Окружающий мир 1 класс 1 часть. Откуда в наш дом приходит электричество? стр. 62 – 63

От включения выключателя освещения и включения телефона до разогрева закусок в микроволновой печи — в повседневной деятельности, которую мы считаем само собой разумеющимся, используется важный источник энергии — электричество. Теперь, когда вы остановитесь и подумаете об этом, вы можете задаться вопросом, как эта сила приходит в ваш дом после того, как она была сгенерирована. Как мы здесь изложим, электричество, которое мы считаем само собой разумеющимся, проделывает долгий путь от электростанции до вашего дома. Итак, вот как это доставляется вам …

Электросеть Австралии

Электрическая сеть Австралии охватывает более 4500 километров , и это только восточные и южные штаты. Западная Австралия, Северная Территория и гора Иса в Квинсленде имеют индивидуальные сети передачи и распределения. С более чем 40000 км линий электропередачи основная электрическая сеть включает в себя элементы передачи и распределения, которые обеспечивают транспортировку на огромные расстояния до вашего дома. Энергосистема Австралии относительно эффективна, в среднем 5% электроэнергии теряется в процессе передачи и распределения. Это относительно низкий показатель по сравнению с показателями потерь в других странах.

Электростанции

Электричество начинает свою жизнь на электростанции. Электростанции — это огромные электростанции, часто расположенные рядом с источниками энергии, такими как газовые электростанции, плотины гидроэлектростанций , солнечные или ветряные электростанции, которые производят электричество. В зависимости от типа топлива или источника потребляемой энергии — будь то угольная, солнечная, ветровая или даже атомная электростанции — они могут иметь такие компоненты, как печь, котел, турбина, градирни и генераторы. Эти типы компонентов необходимы для процесса генерации.

Как только электричество генерируется, оно покидает электростанцию ​​по воздушным линиям на большие подстанции. На этом этапе электричество может достигать 25 000 вольт или даже выше.

Насколько безопасна атомная энергетика?

Пруд-охладитель НВ АЭС

При правильной эксплуатации атомная станция совершенно безопасна. Радиационный фон в зоне 30 км вокруг Новоронежской АЭС контролируют 20 автоматических постов. Они работают в режиме непрерывного измерения. За всю историю работы станции радиационный фон ни разу не превысил естественных фоновых значений. Но атомная энергетика имеет потенциальную опасность. Поэтому с каждым годом системы безопасности на АЭС становятся все более совершенными. Если для первых поколений АЭС (1,2 энергоблоки) основные системы безопасности были активными, то есть запустить их должен был человек или автоматика, то при проектировании блоков поколения 3+ (6-й и 7-й энергоблоки Нововоронежской АЭС) основную ставку делают на пассивные системы безопасности. В случае потенциально опасной ситуации они сработают сами, подчиняясь не человеку или автоматике, а законам физики. Например, при обесточивании на атомной станции защитные органы под действием силы тяжести самопроизвольно упадут в активную зону и заглушат реактор.

Персонал атомной станции регулярно тренируется справляться с разного рода ЧП. Аварийные ситуации моделируются на специальных полномасштабных тренажерах – компьютеризированных устройствах внешне не отличимых от блочных щитов управления. Оперативный персонал управляющий реактором, каждые 5 лет получает в Ростехнадзоре лицензию на право ведения технологического процесса (управления блоком АС). Процедура схожа с получением водительских прав. Специалист сдает теоретические экзамены и демонстрирует практические навыки на тренажере. Только имея лицензию и сдав экзамены на АЭС, персонал допускается к эксплуатации реактора.

На правах рекламы.

Первый трансформатор подстанции

Подстанции обычно расположены возле электростанций. Подстанции играют важную роль в процессе передачи электроэнергии: они дополнительно увеличивают напряжение тока, позволяя передавать его на большие расстояния без потери слишком большой мощности. Подстанции делают это с помощью трансформаторов, и их можно использовать для увеличения или уменьшения напряжения электрических токов. Снижение напряжения электричества может быть важно на распределительных подстанциях, поскольку его необходимо сделать менее мощным и безопасным, прежде чем оно попадет в ваш дом.

Как только он пройдет через первый трансформатор подстанции, ваше электричество попадет в передающие сети.

Подписи к слайдам:

Откуда в наш дом приходит электричество? Хрычева Т.П.

ЗАГАДКА Мигнёт, моргнёт, В пузырек нырнет, В пузырёк под потолок- Ночью в комнате денек!

Что использовали люди в давние времена для того, чтобы было светло?

В давние-давние времена людям по ночам светил лишь огонь костра.

Люди догадались со временем, что, если в костёр опустить палку, она загорится. Так появился факел.

Позднее в домах стали использовать палочки поменьше — лучины. Ставили лучины на специальную подставку – светец.

Со временем люди стали наливать в маленькую мисочку масло, класть туда фитиль из ниток и поджигать его. Так появились масляные лампы

А ещё позже люди придумали свечку.

Однажды один умный человек изобрёл электрическую лампочку. Она горит ярко, удобно и безопасно.

Что заставляет работать лампочку? По тропинкам я бегу, Без тропинки не могу. Где меня ребята нет, Не зажжётся в доме свет К дальним сёлам, городам Кто идёт по проводам? Светлое величество Это

Электрические заряды в природе

Э лектрический ток – это поток мельчайших заряженных частиц – электронов. Он похож на реку, только в реке течёт вода, а по проводам – электроны. Э лектрический ток вырабатывают большие электростанции.

Э лектрический ток сначала течёт по толстым высоковольтным проводам, потом по обычным проводам перетекает в наши квартиры, попадая в выключатели и розетки.

Как нам помогает электричество? Разбей на 2 группы

ЗАПОМНИ ПРАВИЛА! Уходишь из дома выключай свет и электрические приборы!

Сети передачи

Сети передачи помогают перемещать электроэнергию от электростанций к распределительным сетям, чтобы облегчить доставку домохозяйствам, предприятиям и другим конечным пользователям. На этом этапе электричество остается под высоким напряжением, поскольку оно все еще должно перемещаться на огромные расстояния.

Передающие сети состоят из воздушных линий на металлических опорах или линий, утопленных в земле. Эти линии рассчитаны на сверхвысокое напряжение и изолированы от случайного перемещения электрического тока на землю, где это может быть опасно для людей.

Вторая подстанция трансформатора

Во второй точке трансформатора подстанции ваше электричество снижается, опять же благодаря использованию трансформаторов, чтобы сделать его безопасным для использования домашними хозяйствами и конечными пользователями. В этот момент считается, что электричество достигло распределительной сети и покинуло передающую сеть.

Тип подстанции и напряжение могут варьироваться в зависимости от использования и местоположения. Например, в сельской местности можно использовать меньшие подстанции для снижения напряжения примерно до 33 000 вольт, что делает его пригодным для питания поездов и заводов. В городских районах с заводами напряжение может варьироваться от 11 000 до 33 000 вольт для обслуживания небольших заводов. Контраст с доставкой в ​​дома, офисы и бизнес, где соседний трансформатор может снизить напряжение всего до 230 вольт.

История изобретения электричества

Было бы неправильно сказать, что кто-то один открыл электричество. Сама идея существовала тысячи лет, а затем началась эра научных и коммерческих исследований. Многие великие умы трудились над вопросом природы электричества.

Фалес Милетский

Около 600 года до н. э. греческий математик Фалес обнаружил, что во время трения меха о янтарь между ними возникает притяжение. Оказалось, что его вызывает дисбаланс электрических зарядов, так называемое статическое электричество.

Уильям Гилберт

Английский физик в 1600 году написал книгу «De Magnete». В ней ученый объяснил опыты, которые проводил Фалес Милетский. Явление статического электричества, которое античный исследователь производил с помощью янтаря (на греческом ‘электрум’), Гилберт назвал электрической силой.

Так появилось английское слово electricity. Кроме того, ученый изобрел электроскоп, который обнаруживал присутствие электрических зарядов на теле.

Шарль Франсуа Дюфе

В начале XVII века французский ученый открыл два типа электричества. Он назвал их стекловидным и смолистым (в современной терминологии — положительный и отрицательный заряды). Он обнаружил, что объекты с одинаковыми зарядами притягиваются, а с противоположными — отталкиваются.

Бенджамин Франклин

В середине XVIII века Бенджамин Франклин проводил многочисленные эксперименты, изучая природу электричества. В 1748 году ему удалось построить электрическую батарею из стеклянных листов, сжатых пластинами из свинца. Ученый открыл принцип сохранения заряда. Летом 1752 года Франклин провел знаменитый эксперимент, который доказал, что молния — это электричество.

Луиджи Гальвани

Этому итальянскому физику и биологу принадлежит первенство в открытии явления биоэлектромагнетизма. В 1780 году он проводил эксперименты на лягушках и выяснил, что электричество — та среда, с помощью которой нейроны передают сигналы мышцам.

Алессандро Вольта

Этот итальянский физик выяснил, что некоторые химические реакции — источники постоянного электрического тока. Он построил электрическую батарею из меди и цинка для производства непрерывного потока электрических зарядов.

Вольта ввел понятия электрического потенциала (V) и заряда (Q), выразил закон емкости, позже названный его именем. За эту работу единицу измерения электрического потенциала назвали в его честь.

Ханс Кристиан Эрстед и Андре-Мари Ампер

В начале XIX века датский физик Ханс Кристиан Эрстед обнаружил прямую связь между электричеством и магнетизмом. Он описал, как стрелка компаса отклоняется под воздействием электрического тока.

Вдохновленный этой работой французский физик Андре-Мари Ампер составил формулу для описания магнитных сил, которые возникают между объектами, несущими ток. В его честь назвали единицу измерения электрического тока.

Майкл Фарадей

Этот ученый:

  • заложил основу концепции электромагнитного поля;
  • обнаружил, что магнетизм влияет на световые лучи;
  • изобрел электромагнитные вращательные устройства.

В 1831 году Фарадей сконструировал электрическую динамомашину, в которой вращательная механическая энергия непрерывно превращалась в электрическую. Это позволило производить электричество.

Томас Эдисон

В 1879 году ученый изобрел практичную лампочку. Далее он занялся разработкой системы, которая обеспечивала бы людей источником энергии для питания таких ламп. В 1882-м в Лондоне построена первая электростанция, которая вырабатывала электричество и поставляла его в дома людей.

Через несколько месяцев появилась первая электростанция в Нью-Йорке, которая поставляла электричество для освещения нижней части острова Манхэттен (85 потребителей смогли зажечь 5000 ламп). Это был постоянный ток.

Никола Тесла


Никола Тесла за работой: Flickr
Тесла известен разработкой нового типа двигателя переменного тока и технологии передачи электроэнергии. Он запатентовал систему с переменным током, чтобы обеспечивать людей электроэнергией высочайшего качества. Энергетические системы Теслы распространилась в США и Европе, так как обеспечивали дальнюю высоковольтную передачу.

Генрих Рудольф Герц и Альберт Эйнштейн

Генрих Герц занимался экспериментами по изучению электромагнитных волн. В 1887 году он описал фотоэлектрический эффект, когда электроны испускаются (отрываются от атома) при попадании на материал электромагнитного излучения (например, света).

В 1905 году Альберт Эйнштейн опубликовал закон фотоэлектрических эффектов и выдвинул гипотезу о квантах световой энергии. Так началось развитие квантовой механики и создание солнечных батарей.

Так как электричество необходимо человечеству, исследования в этой сфере продолжаются и сейчас. Без электрического тока мы не представляем быт, а ученые находятся в поисках его новых источников.

Оригинал статьи: https://www.nur.kz/family/school/1912747-chto-takoe-elektrichestvo-i-kto-ego-izobrel/

Твой дом

Ваше электричество проходит через сервис и регистрируется на вашем счетчике. Счетчик отслеживает, сколько электроэнергии вы используете. На вашем распределительном щите ваше электричество разделено на цепи для каждой области вашего дома. Наконец, электричество передается по проводам за вашими стенами к розеткам и выключателям, где вы управляете своими светильниками и приборами.

Легко принять электричество, используемое для освещения вашего дома, как само собой разумеющееся, но этот драгоценный источник энергии прошел долгий путь через сложную инфраструктуру генерации и передачи, чтобы добраться до вашего дома. Зная это, вы, вероятно, с меньшей вероятностью будете принимать электричество как должное, когда в следующий раз включите свет или включите телевизор.

Click Energy — ведущая энергетическая компания, и мы помогаем австралийским домохозяйствам больше экономить на счетах за электроэнергию благодаря нашей 100% -ной модели онлайн-обслуживания. Узнайте больше о наших простых и понятных планах здесь или перейдите и сэкономьте онлайн сегодня .

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]