Длительно допустимый ток кабеля — важная эксплуатационная характеристика, которую нужно учитывать при расчете сечения проводника. Если будет получено некорректное значение, то в процессе применения электрической сети провод будет постоянно перегреваться.
Возможно кратковременное повышение температуры в результате короткого замыкания, однако неправильное сечение грозит повышением длительно допустимой температуры. Впоследствии это приведет к повреждению изоляции и возгоранию.
При монтаже электропроводки нужно определить необходимое сечение кабеля
Основные понятия
Любое металлическое изделие состоит из кристаллической решетки. Через нее проходят электроны, подвижные частицы, из-за чего электричество трансформируется в тепловую энергию. Данное свойство с успехом используется производителями обогревателей и осветительных приборов. Однако в обычных электрических системах перегрев кабеля недопустим, поскольку он со временем приведет к нарушению изоляцию и воспламенению. Поэтому важно подобрать правильное сечение проводников, чтобы те выдерживали допустимые (потенциальные) токовые нагрузки сети.
Для этого учитываются два термина:
- сечение провода;
- плотность тока.
Зависимость плотности тока от сечения
Даже если будет подобрано правильное сечение провода, он все равно может перегреться. Причин несколько: слабый контакт в местах соединения или окисления, связанные с недопустимой скруткой алюминиевой и медной жил.
Сечение провода
Для выбора сечения токоведущей жилы (проводника, а не всего кабеля с оболочкой и изоляцией) ориентируются по двум параметрам:
- нагрев в допустимых пределах;
- потеря напряжения.
Опасным является перегрев подземного кабеля, помещенного в пластиковые трубки рукава. В воздушных линиях электропередач уделяется внимание потери напряжения. Для комбинированных отрезков с двумя разными сечениями следует выбрать большее, округлив его до стандартного значения. Перед расчетом сечения или поиском подходящих табличных величин следует определить, какими будут условия эксплуатации.
Неверный выбор сечения кабеля может привести к перегреву и возгоранию
Для расчета потенциального нагрева нужно учитывать длительно допустимую температуру. Величина напрямую зависит от возможной силы тока Iп. После использования формулы вы получите расчетный ток Iр, который должен отличаться от Iп и быть меньше его значения (ни в коем случае не больше!). При выборе сечения используют следующую формулу:
- Iр = Pн/Uн,
где:
- Pн — номинальная мощность, Вт;
- Uн — номинальное напряжение, В.
Пользоваться данной формулой можно для расчета токов в проводниках с уже устоявшейся температурой при условии, что на кабель не влияют другие охлаждающие или согревающие факторы. Величина длительно допустимого тока Iп зависит от разных параметров: сечение, материал изготовления, изоляционная оболочка и способ монтажа.
Чтобы проверить падение напряжения на воздушной линии электропередач, пользуются следующей формулой:
- Uп = (U — Uн) *100/ Uн,
где:
- U — напряжения от источника;
- Uн — напряжение в месте, где подключается приемник напряжения.
Максимально допустимое отклонение напряжения — 10%.
Плотность тока
Данная физическая величина является векторной. Для ее обозначения используют латинскую букву J. Формула расчета выглядит следующим образом:
- J = I/S,
где:
- I — сила тока, А;
- S — площадь поперечного сечения, кв. мм.
Предельная плотность тока для алюминиевых и медных проводов
Плотностью тока называют объем тока, который проходит через проводник заданного сечения за определенный отрезок времени. Измеряется в А/кв. мм.
Простое объяснение
Плотность тока J — векторная физическая величина, характеризующая плотность потока электрического заряда в рассматриваемой точке.
Википедия
Высокая плотность электрического тока вызывает нагрев кабеля. Поэтому необходимо следить за тем, чтобы не превысить допустимую допустимую силу тока в линии или проводнике. Кроме того, эффективное сечение проводника может уменьшаться при воздействии высокочастотных сигналов (скин-эффект), что увеличивает плотность тока. Поэтому при выборе проводника необходимо учитывать не только фактический ток, но и частоту сигнала.
Для чего нужен расчет сечения кабеля
При покупке кабеля вы можете увидеть различные обозначения. К примеру, провод 3×5 содержит три токоведущие жилы, каждая из которых имеет сечение по 5 кв. мм. Зная это, достаточно заглянуть в таблицу напряжения и мощности.
Только правильно рассчитанное сечение гарантирует отсутствие участков с перегревами кабеля. При этом провод должен выдерживать временные нагрузки, когда величина тока в 2-3 раза больше номинального значения. Вы получите запас по току, что важно, поскольку в любой момент нагрузка на сеть может возрасти из-за новых бытовых приборов. Отсутствие нагрева исключит самовозгорание и пожары на объектах. Этот момент нужно продумать заранее, поскольку в большинстве случаев используется скрытый метод монтажа электропроводки, и малейшее повреждение может привести к необходимости замены целой линии.
Электрическая мощность бытовых приборов
Выбираем по мощности
Сечение провода может подбираться в зависимости от максимальной токовой нагрузки на линию. Причем каждый бытовой прибор имеет разную мощность. В списке ниже перечислены мощности наиболее распространенного оборудования:
- электрическая плита — 5 кВт;
- холодильное устройство — 0,8 кВт;
- посудомойка — 2 кВт;
- микроволновка — 1,5 кВт;
- кухонная вытяжка — 0,5 кВт;
- чайник — 2 кВт.
Очевидно, что перечисленные электроприборы устанавливаются на кухне. Если сложить все указанные числовые значения, можно получить суммарную нагрузку на кухонную электрическую сеть. Она составит порядка 12 кВт, но сечение следует подбирать с запасом до 30%. В идеале на кухне прокладывается электрический кабель с сечением, соответствующим мощности 15-16 кВт. Для подключения оборудования потребуется не менее двух розеток.
В таблице ниже указан подбор медного кабеля по мощности:
Определение сечения медного кабеля
Напряжение электрической сети составляет 220 В. Зная данный параметр и суммарную нагрузку, достаточно воспользоваться простой формулой для расчета потребляемого тока:
- I = P/U = 16 000/220 = 72,7 А.
Это максимально допустимый ток для прокладываемого кабеля, но фактически перечисленные выше бытовые приборы будут потреблять порядка 56-57 А. Однако не нужно исключать ситуаций, когда к сети будут подключаться и другие устройства — пылесос, дополнительные светильники и так далее. Многие электрики избегают расчетов с использованием коэффициента 1,3 (запас 30%), а просто добавляют к фактическому значению допустимого тока еще 5 А. Если раньше такой вариант был возможен, то сегодня — вряд ли. С каждым годом параметр только увеличивается: появляются более мощные холодильники, стиральные машинки и пылесосы.
В таблице ниже указан подбор алюминиевого кабеля по мощности:
Определение сечения алюминиевого кабеля
Завершив расчеты допустимого тока, переходите к выбору материала для токоведущих жил. Алюминиевый кабель стоит меньше медного, однако площадь сечения таких жил должна быть намного выше. Плотность тока для алюминия составляет 8, меди — 10 А/кв. мм.
Токовая нагрузка на кабель: как рассчитать сечение
Суммарная величина тока, движущегося по проводнику, зависит от нескольких характеристик: длина, ширина, удельное сопротивление и температура. Повышение температуры сопровождается снижением тока. Любая справочная информация, которую вы обнаружите в таблицах ПУЭ, обычно приводится для комнатной температуры 18 градусов Цельсия.
Помимо электрического тока нужно знать материал для проводника и напряжение. Самый простой расчет сечения кабеля по допустимому току: поделить его значение на 10. Если при изучении таблицы вы не обнаружите нужного значения, то ищите ближайшую, чуть большую величину. Такой вариант возможен для медных проводов, а допустимый ток составляет 40 А или меньше. В диапазоне 40-80 А допустимый ток следует делить уже на 8. Для алюминиевых проводов значение делится на 6. Причина этого была указана в конце предыдущего раздела.
Допустимые токовые нагрузки на кабель
Применение
Плотность тока особенно важна в тех случаях, когда необходимо оптимизировать сечение проводника по соображениям стоимости, площади и веса. Как правило, сечение проводника выбирается как можно меньше, чтобы соответствовать условиям применения.
Здесь важно, чтобы фактическая плотность тока в проводнике не превышала максимально допустимую плотность тока. Причина этого в том, что каждый электрический проводник имеет электрическое сопротивление. При протекании электрического тока на этом сопротивлении возникает падение электрического напряжения. В результате происходит преобразование энергии и нагрев линии. Чрезмерный нагрев может повредить изоляцию проводника и вызвать серьезные повреждения.
Именно поэтому, например, допустимые плотности тока для бытовых установок регламентируются соответствующими стандартами. Кроме того, все кабели в домашних хозяйствах оснащены предохранителем, который срабатывает до достижения максимально допустимой плотности электрического тока.
В автомобильном секторе важную роль играет экономия веса и пространства. Поэтому здесь также тщательно подбираются кабели, чтобы найти компромисс между нагревом и весом/пространством.
Расчет сечения кабеля по мощности и длине
От длины кабеля зависит такая величина, как потеря напряжения. Одна из потенциальных неприятных ситуаций: на конце выбранного провода напряжение уменьшилось до минимума, чего недостаточно для обеспечения функциональности оборудования. В бытовых электрических сетях потери будут невелики, поэтому ими можно пренебречь. Достаточно использовать кабель с запасом 100-150 мм, что необходимо для упрощения коммутации. Если края провода подключаются к электрощитку, то запас должен быть выше, поскольку требуется монтаж автоматов.
Размещая кабель на более протяженных участках, нужно учитывать падение напряжения, которое рассчитывается по формуле, указанной выше. Любой проводник имеет определенное электрическое сопротивление, которое зависит от ряда характеристик:
- Длина провода, м. Чем больше длина, тем выше потери.
- Площадь поперечного сечения, кв. мм. Чем выше параметр, тем ниже падение напряжения.
- Удельное сопротивление материала (ищите в справочниках).
Максимальная длина кабеля для различных токовых нагрузок
Для расчета падения напряжения в обычных случаях достаточно перемножить сопротивление и допустимый ток. Фактическая величина может быть больше, но не более чем на 5%. Если она не вписывается в заданные рамки, придется использовать кабель с большим сечением.
Для расчета сечения кабеля по мощности и длине нужно действовать следующим образом:
- Рассчитайте ток по формуле I=P/(U*cosф), где P — мощность, U — напряжение, cosф — коэффициент. В бытовых электросетях данный коэффициент равняется 1, поэтому формула упрощается до I=P/U. В промышленности cosф представляет собой соотношение активной и полной мощностей (активная и реактивная).
- В таблице ПУЭ найдите подходящий кабель по сечению в зависимости от тока.
- Подсчитайте сопротивление проводника, используя формулу: R=ρ*l/S, где ρ — удельное сопротивление материала, из которого изготовлены жилы, l — длина кабеля, S — площадь поперечного сечения. Помните, что электрический ток движется в обе стороны, поэтому суммарное сопротивление равняется удвоенному значению, полученному из формулы выше.
- Для падения напряжения воспользуйтесь формулой ΔU=I*R
- Чтобы получить падение напряжения в процентах, разделите ΔU/U.
Таким образом, если итоговое значение не превышает 5%, можете оставить кабель с выбранным сечением. В противном случае его придется заменить на проводник с увеличенным сечением.
Длительно допустимые токи
Данная величина отличается в зависимости от выбранного кабеля и используемых токоведущих жил. Любой провод имеет определенную длительную температуру Tд, которая указывается в его паспорте. При такой температуре допустима продолжительная эксплуатация жил проводника, исключаются любые повреждения.
Для расчета длительно допустимого тока воспользуйтесь формулой:
- Iд = √((Тд*S*Кт)/R),
где:
- Ктп — коэффициент теплопередачи;
- R — сопротивление;
- S — сечение жилы.
На практике можно воспользоваться таблицами ПУЭ.
Длительно допустимые токи для медных проводов и кабелей
Закон Джоуля – Ленца. Определение, формула, физический смысл
Закон Джоуля – Ленца – закон физики, определяющий количественную меру теплового действия электрического тока. Сформулирован этот закон был в 1841 году английским учёным Д. Джоулем и совершенно отдельно от него в 1842 году известным русским физиком Э. Ленцем. Поэтому он получил своё двойное название — закон Джоуля – Ленца.
Определение закона и формула
Словесная формулировка имеет следующий вид: мощность тепла, выделяемого в проводнике при протекании сквозь него электрического тока, пропорционально произведению значения плотности электрического поля на значение напряженности.
Математически закон Джоуля — Ленца выражается следующим образом:
ω = j • E = ϭ E²,
- где ω — количество тепла, выделяемого в ед. объема;
- E и j – напряжённость и плотность, соответственно, электрического полей;
- σ — проводимость среды.
Физический смысл закона Джоуля – Ленца
Закон можно объяснить следующим образом: ток, протекая по проводнику, представляет собой перемещение электрического заряда под воздействием электрического поля. Таким образом, электрическое поле совершает некоторую работу. Эта работа расходуется на нагрев проводника.
Другими словами, энергия переходит в другое свое качество – тепло.
Но чрезмерный нагрев проводников с током и электрооборудования допускать нельзя, поскольку это может привести к их повреждению.
Опасен сильный перегрев при коротких замыканиях проводов, когда по проводниках могут протекать достаточно большие токи.
В интегральной форме для тонких проводников закон Джоуля – Ленца звучит следующим образом: количество теплоты, которое выделяется в единицу времени в рассматриваемом участке цепи, определяется как произведение квадрата силы тока на сопротивление участка.
Математически эта формулировка выражается следующим образом:
Q = ∫ k • I² • R • t,
- при этом Q – количество выделившейся теплоты;
- I – величина тока;
- R — активное сопротивление проводников;
- t – время воздействия.
Значение параметра k принято называть тепловым эквивалентом работы. Величина этого параметра определяется в зависимости от разрядности единиц, в которых выполняются измерения значений, используемых в формуле.
Закон Джоуля-Ленца имеет достаточно общий характер, поскольку не имеет зависимости от природы сил, генерирующих ток.
Из практики можно утверждать, что он справедлив, как для электролитов, так проводников и полупроводников.
Область применения
Областей применения в быту закона Джоуля Ленца – огромное количество. К примеру, вольфрамовая нить в лампе накаливания, дуга в электросварке, нагревательная нить в электрообогревателе и мн. др. Это наиболее широко распространенный физический закон в повседневной жизни.
Открытая и закрытая прокладка проводов
Электрическая проводка может быть двух типов:
- закрытая;
- открытая.
В большинстве случаев для квартир применяют скрытый монтаж. При помощи перфоратора или штробореза в стене или на потолке создают специальные углубления, в которые укладывается кабель. Дополнительно он может быть помещен в гофрированные трубки или рукава. Спрятав кабель, углубления следует заделать при помощи штукатурки. Единственным допустимым вариантом для современной скрытой проводки являются медные проводники. При этом следует заранее продумать потенциальное наращивание сети или процесс частичной замены ее компонентов. В идеале нужно применять провода плоской формы.
Укладка скрытой проводки в штробах
Открытая электропроводка подразумевает размещение кабеля вдоль поверхностей. Используются преимущественно гибкие проводники с круглой формой сечения. Они размещаются в кабель-каналах или пропускаются через гофры. При расчете нагрузки обязательно учитывается метод укладки кабеля.
Выбор сечения провода по количеству потребителей
При расчетах сечениях для электрического кабеля в квартире для начала рекомендуется отобразить проводку схематически. На рисунке должны быть указаны все приборы, потребляющие электроэнергию. Схема делится на разные комнаты, поскольку для каждой может быть использовать провод разного сечения.
Схема электропроводки по потребителям
Электрическая сеть делится на несколько цепей. Каждой цепи соответствуют лишь те электроприборы, которые к ней подключаются. Для выбора кабеля, подключающего все цепи, нужно рассчитать общую суммарную мощность. Это главный критерий выбора сечения. Каждое последующее разветвление (ответвление) приведет к снижению суммарной мощности и соответственно — уменьшению требуемого сечения.
Токовые нагрузки в сетях с постоянным током
При расчете токовой нагрузки в сети с постоянным током ориентируются по одножильному кабелю. Напряжение такого тока составляет 12 В. Расчет нагрузки провода, через который подключается лампочка на 0,1 кВт (к примеру, в передней фаре машины), выглядит так:
- I = P/U = 100/12 ~ 8,35 А.
После этого нетрудно рассчитать сопротивление:
- R = U/I = 12/8,35 = 1,44 Ом.
В таблице найдите удельное сопротивление меди, из которой производятся жилы современных проводников. Также предположите, что длина кабеля составляет 2 м. Воспользуйтесь формулой, указанной в разделах выше, чтобы получить площадь сечения подходящего провода:
- S = (ρ*L)/R = (1,68*10-8*2)/1,44 = 1,2 кв. мм.
Выбор сечения кабеля для сетей постоянного тока
Изучая ПУЭ, можно отыскать бессчетное количество таблиц, в которых определена токовая нагрузка для сетей переменного тока с одно- и трехфазными цепями. Поэтому выполнять такие сложные расчеты необязательно.
Плотность тока смещения
Ток смещения довольно сложное понятие электродинамики, но именно благодаря ему переменный ток проходит через конденсатор, и антенна излучает сигнал в эфир. Ток смещения тоже имеет свою плотность, но определить ее не так-то просто.
Даже в очень хорошем конденсаторе электрическое поле слегка «выпирает» в стороны между пластинами (Поз. 3 на рисунке), поэтому к пересекаемой током смещения поверхности нужно давать некоторую добавку. Для конденсатора ее величиной еще можно пренебречь, но если речь об антенне, то там эта виртуальная, пересекаемая током смещения поверхность значит все.
Чтобы найти плотность тока смещения, приходится решать сложные уравнения электродинамики или производить компьютерное моделирование процесса. К счастью, для многих случаев инженерной практики знать ее величину не требуется.
Причины нагрева кабеля
Токоведущие жилы могут перегреваться по нескольким причинам, которые напрямую связаны с природой электрического тока. Электрическое поле приводит в движение электроны, которые перемещаются по выбранному проводнику. В кристаллических решетках, из которых состоят металлы, действуют сильные молекулярные связи. Представьте шарик для настольного тенниса и паутину. Вторая — более-менее прочна, первый — обладает малым весом, поэтому для того, чтобы шарик разорвал паутину, придется приложить больше усилий. Чем сильнее вы выполните замах, тем более напряженными будут ваши мышцы. Чем больше напряжение, тем выше затрачиваемая энергия. Соответственно и мышцы будут нагреваться сильнее.
Так и электроны вынуждены высвобождать больше тепла, затрачивая немало энергии на преодоление этих молекулярных связей. Такой процесс называется преобразованием электрической энергии в тепловую.
Сравнить такое явление можно с выделением тепла при трении. Можно сказать, что электроны вынуждены тереться о кристаллическую решетку металла и тем самым выделять тепло. Данное свойство металлического кабеля имеет свои преимущества и недостатки. Нагрев может быть полезен на производственных объектах и для бытовых приборов. Он является основным свойством, позволяющим работать электрическим печам, обогревателям, утюгам и чайникам. Однако в обычных электрических сетях это может привести к перегреву и разрушению изоляции, а впоследствии — и вовсе к возгоранию. Могут испортиться техника и оборудование. Происходит подобное в случае превышения заданной нормы для длительных токовых нагрузок.
Перечислим три основные причины перегрева проводника:
- Наиболее распространенная — использование кабеля с некорректным сечением. Любой проводник имеет уникальную максимально допустимую пропускную способность по току. Измеряется она в Амперах. Перед подключением бытового прибора нужно определить его мощность и в соответствии с ней подобрать правильное сечение. Важно учесть запас на 30-40%.
- Вторая причина — отсутствие качественного контакта в точках соединения линии. Речь идет об участках трассы, где кабель подключается к щитку, автомату или выключателю. Плохой контакт приводит к нагреву. При худших раскладах — полному перегоранию. В большинстве случаев будет достаточно осмотреть контакты и подтянуть все соединения.
- Старая электропроводка строилась на алюминиевых жилах, поэтому при модернизации таких кабельных линий зачастую возникает необходимость перехода на медные проводники. В данном случае важно соблюдать технику подключения медных и алюминиевых жил. Без применения специальных клеммников появление окисления — вопрос времени.
Старая алюминиевая проводка в квартире
Допустимый ток и сечение проводов
Правильный выбор кабелей и проводов во время проектирования и расчетов электрических сетей, является гарантией их надежной и безопасной работы в процессе дальнейшей эксплуатации. К приборам и оборудованию питание будет поступать в полном объеме, а изоляция проводников не будет перегреваться и разрушаться. Правильные расчеты сечения по мощности позволят избежать аварийных ситуаций и необходимости восстановления поврежденных линий. Для этого нужно знать, что представляет собой на практике суть такого понятия, как допустимая сила тока для медного провода.
В самом упрощенном варианте каждый кабель ведет себя подобно трубопроводу, по которому транспортируется вода. Точно так же и по кабельным жилам осуществляется движение электрического тока, величина которого ограничивается размерами конкретного токоведущего канала, фактически являющегося сечением данного проводника.
Неверный выбор этого параметра нередко приводит к ошибкам и негативным последствиям. При наличии слишком узкого токоведущего канала плотность тока может возрасти в несколько раз. Это приводит к перегреву и последующему оплавлению изоляции, возникают места с регулярными токовыми утечками. В наиболее неблагоприятной ситуации возможно возгорание.
Однако, слишком большое сечение проводов по току имеет один серьезный недостаток в виде значительного перерасхода денежных средств при устройстве электросетей. Конечно свободная транспортировка электрического тока положительно влияет на функциональность и сроки эксплуатации проводов, но оплата за потребленную электроэнергию может заметно возрасти. Таким образом, первый вариант является просто опасным, а второй нежелательно использовать из-за его высокой стоимости.
Расчет допустимой силы тока по нагреву жил
Если выбран проводник подходящего сечения, это исключит падение напряжения и перегревы линии. Таким образом, от сечения зависит то, насколько оптимальным и экономичным будет режим работы электрической сети. Казалось бы, можно просто взять и установить кабель огромного сечения. Но стоимость медных проводников пропорциональна их сечению, и разница при монтаже электропроводки уже в одной комнате может насчитывать несколько тысяч рублей. Поэтому важно уметь правильно рассчитывать сечение кабеля: с одной стороны, вы гарантируете безопасность эксплуатации сети, с другой стороны, не потратите лишних средств на приобретение чересчур «толстого» проводника.
Для выбора сечения провода нужно учитывать два важных критерия — допустимые нагрев и потерю напряжения. Получив два значения площади сечения проводника при использовании разных формул, выбирайте большую величину, округлив ее до стандартной. Особенно чувствительны к потере напряжения воздушные линии электропередач. В то же время для подземных линий и кабеля, помещенного в гофрированные трубы, важно учитывать допустимый нагрев. Таким образом, сечением должно определяться в зависимости от разновидности проводки.
Допустимые температуры нагрева токопроводящих жил кабелей
Iд — допустимая нагрузка на кабель (ток по нагреву). Эта величина соответствует току, в течение долгого времени протекающего по проводнику. В процессе этого появляется установленные, длительно допустимая температура (Tд). Расчетная сила тока (Iр) должна соответствовать допустимой (Iд), и для ее определения нужно воспользоваться формулой:
- Iр=(1000*Pн*kз)/√(3*Uн*hд*cos j),
где:
- Pн — номинальная мощность, кВт;
- Kз — коэффициент загрузки (0,85-0,9);
- Uн — номинальное напряжение оборудования;
- hд — КПД оборудования;
- cos j — коэффициент мощности оборудования (0,85-0,92).
Получается, что для любого длительно допустимого тока, протекающего по проводнику, соответствует конкретное значение установившейся, длительно допустимой температуры нагрева. Важно нивелировать влияние остальных факторов окружающей среды. Ток кабеля напрямую зависит от материала, из которого изготовлена изоляция, метода прокладки, сечения и материала жил в проводнике.
Даже если брать во внимание одинаковые токовые величины, тепловая отдача будет разной в зависимости от температуры окружающей среды. Чем ниже температура, тем эффективнее теплоотдача.
Поправочные коэффициенты кабеля в зависимости от температуры окружающей среды
Температура отличается в зависимости от региона и времени года, поэтому в ПУЭ можно найти таблицы для конкретных значений. Если температура существенно отличается от расчетной, придется использовать коэффициенты поправки. Базовое значение температуры в помещении или снаружи составляет 25 градусов Цельсия. Если кабель прокладывается под землей, то температура изменяется на 15 градусов Цельсия. Однако именно под землей она остается постоянной.
SamsPcbGuide, часть 3: Предельный ток печатной дорожки
Шутки в сторону, тема серьёзная, пожароопасная. Поехали. Это третья статья из цикла, в ней рассмотрены модели оценки предельного тока печатной дорожки, который в некоторых ситуациях является определяющим параметром при выборе толщины проводящих слоёв печатной платы. В предыдущей статье говорилось о том, выбор толщины медных слоёв печатной платы определяется, прежде всего, требуемыми минимальным зазором и минимальной шириной проводника, а также максимальным током, протекающим по проводнику. Эти параметры могут противоречить друг другу: чем тоньше проводящий слой, тем меньший топологический рисунок может быть получен, но тем меньший предельный ток выдержит печатная дорожка (при прочих равных условиях – ширина проводника, частота тока, теплоотвод и др.). Тепловая энергия Q выделяющаяся на омическом сопротивлении R печатной дорожки (джоулево тепло Q=I2Rt, где I – сила тока, t — время), вызывает повышение её температуры относительно окружающей среды, приводя к перегреву самого проводника и связанных с ним компонентов или, в крайнем случае, к его перегоранию при предельном токе (англ. fusing current). Соотношение между током через печатную дорожку и приростом температуры зависит от многих параметров и в общем виде трудно представимо, однако существуют формулы, позволяющие сделать предварительные оценки.
Прис, Ондердонк и Брукс
Одна из первых попыток принадлежит У.Г.Прису (англ. W.H.Preece). Свою эмпирическую зависимость он получил в лабораторном эксперименте, в котором он постепенно увеличивал ток через проводник до момента его накала докрасна. Формула Приса связывает ток накала c диаметром проводника d для различных материалов: где K – табличная константа, примерно равная 80 для меди. Используя соотношение площади круга, можно переписать эту формулу для случая медного проводника с площадью сечения S: В эксперименте Приса проводник был подвешен в воздухе, в отличие от проводника на печатной плате, условия теплоотвода для которого совсем другие. Более близкими являются условия теплоотвода для случаев одиночного соединительного проводника, а также для некоторых случаев микропроволочной разварки (когда для её защиты не используется компаундирование), где эта формула может давать хорошую оценку для предельного тока.
Допустимым приростом температуры печатной дорожки обычно считается 10-30 ˚С. Это значение может быть и больше в зависимости от параметров проекта, однако во всём диапазоне рабочих температур изделия температура дорожки должна быть меньше температуры стеклования материала печатной платы (англ. glass transition temperature, Tg) и тем более температуры накала меди. Поэтому полезна зависимость прироста температуры ∆T от тока I печатной дорожки шириной w и толщиной фольги h, приведённая Д.Бруксом в [1]:
где C, α, β, γ – константы, значения которых для внешних и внутренних слоёв приведены в таблице 1. Стоит учитывать, что на внешних слоях толщина фольги обычно больше на 20-40 мкм относительно базового значения в связи с дополнительным напылением при создании переходных отверстий. Также влияние финишного покрытия на платах без маски может быть значительным. Это используют в силовых приборах, когда на вскрытую от маски печатную дорожку паяют дополнительный припой.
Ещё одной известной формулой расчёта предельной токонесущей способности проводника является формула Ондердонка (англ. I.M.Onderdonk), которая содержит такой важный параметр, как время. Она связывает время t пропускания тока I через медный проводник сечением S и прирост температуры ∆T относительно начальной температуры T0: Так как при выводе формулы [2] исключается всякий теплоотвод, то для случая печатной дорожки эта формула применима для короткого импульса тока длительностью до 1-2 секунд. С увеличением времени и влияния теплоотвода точность оценки падает, в разы занижая предельный ток. Графики зависимостей по всем трём приведённым формулам для различных параметров печатной дорожки приведены на рисунках 1 и 2.
Всегда важно учитывать условия эксперимента или аналитические допущения при выводе, чтобы понимать границы применимости той или иной формулы. Ни одна из приведённых формул не даст точное и оптимальное соотношение между предельным током и требуемым сечением проводника для реальных приложений. Это же касается и простых калькуляторов, которые можно найти в сети Интернет (например), потому что они основаны на этих или аналогичных формулах. Влияние соседних проводников и компонентов как источников и приемников тепла, излучения, активного или пассивного охлаждения может быть учтено только при термоэлектрическом моделировании в специализированных САПР (таких как Cadence, ANSYS и других). Однако даже в этом случае результаты моделирования и эксперимента могут значительно отличаться. Дело в том, что печатная дорожка имеет не прямоугольное сечение, а близкое к трапециевидному (рис. 3), а её ширина и значение проводимости медной фольги могут не только отличаются от расчётных по модели, но и имеют некоторый разброс от образца к образцу, партии к партии, изготовителю к изготовителю и т.д. Влияние отклонений ширины усиливается с её уменьшением. Тем не менее, расчётные результаты по формулам и рекомендации стандартов чаще всего будут представлять наихудший случай, обеспечивая тем самым запас прочности системы. Если разработчику требуется оптимизировать соотношение между предельным током и требуемым сечением печатной дорожки, то к этой цели необходимо идти итеративным путём моделирования и эксперимента.
Скин-эффект
Увеличение сечения печатной дорожки пропорционально снижает её омическое сопротивление на единицу длины, что уменьшает тепловые потери при протекании постоянного тока. Ситуация с переменным током не так проста по причине существования скин-эффекта (англ. skin effect), который приводит к тому, что плотность переменного тока неравномерно распределена по сечению проводника, экспоненциально убывая до нуля от поверхности проводника к центру. Для удобства расчётов применяется понятие эффективного сечения проводника с глубиной, определяемой соотношением: где f – частота тока, σ – проводимость металла, μ – магнитная проницаемость. На глубине равной δ плотность тока становится меньше в e раз относительно плотности тока на поверхности JS. Математически можно показать верность следующего приближённого равенства для плотности тока J(x,y) в проводнике: То есть для приближённых вычислений можно принять, что ток течёт только в граничном слое проводника периметра l глубиной δ, причём с равномерным распределением (рис. 4).
В рамках этой упрощённой модели, если глубина поверхностного слоя меньше половины толщины печатной дорожки, то импеданс печатной дорожки на данной частоте будет определяться именно этим эффективным сечением, приводя к увеличению омического сопротивления и незначительному снижению индуктивности. На рис. 5 представлена зависимость глубины поверхностного слоя от частоты тока с учётом разброса проводимости осаждённой меди. Из него видно, что для слоёв меди толщиной 18 мкм граничная частота (выше которой скин-эффект играет роль) находится в районе 50-70 МГц, а для слоёв толщиной 35 мкм – в районе 15-20 МГц. Отметим, что на частотах свыше 100 МГц глубина скин-эффекта меняется незначительно, это позволяет пренебрегать его зависимостью от частоты при расчётах для высокочастотных сигналов.
При проектировании печатных плат с постоянно действующими токами величиной в несколько ампер необходимо выполнять тепловые расчёты как для электрических компонентов, так и для проводников. Представленные модели и аналитические соотношения позволяют выполнить оценку предельного тока печатных дорожек и на её основании выбрать необходимую толщину медных слоёв и топологию проводников. Для получения точного решения необходимо использовать специализированные САПР, при этом желательно задавать геометрию с учётом технологических погрешностей изготовления и данные по проводимости меди, полученные от производителя печатных плат. Очень рекомендую ознакомиться со статьями Д.Брукса, посвящёнными подробному анализу методов оценки температуры печатных проводников, где представлены наглядные результаты моделирования температурных полей.
Литература
[1] Brooks D. G., Adam J. «Trace Currents and Temperatures Revisited», UltraCAD, 2015. [2] Adam J., Brooks D. G. «In Search For Preece and Onderdonk», UltraCAD, 2015.
Статья была впервые опубликована в журнале «Компоненты и технологии» 2022, №1. Публикация на «Geektimes» согласована с редакцией журнала.
Условия теплоотдачи
Важным условием тепловой отдачи считается влажная среда, в которой находится кабель. При размещении провода в грунте теплоотвод напрямую связан со структурой и его составом, а также уровнем влажности.
Для получения наиболее точных величин придется проанализировать состав почвы, в зависимости от которого будет разным сопротивление. При помощи таблицы ищут удельное сопротивление. Благодаря качественной утрамбовке данная характеристика может быть уменьшена. Песок и гравий обладают меньшей теплопроводностью по сравнению с глиной, поэтому в идеале провода засыпают последней. Вместо глины можно использовать суглинок без примесей шлака, камней и мусора.
Теплоотдача воздушного кабеля минимальна. Параметр уменьшается для линий в кабель-каналах, имеющих воздушную прослойку. Расположенные вблизи кабели обеспечивают нагрев друг друга, поэтому нагрузки по току должны быть максимально низкими. Допустимые токи рассчитываются по двум разным формулам в зависимости от режима работы — аварийного или длительного. При возникновении короткого замыкания допустимая температура для провода с бумажной изоляцией составляет 200, ПВХ — 120 градусов Цельсия.
Важно помнить о разных условиях охлаждения кабеля с изоляцией и без нее. В первом случае тепловые потоки, исходящие при нагреве жил, вынуждены преодолевать дополнительный барьер в виде изоляционного слоя.
Расположение кабеля в траншее
При подземной укладке кабеля, когда в одной траншее расположено сразу два проводника, процесс охлаждения существенно замедлится, что приведет к снижению допустимые токовых нагрузок.
С точки зрения электрической и пожарной безопасности, определение правильных длительно допустимого тока и сечения кабеля — важное условие, позволяющее исключить перегревы, нарушение изоляции и воспламенение кабельной линии. При расчетах следует быть внимательными и учесть множество дополнительных условий. Определенные корректировки нужны даже для табличных значений.
О плотности тока высокой частоты
Плотность тока высоких частот (теле и радиосигналы, например) рассчитывают с учетом так называемого скин-эффекта (skin – по-английски «кожа»). Суть его в том, что электромагнитное поле оттесняет ток к поверхности провода, поэтому для получения нужной его плотности приходится брать диаметр провода больше, а чтобы не тратить лишней меди, делать его пустотелым, в виде трубки.
Скин-эффект имеет значение не только при передаче больших мощностей. Если, допустим, сделать разводку кабельного телевидения по квартире слишком тонким коаксиальным кабелем, то потери в нем из-за скин-эффекта во внутреннем проводе могут оказаться чрезмерно велики. Аналоговые каналы при этом будут рябить, а цифровые – рассыпаться в квадратики.
Глубина скин-эффекта зависит от частоты сигнала, и плотность тока при этом плавно падает до нуля в центре провода. В технике для упрощения расчетов глубину залегания скин-поверхности считают там, где плотность тока падает в 2,72 раза по сравнению с поверхностной (Поз. 2 на рисунке). Величина 2,72 выводится в технической электродинамике из соотношения электрической и магнитной постоянной, что облегчает расчеты.