7 причин, почему беспроводное электричество и мощные беспроводные зарядки останутся в научной фантастике


Беспроводные зарядки удобны: бросил гаджет на подставку, и ничего подключать не надо. А как здорово было бы использовать их для подзарядки электроавтомобилей!

И почему эти странные ученые до сих пор не могут воспроизвести технологию великого Тесла? Странные они, сто лет работают и результата нет.

Именно так думает почти каждый, кто задумывается современных технологиях передачи электричества. Ведь без проводов быстрее, удобней и надежнее (наверно).

На практике передача малых токов без проводов легко осуществима на малых расстояниях. Но как только требуется высокий ток, повышенная мощность работы или большое расстояние трансляции — начинаются серьезные проблемы, связанные с простейшими физическими законами.

А есть и другие трудноразрешимые задачи.

Никола Тесла — великий учитель и великий обманщик

Большая часть мифов, связанных с беспроводной передачей электричества, досталась человечеству от конспирологов и «переваренных» ими многочисленных мифов о великом сербско-американском изобретателе.

Ещё в начале двадцатого века он экспериментами в Колорадо-Спрингс показал возможность передачи электромагнитного поля на удалении, когда ему удалось зажечь лампочку на расстоянии свыше трёх километров.

Как ему это удалось? Официального ответа на этот вопрос нет, поскольку методика эксперимента осталась в тайне. А известные записи рассказывают совсем о другом.

Зато есть законы физики и впечатления очевидцев, которые говорят о невероятной мощности передатчика (по меркам времени, конечно): потрачено было намного больше энергии, чем нужно какой-то лампочке.

А поскольку цифр нет, данных нет — не миф ли это, как и многие другие его разработки? Тесла оказался величайшим мистификатором своего времени, а раскрыть это во всей красе позволяют современные «достижения».

Сегодня его труды пытаются повторить с помощью инвестиций новозеландской энергетической компании Powerco силами местного стартапа Emrod.

Согласно официальной информации, проект Emrod предусматривает беспроводную передачу энергии между приёмником и передатчиком на расстоянии прямой видимости, а это, на самом деле, могут быть десятки километров.

Созданный прототип на данный момент проходит лабораторные испытания, а затем начнутся и полевые, в которых планируется передавать ток мощностью до 2 кВт.

Заявлено, что за счёт новых радиопоглощающих материалов КПД приёмной (выпрямляющей) антенны доведён до 100%, а КПД передающей системы приближается к 70 %.

И тут-то они попались: ничто не может иметь КПД в 100%. Законы сохранения энергии и принцип причинности никто не отменял: передающаяся волна не может полностью преобразовываться в необходимый тип энергии.

В случае с электричеством и реальными инженерными устройствами все совсем печально.

Принципы передачи

Производство электроэнергии

В последних разработках учёных из США и Южной Кореи применялись магнитно-резонансные системы CMRS и DCRS. Корейская технология оказалась более совершенной. Удалось передать электроэнергию на 5 метров. Благодаря компактным дипольным катушкам DCRS, можно запитать всех потребителей в помещении средних размеров без проводов.

Важно! Несовершенство современной аппаратуры существенно ограничивает длину пути электричества по воздуху.

Несмотря на это, учёные всего мира заняты получением новых технологий, задача которых – передача энергии на расстоянии в десятки и сотни километров. Уже сегодня развиваются и претворяются в жизнь новые достижения науки в области доставки электроэнергии без проводных линий электропередач.

Беспроводные зарядки имеют низкое КПД

Сегодня существует три основных варианта мощности беспроводных Qi-зарядок: 5 Вт, 7,5 Вт, 10 Вт. Для сравнения, самые распространенные проводные — 5 Вт, 10 Вт и 18 Вт.

Коэффициент полезного действия проводных блоков питания, преобразующих переменный ток в постоянный с заданными параметрами, балансирует в пределах от 50 до 85%. Остальное выделяется теплом и выражается нагревом элементов электроцепи.

Минимальным условием для работы Qi хотя бы с 5 Вт — зарядное устройство на 10 Вт. Иначе ничего не выйдет, зарядка не заработает.

При этом для работы Qi с мощностью 10 Вт необходим блок питания с поддержкой QC 3.0 на 18 Вт или мощнее (чаще предлагается использовать PD на 24 Вт).

КПД преобразования составляет всего 55%.

Сама передача от зарядки к устройству тоже является источником потерь: телефон в среднем принимает 4,2 Вт из 5Вт (КПД 85%) и 9,1Вт из 10Вт (КПД около 90%).

Из 18 Вт сделать 9,1 Вт с КПД 50% — это теперь называется «зеленая экономичная энергетика»?

Неужели нет более удачных технологий? Есть. Теоретически проблема проста: повышаем напряжение, уменьшаем ток, снижаем потери.

Только в электронике аккумулятор на 4,35 В, поэтому придётся оснащать смартфон понижающим преобразователем. Который должен быть рассчитан

  • на конкретные параметры зарядки
  • с запасом по напряжению
  • и обладать большими потерями из-за преобразования и особенностей использованных для него транзисторов

Высокомощные беспроводные интерфейсы, активно продвигаемые Xiaomi и другими китайскими брендами предлагают более высокие токи.

За счет этого, а так же дорогой электроники (и специфичного распределения себестоимости) им удаётся достичь КПД до 55-70%.

Однако им требуются высокомощные Power Delivery источники тока с мощностью 65 Вт и выше, которые сами по себе имеют достаточно высокие потери.

Поэтому чаще всего производители комплектуют Qi-зарядку собственным блоком питания. В итоге общая стоимость аксессуара на свободном рынке может достигать 20-40% от стоимости самого гаджета. Отдельно ничего не купить. Так зачем, если скорее всего с новым смартфоном придётся покупать более мощное устройство?

К истокам появления

В 1893 году проходила выставка в Чикаго. На ней была демонстрация беспроводного освещения, в которой все действовало за счет люминесцентных ламп. Это работа принадлежала Николе Тесла.

Сейчас эксперимент сможешь повторить и ты – просто встань с лампой дневного света под линией с высоким напряжением. А тогда это было больше похоже на сеанс магии, поэтому изобретатель получил такую популярность.

Сегодня не каждый ученый согласится, что именно Тесле принадлежит идея создания беспроводного электричества. Они считают, что его работы – это доработка уже существующей идеи. Например, за 73 года до выставки, Андре Ампер записал закон, который указывает, что при использовании электротока возникает магнитное поле. Через одиннадцать лет, Майкл Фарадей открыл закон индукции. Был проведен опыт, который показал, что генерируемое в одном проводнике магнитное поле индуцирует ток в другой проводник.

В 1864 году произошло объединение всех теорий. Работа принадлежит Джеймсу Максвеллу. Он пришел к уравнению, которое описывало электромагнитное поле, а также связь с электрозарядами и токами в вакууме.

Спустя двадцать семь лет Тесла модернизировал передатчик волн, который изобрел Герц немного ранее. Он запатентовал его в качестве устройства для радиочастотного энергоснабжения.

Тепловые потери никто не отменял

Второй проблемой являются уже упомянутые выше тепловые потери: энергия, которая теряется в процессе преобразования электрического тока из переменного в постоянный и при передаче его на расстояние, превращается в тепловую.

Происходит нагрев. Преимущественно самого зарядного устройства, а за счет этого — и заряжаемых гаджетов.

Для обычного LiPo-аккумулятора потери даже при обычной зарядке составляют не менее 15-20%. Добавляем потери выше, характерные для беспроводной передачи — получаем очень много тепла.

Все это куда-то нужно направить и рассеять в пространстве: LiPo батареи очень боятся любого нагрева — часто достаточно 100 градусов для маленького пожара.

Ещё одна проблема кроется в устройстве беспроводной зарядке. Что это? Набор электромагнитных катушек с парой чипов, которые передают поле в такие же катушки заряжаемому гаджету.

Плохое позиционирование и разные размеры катушек увеличивают потери и нагрев, снижая скорость зарядки.

Иногда это пытаются решать магнитами (MagSafe), иногда — перемещаемыми катушками или увеличением их числа, иногда — просто отключая процесс при нагреве. Результаты неплохие, но только для малых токов.

Увеличиваем мощность передачи — получаем кратное увеличение потерь. Фактически, даже 65 Вт без точного позиционирования можно рассматривать в виде маленького пожара.

Стоит ли рисковать или оставить технологию в виде прототипа на тот момент, когда люди привыкнут использовать беспроводные зарядки?

Мощностная муфта

Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.

Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.

Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Беспроводное электричество взаимодействует с металлом

На самом деле существующие зарядки чуть сложнее, чем просто набор катушек: есть ещё несколько уровней защиты на уровне протокола (да-да, зарядник и гаджет общаются между собой) и схемотехники.

Один из уровней блокирует включение зарядки при попадании металлического предмета на электромагнитный передатчик.

Оказавшись над передающей индукционной катушкой, металл неизбежно начнёт нагреваться. Например, нескольких минут хватит, чтобы та же скрепка раскалилась и начала плавить пластик.

В MagSafe и автомобильных держателях магниты и их ответные металлические части лежат в стороне от катушки, поэтому взаимодействия нет.

В более сложных системах сначала нужно отладить очень точное позиционирование. Для автомобиля, дрона или розетки такое маловероятно.

Теоретически, можно подобрать частоту передачи, при которой взаимодействие будет минимальным (потребуются хитрые катушки).

Прототип решения существует и много лет тестируется. Но до серии ещё не дошло, и вряд ли это произойдёт в обозримом будущем: стоимость высокая, сложность изготовления и работы повышена.

Ко всему прочему, процесс зарядки более нестабилен.

Вред электромагнитного излучения не доказан. И не опровергнут

Это самый интересный вопрос, на который есть конкретный ответ только с определенными устройствами и границами. Безусловно, Qi-зарядки для гаджетов совершенно безопасны.

Даже самые мощные экземпляры, доступные для покупки в рознице, работоспособны только на малом расстоянии: мощность излучения не должна превышать 50 мВт/см2 на расстоянии 20 см от зарядки.

Правда, есть тонкость: расстояние и мощность на нём лимитировано правилами Комиссий по связи (разных стран). Поскольку предположения о возможном вреде существуют, но однозначно не установлены.

Дальше излучение практически не проникает ввиду своих свойств: электромагнитное излучение катушки с током распространяется кольцеобразно, образуя замкнутый контур.

Направленное излучение требует других частот, других мощностей, других типов излучения. Вред которых, кстати, чуть более изучен.

Маломощные радиопередающие устройства, в частности, мобильные телефоны, не оказывают влияния на организм человек: эксперименты показывают отсутствие негативного влияния на организм человека.

Облучение высокомощных станций, например, радиолокаторов и базовых станций, на определенных частотах вредно в непосредственной близости от источника и может вызывать недомогания. В остальном подтвержденной информации нет.

Что будет, если значительно увеличить мощность Qi-подобной зарядки? Очевидно, все зависит от конкретных параметров тока: силы, напряжения и частоты.

Их правильный подбор осуществить можно, но из-за человеческой глупости всегда можно получить внештатную ситуацию.

А вот излюбленный гиками «метод передачи тока Теслы» прекрасно выбивает автоматы, портит технику: резонанс частоты неизбежен.

Впрочем, и тут нужно только правильно подобрать параметры для исключения взаимодействия. И надеяться, что неподходящая под новый стандарт техника не окажется между зарядкой и заряжаемым устройством.

II. Производство и использование электроэнергии

Генерация электроэнергии

Генерация электроэнергии – производство электроэнергии посредством преобразования её из других видов энергии с помощью специальных технических устройств. Для генерации электроэнергии используют: Электрический генератор – электрическую машину, в которой механическая работа преобразуется в электрическую энергию. Солнечную батарею или фотоэлемент – электронный прибор, который преобразует энергию электромагнитного излучения, в основном светового диапазона, в электрическую энергию. Химические источники тока – преобразование части химической энергии в электрическую, посредством химической реакции. Радиоизотопные источники электроэнергии – устройства, использующие энергию, выделяющуюся при радиоактивном распаде, для нагрева теплоносителя или преобразующие её в электроэнергию. Электроэнергия вырабатывается на электростанциях: тепловых, гидравлических, атомных, солнечных, геотермальных, ветряных и других. Практически на всех электростанциях, имеющих промышленное значение, используется следующая схема: энергия первичного энергоносителя с помощью специального устройства преобразовывается вначале в механическую энергию вращательного движения, которая передается в специальную электрическую машину – генератор, где вырабатывается электрический ток. Основные три вида электростанций: ТЭС, ГЭС, АЭС Ведущую роль в электроэнергетике многих стран играют тепловые электростанции (ТЭС). Тепловые электростанции требуют огромного количества органического топлива, запасы же его сокращаются, а стоимость постоянно возрастает из-за все усложняющихся условий добычи и дальности перевозок. Коэффициент использования топлива в них довольно низок (не более 40%), а объемы отходов, загрязняющих окружающую среду, велики. Экономические, технико-экономические и экологические факторы не позволяют считать тепловые электростанции перспективным способом получения электроэнергии. Гидроэнергетические установки (ГЭС) являются самыми экономичными. Их КПД достигает 93 %, а стоимость одного кВт•ч в 5 раз дешевле, чем при других способах получения электроэнергии. Они используют неисчерпаемый источник энергии, обслуживаются минимальным количеством работ¬ников, хорошо регулируются. По величине и мощности отдельных гидростанций и агрегатов наша страна занимает ведущее положение в мире. Но темпы развития сдерживают значительные затраты и сроки строительства, обусловленные удаленностью мест строительства ГЭС от крупных городов, отсутствие дорог, трудные условия строительства, подвержены влиянию сезонности режима рек, водохранилищами затапливаются большие площади ценных приречных земель, крупные водохранилища негативно воздействуют на экологическую ситуацию, мощные ГЭС могут быть построены только в местах наличия соответствующих ресурсов. Атомные электростанции (АЭС) работают по одному принципу с тепловыми электростанциями, т. е. происходит преобразование тепловой энергии пара в механическую энергию вращения вала турбины, которая приводит в действие генератор, где механическая энергия преобразовывается в электрическую. Главное достоинство АЭС – небольшое количество используемого топлива (1 кг обогащенного урана заменяет 2,5 тыс. т угля), вследствие чего АЭС могут быть построены в любых энергодефицитных районах. К тому же запасы урана на Земле превышают запасы традици-онного минерального топлива, а при безаварийной работе АЭС незначительно воздействуют на окружающую среду. Главным недостатком АЭС является возможность аварий с катастрофическими последствиями, для предотвращения которых требуются серьезные меры безопасности. Кроме того, АЭС плохо регулируются (для их полной остановки или включения требуется несколько недель), не разработаны технологии переработки радиоактивных отходов. Атомная энергетика выросла в одну из ведущих отраслей народного хозяйства и продолжает быстро развиваться, обеспечивая безопасность и экологическую чистоту.

1.1 Генератор

Электрический генератор – это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию. Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС Следовательно, такой проводник может нами рассматриваться как источник электрической энергии. Способ получения индуктированной ЭДС, при котором проводник перемещается в магнитном поле, двигаясь вверх или вниз, очень неудобен при практическом его использовании. Поэтому в генераторах применяется не прямолинейное, а вращательное движение проводника. Основными частями всякого генератора являются: система магнитов или чаще всего электромагнитов, создающих магнитное поле, и система проводников, пересекающих это магнитное поле. Генератор переменного тока – электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока. Большинство генераторов переменного тока используют вращающееся магнитное поле.

Генераторы переменного тока, так же как и генераторы постоянного тока, основаны на использовании явления электромагнитной индукции. Коллектор генератора постоянного тока в генераторе переменного тока заменен контактными кольцами. В простейшем генераторе переменного тока проводники, выполненные в виде рамки, соединены своими концами с контактными кольцами. Кольца вращаются вместе с рамкой, по их поверхности скользят щетки, соединяющие генератор со внешней цепью. В электрических машинах переменного тока вращающуюся часть называют ротором, а неподвижную часть – статором. В прямоугольном контуре вращается постоянный магнит

При вращении рамки изменяется магнитный поток через нее, поэтому в ней индуцируется ЭДС. Так как с помощью токосъемника (колец и щеток) рамка соединена с внешней электрической цепью, то в рамке и внешней цепи возникает электрический ток. При равномерном вращении рамки угол поворота изменяется по закону:

Магнитный поток через рамку также изменяется с течение времени, его зависимость определяется функцией:

где S − площадь рамки. По закону электромагнитной индукции Фарадея ЭДС индукции, возникающая в рамке равна:

где – амплитуда ЭДС индукции. Другая величина, которой характеризуется генератор, является сила тока, выражающаяся формулой:

где i — сила тока в любой момент времени, Im – амплитуда силы тока (максимальное по модулю значение силы тока), φc — сдвиг фаз между колебаниями силы тока и напряжения. Электрическое напряжение на зажимах генератора меняется по синусодальному или косинусоидальному закону:

или

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока. По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода:

Использование электроэнергии

Электроснабжение промышленных предприятий. Промышленные предприятия потребляют 30-70% электроэнергии, вырабатываемой в составе электроэнергетической системы. Значительный разброс промышленного потребления определяется индустриальной развитостью и климатическими условиями различных стран. Электроснабжение электрифицированного транспорта. Выпрямительные подстанции электротранспорта на постоянном токе (городской, промышленный, междугородний) и понижающие ПС междугороднего электрического транспорта на переменном токе питаются электроэнергией от электрических сетей ЭЭС. Электроснабжение коммунально-бытовых потребителей. К данной группе ПЭ относится широкий круг зданий, расположенных в жилых районах городов и населенных пунктов. Это – жилые здания, здания административно-управленческого назначения, учебные и научные заведения, магазины, здания здравоохранения, культурно-массового назначения, общественного питания и т.п.

Чем больше источников тока, тем менее предсказуемы последствия

Наконец, ещё одна нерешенная физическая проблема: суперпозиция электромагнитных полей. Чем больше зарядных устройств и их мощность, тем дальше и больше распространяются их волны.

В какой-то момент они начнут взаимодействовать. Это не кажется проблемой, на первый взгляд.

Ровно до тех пор, пока кто-нибудь не решит поставить пару зарядок рядом, сместив вектор распространения на что-то чувствительное к электромагнитному полю.

Этим «чем-то» может быть устройство связи, кардиостимулятор, станция связи и любое другое электронное устройство.

Проблема не в том, что оно попадёт под действие одного источника — теоретически, даже мощные беспроводные зарядки можно спроектировать так, чтобы не мешать электронике.

Но при наложении волн друг на друга получится неизвестная величина, которую сложно предсказать. Нужен ли такой риск?

Кстати, судя по слухам именно это «убило» беспроводную зарядку AirPower от Apple, которая могла нести 32 катушки (слаботочных!).

«Со временем эти гармоники суммируются и в воздухе появляются очень мощные сигналы, — поясняет — А это может представлять сложность — к примеру, такое излучение может остановить чей-нибудь кардиостимулятор, если будет достаточно мощным. Или замкнуть чей-нибудь слуховой аппарат».

Уильям Лампкинс, технический вице-президент O & S Services

Если от аппарата Apple гармоники разлетались во все стороны, возможно, AirPower не смог пройти тесты регуляторов США или ЕС.

Технология


Принцип индуктивной связи
Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью. Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.


Концепция резонанса индуктивной связи

Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м [10] . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Для каждого устройства нужна своя зарядка

Та же проблема с позиционированием электромагнитных катушек в итоге ведёт к следующей — отсутствие единого стандарта в отрасли.

Компании договорились использовать слаботочную Qi-технологию и унифицировали устройства. Но то Samsung, то Xiaomi выпускают модели, которые не работают с чужими зарядками на полной скорости.

Высокомощная беспроводная зарядка Xiaomi, представленная пару месяцев назад, работает только при точном попадании на базу.

И заряжает быстро батарею только до 50%, снижая мощность в последствии с 80 до 20 Вт. Причем, даже на максимальной «скорости» эффективность составляет только 65 Вт.

Эта зарядка не работает «на пониженных оборотах» с другими смартфонами — катушки имеют другой размер. По той же причине стандартные Qi-зарядки «раскачиваются» с соответствующим Mi 11 Ultra только до 10 Вт.

Нужен единый стандарт процесса, иначе инфраструктура будет работать только для одного производителя.

Даже в отношении смартфонов пользователю это не выгодно. А что говорить об автомобилях?

Особенно когда существующие прототипы от Momentum Dynamic обещают невероятные невозможные 100% КПД?

Придётся модернизировать энергоснабжение всего мира

Наконец, существует ещё одна причина, о которой любят вспоминать только противники электромобилей. Существующий мир уже опутан проводами определенного сечения, разработанными электросетями и обустроенными электростанциями.

Любое резкое повышение потребления электроэнергии требует серьезной модернизации.

В российских новостройках промышленных городов это почти незаметно. Но представьте: в Лондоне ещё существуют дома с «пробками», запитанные от тонких линий вековой давности. Сохранились целые улицы, запитанные при личном участие Вестингауза в начале прошлого века.

А тут предлагается не просто использовать повсеместно электричество, но делать это с низким КПД, огромными тепловыми потерями.

Большинство городов к этому не готово. Потому что беспроводную зарядку все равно нужно чем-то питать — и эту линию придётся сделать ОЧЕНЬ толстой, увеличив и выработку энергии.

То есть потребуется на 50% больше ветряков, солнечных панелей — или ещё одна ТЭЦ, поскольку они плохо масштабируются.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]