторы технологии Vishay Bulk Foil отвечают этим требованиям лучше других.

Гироскопы в системах навигации

В электростатических гироскопах применяется электронное управление для перестройки гироскопа во время изменения его ориентации. Гироскопы других типов также критичны к точности резисторов, применяемых в их схемах. Чаще всего в схемах применяются резисторные сборки, используемые для определения и реализации функций «включено-выключено», «контроль азимута» и других. Данные функции являются критичными с точки зрения управления воздушными, водными судами, космическими аппаратами. Это только одна из причин, по которой применение прецизионных фольговых резисторов является практически обязательным.

Датчики давления

Давление воздуха в воздушных и подводных судах, как правило, является вопросом жизни и смерти, в этой связи от систем его измерения требуется высокая точность и еще большая отказоустойчивость. Чаще всего выход датчика зависит от приложенной к нему силы, и для точной обработки сигнала необходима мостовая схема, значения сопротивлений которой находятся в среднем диапазоне значений, что минимизирует потребляемую мощность, и, соответственно, нагрев резисторов. Фольговые резисторы в подобных схемах, кроме температурной, добавляют временную стабильность параметров.

Импульсные источники питания

Эта область применений требует наборов сопротивлений с минимальной реактивностью. Любая паразитная индуктивность или емкость резисторов может негативно сказаться на работе схемы из-за влияния на крутизну фронта переключения. Благодаря своей конструкции и технологии изготовления фольговые резисторы Vishay Foil обладают минимальной реактивностью по сравнению с другими.

Телекоммуникации

В телекоммуникационной инфраструктуре наиболее важными параметрами являются широкий диапазон рабочих частот и высокая временная стабильность. Конструкция фольговых резисторов Vishay является планарной со смежными проводниками, ток по которым течет в противоположных направлениях. Данное решение уменьшает индуктивность резистора, и паразитные емкости при этом оказываются в параллельном включении, что уменьшает результирующую емкость — все это снижает реактивную составляющую полного сопротивления резистора и улучшает его частотные характеристики.

Медицина

В данной области фольговые резисторы обеспечивают стабильность параметров даже в условиях переменной температуры и влажности. К основным применениям можно отнести: кардиографы; томографы; миниатюрные датчики для систем трехмерного изображения для очной диагностики и хирургии; имплантаты.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Советуем к прочтению: Простые схемы для начинающих радиолюбителей

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Литература

1. Г.Келл. Vishay Intertechnology: портрет компании // Новости Электроники №9/06, с 23-25.

2. Vishay Precision Group. Company Overview. // https://www.vishaypg.com/docs/75012/vpg_co.pdf

3. Ultra-High-Precision Bulk Metal® Foil Resistors. Advanced Medical Applications, Treatment Solutions, and Biotechnology// https://www.vishay.com/docs/49466/pl_cap_b.pdf

4. Introduction to High Precision Resistors. Vishay Foil Resistors// https://cimail15.blh.com/docs/49787/intro.pdf

5. Bulk Metal® Foil Resistors. Complete resource guide.// https://images.vishaypg.com/vpgdocs/49789VMN-PL0373.pdf

6. 10 Technical Reasons Why to Choose Foil Resistors for Your Circuit Vishay Foil Resistors// https://vishaypg.com/docs/49788/10reasns.pdf

7. Thermal EMF for Low Ohmic Value Resistors// https://www.vishay.com/docs/30175/thermal.pdf

8. Yuval Hernik. Component selection and layout strategies for avoiding thermal EMF.// https://www.eetimes.com/design/power-management-design/4214897/Component-selection-and-layout-strategies-for-avoiding-thermal-EMF.

Получение технической информации, заказ образцов, поставка — e-mail

•••

Какое напряжение после резистора

Есть другой способ снижения напряжения на нагрузке, но только для цепей постоянного тока. Про смотри здесь.

Вместо дополнительного резистора используют цепочку из последовательно включенных, в прямом направлении, диодов.

Весь смысл состоит в том, что при протекании тока через диод на нем падает «прямое напряжение» равное, в зависимости от типа диода, мощности и тока протекающего через него — от 0,5 до 1,2 Волта.

На германиевом диоде падает напряжение 0,5 — 0,7 В, на кремниевом от 0,6 до 1,2 Вольта. Исходя из того, на сколько вольт нужно понизить напряжение на нагрузке, включают соответствующее количество диодов.

Чтобы понизить напряжение на 6 В необходимо приблизительно включить: 6 В: 1,0 = 6 штук кремниевых диодов, 6 В: 0,6 = 10 штук германиевых диодов. Наиболее популярны и доступны кремниевые диоды.

Выше приведенная схема с диодами, более громоздка в исполнении, чем с простым резистором. Но, выходное напряжение, в схеме с диодами, более стабильно и слабо зависит от нагрузки. В чем разница между этими двумя способами снижения выходного напряжения?

У резистора (проволочного сопротивления) линейная зависимость между током, проходящем через него и падением напряжения на нем. Во сколько раз увеличится ток, во столько же раз увеличится и падение напряжения на резисторе.

Из примера 1: если мы к лампочке подключим параллельно еще одну, то ток в цепи увеличится, с учетом общего сопротивления двух лампочек до 0,66 А. Падение напряжения на добавочном резисторе будет: 12 Ом *0,66 А = 7,92 В. На лампочках останется: 12 В — 7,92 В = 4,08 В. Они будут гореть в пол накала.

Совсем другая картина будет если вместо резистора будет цепочка диодов.

Зависимость между током протекающем через диод и падающем на нем напряжении нелинейная. Ток может увеличиться в несколько раз, падение напряжения на диоде увеличится всего на несколько десятых вольта.

Т.е. чем больше ток диода, тем (сравнительно с резистором) меньше увеличивается его сопротивление. Падение напряжения на диодах мало зависит от тока в цепи.

Диоды в такой цепи выполняют роль стабилизатора напряжения. Диоды необходимо подбирать по максимальному току в цепи. Максимально допустимый ток диодов должен быть больше, чем ток в рассчитываемой цепи.

Падения напряжения на некоторых диодах при токе 0,5 А даны в таблице.

В цепях переменного тока, в качестве добавочного сопротивления можно использовать конденсатор, индуктивность, динистор или тиристор (с добавлением схемы управления).

Для человека, который знаком с электрооборудованием на уровне простого пользователя (знает, где и как включить/выключить), многие используемые электриками термины кажутся какой-то бессмыслицей. Например, чего только стоит «падение напряжения» или «сборка схемы». Куда и что падает? Кто разобрал схему на детали? На самом же деле, физический смысл происходящих процессов, скрывающийся за большинством этих слов, вполне доступен для понимания даже со школьными знаниями физики.

Советуем к прочтению: FM антенна для музыкального центра своими руками

Чтобы объяснить, что такое падение напряжения, необходимо вспомнить, какие вообще напряжения бывают в (имеется в виду глобальная классификация). Их всего два вида. Первый — это напряжение который подключен к рассматриваемому контуру. Оно может также называться приложенным ко всей цепи. А второй вид — это именно падение напряжения. Может быть рассмотрено как в отношении всего контура, так и любого отдельно взятого элемента.

На практике это выглядит следующим образом. Например, если взять обычную вкрутить ее в патрон, а провода от него подключить в домашнюю сетевую розетку, то приложенное к цепи (источник питания — проводники — нагрузка) напряжение составит 220 Вольт. Но стоит нам с помощью вольтметра замерять его значение на лампе, как станет очевидно, что оно немного меньше, чем 220. Так произошло потому, что возникло падение напряжения на которым обладает лампа.

Пожалуй, нет человека, который не слышал бы о законе Ома. В общем случае формулировка его выглядит так:

где R — активное сопротивление цепи или ее элемента, измеряется в Омах; U — электрическое напряжение, в Вольтах; и, наконец, I — ток в Амперах. Как видно, все три величины непосредственно связаны между собой. Поэтому, зная любые две, можно довольно просто вычислить третью. Конечно, в каждом конкретном случае придется учесть род тока (переменный или постоянный) и некоторые другие уточняющие характеристики, но основа — вышеуказанная формула.

Электрическая энергия — это, фактически, движение по проводнику отрицательно заряженных частиц (электронов). В нашем примере спираль лампы обладает высоким сопротивлением, то есть замедляет перемещающиеся электроны.

Благодаря этому возникает видимое свечение, но общая энергия потока частиц снижается. Как видно из формулы, с уменьшением тока уменьшается и напряжение. Именно поэтому результаты замеров у розетки и на лампе различаются. Эта разница и является падением напряжения.

Данная величина всегда учитывается, чтобы предотвратить слишком большое снижение на элементах в конце схемы.

Падение напряжения на резисторе зависит от его и силы протекающего по нему тока. Также косвенное влияние оказывают температура и характеристики тока. Если в рассматриваемую цепь включить амперметр, то падение можно определить умножением значения тока на сопротивление лампы.

Но далеко не всегда удается вот так просто с помощью простейшей формулы и измерительного прибора выполнить расчет падения напряжения. В случае параллельно подключенных сопротивлений нахождение величины усложняется. На приходится дополнительно учитывать реактивную составляющую.

Рассмотрим пример с двумя параллельно включенными резисторами R1 и R2. Известно сопротивление провода R3 и источника питания R0. Также дано значение ЭДС — E.

Приводим параллельные ветки к одному числу. Для этой ситуации применяется формула:

R = (R1*R2) / (R1+R2)

Определяем сопротивление всей цепи через сумму R4 = R+R3.

Рассчитываем ток:

Остается узнать значение падение напряжения на выбраном элементе:

Здесь множитель «R5» может быть любым R — от 1 до 4, в зависимости от того, какой именно элемент схемы нужно рассчитать.

Итак, резистор… Базовый элемент построения электрической цепи.

Работа резистора заключается в ограничении тока, протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока. То есть, без резистора по цепи течет большой ток, встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.

Пример с лампочкой

Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток, проходящий через цепь. И Резистор. Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток, например, 0,75А.

Лампочка горит ярко. Встроили в цепь резистор — у тока появился труднопреодолимый барьер, протекающий по цепи ток снизился до 0,2А. Лампочка горит менее ярко. Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче.

Кроме того, на резисторе происходит падение напряжения. Барьер не только задерживает ток, но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт.

На всякий случай амперметр, два вольтметра про запас, лампочку и резистор. Включаем цепь без резистора(слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа) показывает 5В.

На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.

Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе.

Единица измерения сопротивления резистора

Основная характеристика резистора — сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.

Закон Ома для электрической цепи

Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока(I) и Сопротивление(R).

Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора, при котором ток от источника питания на 12В ограничится до 0,2. При этом считаем сопротивление лампочки равным 0.

V=I*R => R=V/I => R= 12В / 0,2А => R=60Ом

Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи, будет составлять 0,2А.

Характеристика мощности резистора

Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.

Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.

При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.

Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.

Расчет мощности резистора

Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток, проходящий по цепи(а значит и через резистор), равный 0,2А.

Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе). Это значит, что мощностьтока через резистор равна P=I*V=0,2А*5В=1Вт.

Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.

Что происходит при повышении температуры в контуре?

Если температура металлического проводника увеличивается, ионы металла колеблются сильнее

. Это увеличивает количество столкновений между свободными электронами и ионами. Следовательно, для металла сопротивление увеличивается с повышением температуры. Часто повышение температуры вызвано увеличением силы тока.

Интересные материалы:

Как вы очищаете газ? Как вы очищаете компонент вакуумного циклона Dyson Animal? Как вы одеваетесь стильно, если у вас избыточный вес? Как вы одновременно подключаете гитару и вокал? Как вы оформляете этикетку? Как вы ограничиваете кадры? Как вы окунетесь в стереосеть? Как вы опираетесь на Battlefield V? Как вы описываете акустику? Как вы описываете бла-настроение?

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]