изготовление шестерней по эскизам В судостроительной-цепи якорные. В процессе работы оборудования не смотря на длительный срок службы цепи изнашиваются и выходят из строя.

Пусковой ток: что это, откуда берется и как действует


Какой ток потребляет двигатель из сети при пуске и работе

В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.
Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток . При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:

I н = P н/ ( √3 U н х η х с osφ) ,

где P н – номинальная мощность двигателя в кВт, U н – напряжение в сети, в кВ (0,38 кВ). Коэффициент полезного действия ( η) и коэффициент мощности (с osφ) – паспортные значения двигателя, которые написаны на щитке в виде металлической таблички. См. также – Какие паспортные данные указываются на щитке асинхронного двигателя.

Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В – 3,4 А.

Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению “два ампера на киловатт”, т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.

Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).

В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток , который может быть в 3 – 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).

Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока – I пуск/ I ном. Кратность пускового тока – одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х ( I пуск/ I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока – 6, пусковой ток равен 20 х 6 = 120 А.

Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.

Процесс выбора плавких предохранителей подробно рассмотрен в этой статье: Выбор предохранителей для защиты асинхронных электродвигателей

Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).

Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 – 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.

В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.

Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.

Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник

Важно понимать, что не далеко каждый двигатель можно подключать по этой схеме. Наиболее распространенные асинхронные двигатели с рабочим напряжение 380/200 В, в том числе и двигатель, показанный на рисунке 1 при включении по данной схеме выйдут из строя. Подробнее об этом читайте здесь: Выбор схемы соединения фаз электродвигателя

В настоящее время, для уменьшения пускового тока электрических двигателей активно используют специальные микропроцессорные устройства плавного пуска (софт-стартеры) . Подробнее о назначении такого типа устройств читайте в статье Для чего нужен плавный пуск асинхронного двигателя.

Источник: electricalschool.info

Скачать

Надеюсь, читатели простят мне вольное объяснение процессов – я постарался всё объяснить “на пальцах”. Кому нужны академические знания, пожалуйста:

• В.Л.Лихачев. Асинхронные электродвигатели. 2002 г. / Книга представляет собой справочник, в котором подробно описано устройство, принцип работы и характеристики асинхронных электродвигателей. Приводятся справочные данные на двигатели прошлых лет выпуска и современные. Описываются электронные пусковые устройства (инверторы), электроприводы., djvu, 3.73 MB, скачан: 7136 раз./

• Беспалов, Котеленец — Электрические машины / Рассмотрены трансформаторы и электрические машины, используемые в современной технике. Показана их решающая роль в генерации, распределении, преобразовании и утилизации электрической энергии. Даны основы теории, характеристики, режимы работы, примеры конструкций и применения электрических генераторов, трансформаторов и двигателей., pdf, 16.82 MB, скачан: 2317 раз./

• М.М. Кацман — Электрические машины / Некоторые говорят, что это лучший учебник по электротехнике. В книге рассматриваются теория, принцип действия, устройство и анализ режимов работы электрических машин и трансформаторов как общего, так и специального назначения, получивших распространение в различных отраслях техники., pdf, 22.12 MB, скачан: 2061 раз./

• Каталог двигателей Электромаш / Асинхронные электродвигатели с короткозамкнутым ротором — каталог производителя, pdf, 3.13 MB, скачан: 1376 раз./

• Каталог двигателей ВЭМЗ / Параметры и каталог двигателей, pdf, 3.53 MB, скачан: 1181 раз./

• Дьяков В.И. Типовые расчеты по электрооборудованию / Практические расчеты по электрооборудованию, теоретические сведения, методики расчета, примеры и справочные данные., zip, 1.53 MB, скачан: 2515 раз./

• Карпов Ф.Ф. Как проверить возможность подключения нескольких двигателей к электрической сети / В брошюре приведен расчет электрической сети на колебание напряжения при пуске и самозапуске асинхронных двигателей с короткозамкнутым ротором и синхронных двигателей с асинхронным пуском. Рассмотрены условия, при которых допустим пуск и самозапуск двигателей. Изложение методов расчета иллюстрируется числовыми примерами. Брошюра предназначена для квалифицированных электромонтеров в качестве пособия при выборе типа электродвигателей, присоединяемых к коммунальной или промышленной электросети., zip, 1.9 MB, скачан: 1640 раз./

• Руководство по эксплуатации асинхронных двигателей / Настоящее руководство содержит наиболее важные указания по транспортировке, приемке, хранению, монтажу, пусконаладке, эксплуатации, техническому обслуживанию, поиску неисправностей и их устранению для электродвигателей производства «Электромашина». Руководство по эксплуатации предназначено для трехфазных асинхронных электродвигателей низкого и высокого напряжений серий А, АИР, МТН, МТКН, 4МТМ, 4МТКМ, ДА304, А4., pdf, 7.54 MB, скачан: 2540 раз./

• Каталог двигателей АИР / Каталог двигателей АИР — мощность от 0,12 до 315 кВт; частота вращения 3000, 1500, 1000, 750 об/мин; напряжение сети 220/380 В, 380/660 В;, pdf, 1.07 MB, скачан: 1044 раз./

• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений. Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга — отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 2653 раз./

Ещё пособие по двигателям: • Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 2042 раз./

Как определить мощность и ток электродвигателя

Все электрические двигатели выпускаются с табличками на корпусе, из которых можно узнать основные характеристики электродвигателя: его марку, потребляемый номинальный рабочий ток и мощность, частоту вращения, тип двигателя, КПД и cos(fi). Так же эти данные указаны в паспорте к устройству.

Из всех параметров наиболее важное значение для подключения имеют: мощность электродвигателя и потребляемый ток, не стоит его путать с пусковым. Именно эти данные позволяют нам определить достаточность мощности для привода, необходимое сечение кабеля для подключения мотора и подобрать подходящие по номиналу для защиты автомат и тепловое реле.

Подписка на рассылку

Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.

Рисунок 1. Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.

Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения). Поэтому при подключении и наладке двигателей переменного тока (наиболее распространенных в промышленности) всегда стоит задача минимизировать значения пусковых токов, а также повысить плавность пуска двигателя за счет применения специального дополнительного оборудования. Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).

Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи. Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты. Также пусковой ток асинхронного электродвигателя можно уменьшить за счет внедрения внешнего сопротивления в обмотку ротора.

Расчет пускового тока асинхронного электродвигателя

Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).

Расчет пускового тока электродвигателя осуществляется в несколько этапов:

Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.

Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.

Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.

Как определить мощность электродвигателя

Проще всего посмотреть на табличку и найти величину в киловаттах. Например, на картинке она равна 45 кВт.


Учтите, что эта величина на табличке указывает на потребляемую активную мощность из электросети. Полная же мощность будет равна сумме активной и реактивной мощности. Электрические счетчики в доме или гараже считают только расход активной электроэнергии, а учет реактивной энергии ведется только на предприятиях при помощи специальных счетчиков. Чем выше у электродвигателя cos(fi), тем меньше будет составляющая реактивной энергии в полной мощности. Не стоит путать cos(fi) с КПД. Этот показатель показывает сколько электроэнергии переводится в полезную механическую работу, а сколько в бесполезное тепло. Например, КПД равный 90 процентам, говорит о том, что десятая часть потребленной электроэнергии уходит на тепловые потери и трение в подшипниках.

Вы должны иметь ввиду, что в паспорте или на табличке указывается номинальная мощность, которая будет равна этому значению только при условии достижения оптимальной нагрузки на вал. При чем перегружать не стоит вал по целому ряду причин, лучше выбрать по мощнее мотор. На холостом ходу величина тока будет гораздо ниже номинала.

Как же определить номинальную мощность электродвигателя? В интернете Вы найдете много различных формул и расчетов. Для некоторых необходимо помереть размеры статора, для других формул понадобится знать величину тока, КПД и cos(fi). Мой совет не заморачивайтесь со всем этим. Лучше этих расчетов все равно будут практические измерения. И для их проведения ничего не понадобится вообще.

Как определить мощность любого электроприбора в доме или гараже? Конечно с помощью счетчика электроэнергии. Перед началом измерения отключите все электроприборы из розеток, освещение и все то, что подключено от электрощита.

Далее если у Вас электронный счетчик типа Меркурий, все очень просто надо включить мотор под нагрузкой и погонять минут 5. На электронном табло должна высветится величина нагрузки в кВт, подключенная к счетчику в данный момент.

Если же у вас дисковый индукционный счетчик учитывайте, что он учет ведет в киловатт/часах. Запишите перед началом измерений последние показатели, включайте двигатель строго секунда в секунду ровно на 10 минут, затем после остановки отнимите новые показания от предыдущих и умножайте кВтч на 6. Полученный результат и будет активной мощностью данного двигателя в Киловаттах, для перевода в Ватты разделите на 1000. Рекомендую прочитать статью: как снимать показания электросчетчика.

Если двигатель маломощный, тогда для более высокой точности можно посчитать обороты диска. Например, за одну минуту он сделал 10 полных оборотов, а на счетчике написано 1200 оборотов= 1 кВт/ч. 10 умножаем на количество минут в часе и получаем 600 оборотов за час. 1200 делим на 600 и получаем 500 Ватт или 0.5 кВт. Чем дольше по времени будете измерять, тем точнее будут данные. Но время всегда должно быть кратно полной минуте. Затем делим 60 на количество минут измерения и умножаем на сосчитанные обороты. После этого величину оборотов, равных одному Киловатт/часу для вашей модели электросчетчика делим на полученный результат и получаем необходимую величину мощности.

Как защитить жилье от возгорания проводки

В жилом помещении электролиния должна иметь элементы защиты. Расчет параметров производится просто. Вычислите суммарный ток, который понадобится всем электрическими устройствами в квартире, если их включить одновременно. Он определяется таким образом:

  • суммируем мощности приборов;
  • полученное число делим на вольтаж сети;
  • полученный параметр исчисляется в амперах, он фиксирует значение величину, на которую следует ориентироваться при выборе защитных элементов.

У мастера, обслуживающего ваш участок, выясните предельный параметр силы тока электролинии. Если выяснится, что она предполагает меньшее потребление тока, чем вы получили при расчете необходимого величины для всех установленных в жилье электроприборов (работающих одновременно), уменьшите и параметр, на который рассчитаны защитные элементы.

Соблюдайте правило: никогда одновременно не подключайте к сети устройства (кухонный комбайн, чайник, кондиционер) потребляющие суммарный ток, превышающий максимальный параметр электролинии.

Важная информация! Когда в электророзетках соединения между кабелем и клеммами ослабли, проводка не выдержит силу тока, на которую она рассчитана. Чтобы восстановить утраченную способность, проверьте розетки и, при необходимости, подтяните клеммы. Следите за тем, чтобы не перетягивать винты, что может привести к повреждениям розетки. Работы проводятся при обесточенной проводке.

Как определить потребляемый ток электродвигателя

Зная мощность, легко можно высчитать величину потребляемого тока. Для 3 фазных двигателей, подключенных по схеме звезда на 380 Вольт, необходимо умножить мощность в киловаттах на 2. Например, при мощности 5 киловатт ток будет равен 10 Ампер. Опять же учитывайте, что такой ток мотор будет брать только под нагрузкой максимально близкой к номиналу. Полунагруженный электродвигатель и тем более на холостом ходу будет потреблять значительно меньший ток.

Для определения тока в однофазных сетях, необходимо мощность разделить на напряжение. Например, при работе двигателя напряжение в месте его подключения равно 230 Вольт. Это важно так, как после включения нагрузки напряжение скорее всего понизится в месте подключения электродвигателя.

Если например, мощность мотора на 220 Вольт по измерениям оказалась равной 1.5 кВт или 1500 Ватт. Делим 1500 на 230 Вольт и получаем, что рабочий ток двигателя приблизительно равен 6.5 Ампер.

Выбор аккумуляторной батареи

Автомобильный аккумулятор имеет много характеристик, которые нужно учитывать, когда мы выбираем новый элемент питания:

  1. Емкость. Эта величина выражается в А/ч и отражает в себе максимальную продолжительность работы полностью заряженной батареи. Выбор по ней заключается в сопоставлении с паспортом на автомобиль или старой штатной моделью АКБ. Емкость также подбирается по объему ДВС. Например, для пуска моторов до 1,7 л достаточно установить аккумулятор 55-60 А/ч. Если вы установили дополнительное освещение или модный аудиоусилитель, рекомендуется аккумулятор с большим параметром, но в пределах геометрических размеров. Так как более энергоемкая батарея будет обладать увеличенными габаритами.
  2. Полярность. Расположение клемм определяет физическую возможность установки АКБ на штатное место и подключение кабелей. Для европейских машин обычно покупают батареи с прямой полярностью, для российских — с обратной, а для азиатских выпускают и те, и другие. Также есть универсальные, в которых клеммы расположены посередине корпуса.
  3. Пусковой ток. Когда мы с вами выбираем батарею и на первое место ставим его — это неправильно. Нужно учесть регион и климатические условия, где машина будет эксплуатироваться. Если это умеренные широты с нормальным климатом, то переплачивать за больше ампер в АКБ нет смысла. Если нужен стойкий к морозам источник — чем больше ампер в нем, тем лучше, но срок службы будет существенно меньше. Напоминаем, что измеренные по разным стандартам пусковые токи отличаются.

В таблице соотнесены характеристики батарей разных стандартов исполнения:

SAE/CCA EN IEC DIN
350 330 225 200
400 360 260 225
450 420 290 255
500 480 325 280
550 520 355 310
600 540 390 335

Пусковой ток электродвигателя

При запуске любого типа электродвигателя возникает пусковой ток от 2 до 8 кратного значению номинального тока в рабочем режиме электродвигателя. Величина пускового тока зависит от типа двигателя, скорости вращения, схемы подключения, наличие нагрузки на валу и от других параметров.

Пусковой ток возникает, потому что в момент запуска наводится очень сильное магнитное поле в обмотках необходимое, что бы сдвинуть с места и раскрутить ротор. При включении мотора сопротивление обмоток мало, а следовательно по закону Ома, ток вырастает при неизменном напряжении в участке цепи. По мере того как двигатель раскручивается, возникает в обмотках ЭДС или индуктивное сопротивление и ток начинает уменьшаться до номинального значения.

Эти всплески реактивной энергии негативно сказываются на работе других электропотребителей, подключенных к этой же линии электропитания, что служит причиной возникновения особенно губительных для электроники скачков или перепадов напряжения.

Причины для установки токовых трансформаторов


Трансформатор тока РТП-58
Устройство предназначено для трансформации первичного значения тока до безопасного для сети. Трансформаторы также эксплуатируются с целью:

  • разграничения низковольтной учетной аппаратуры и реле, подкинутых на вторичную обмотку, если в сети первичное высокое напряжение;
  • повышения или понижения показателей напряжения;
  • замера состояния электросети и параметров переменного тока;
  • обеспечения безопасности ремонтных и диагностических работ;
  • быстрой активации релейной защиты при коротких замыканиях;
  • учета энергозатрат – с ними обычно совмещен электросчетчик.

Для измерения понадобится подключить ТТ в разрыв провода, а на вторичную отметку подсоединить вольтметр или амперметр, совмещенный с резистором.

Пусковые токи асинхронных электродвигателей

Двигатели асинхронного типа в момент подключения к электросети потребляют значительное количество энергии для того, чтобы:

  • привести ротор в движение;
  • поднять скорость вращения с нуля до рабочего уровня.

Этим объясняется необходимость использования большого пускового тока, который существенно отличается от количества электроэнергии, позволяющего поддерживать постоянное число оборотов. Это характерно не только для асинхронных, но и для однофазных двигателей постоянного тока, хотя принцип действия последних совершенно иной.

Методы проверки ПТ

Можно ли доверять цифрам, которые указывает производитель? Дело сугубо индивидуальное. Аккумуляторы малоизвестных брендов действительно стоит исследовать. Но как проверить пусковой ток аккумулятора самостоятельно, ведь, как мы выяснили, эта характеристика очень важна?

Существует несколько способов сделать это с использованием «народных» методов, но, признаемся честно, все они не отличаются высокой точностью – для этого нужно использовать дорогостоящее профессиональное оборудование.

Мультиметр для этих целей не годится, и вы не найдёте в сети описание, как измерить таким прибором пусковой ток аккумулятора. Дело в том, что мультиметр не рассчитан на измерение тока номиналов в несколько сотен ампер – если и есть отдельные модели, которые в состоянии сделать это, то они будут слишком дорогими.

Так что придётся использовать менее точные методы:

  • посредством нагрузочной вилки, представляющей собой вольтметр, оснащённый добавочным сопротивлением. Нагрузочная вилка при подключении к клеммам АКБ выступает в качестве нагрузки, заменяя бортовую сеть машины;
  • токоизмерительными клещами. Это самый доступный прибор для измерения пускового тока автомобильного аккумулятора, ему большой ампераж не страшен;
  • «дедовская» проверка заключается во включении ближнего света на автомобиле. Если яркость свечения лампы не меняется на протяжении 5-10 минут, можно говорить, что АКБ исправен. Таким способом можно отсечь заведомо проблемный аккумулятор при его покупке;
  • проверка «на слух» в принципе осуществляется каждый раз, когда мы заводим машину. Если топливная система в исправном состоянии, то мотор должен запуститься за 2-4 секунды. Когда на это уходит более 10 секунд, можно говорить, что его пусковой ток недостаточен.

Проблема высоких пусковых токов: решение

Высокий пусковой ток может спровоцировать резкое, хотя и кратковременное падение напряжения, при котором прочие подключенные к сети устройства испытают недостаток энергии. Это нежелательно, поскольку негативно влияет на безопасность работы и долговечность оборудования.

Для решения задачи предусмотрены специальные дополнительные устройства, установка которых в процессе подключения и наладки двигателей позволяет:

  • максимально уменьшить значение пускового тока;
  • повысить плавность запуска;
  • снизить затраты на запуск агрегата, так как становится возможным применение менее мощных дизельных электростанций, стабилизаторов, проводов с меньшим сечением и пр.

Наибольшей эффективностью отличаются такие современные устройства, как частотные преобразователи и софтстартеры. Они обеспечивают высокую (более минуты) продолжительность поддержания пускового тока.

Какие проблемы возникают при увеличении пусковых нагрузок

На амплитуду пускового броска влияют особенности строения и то, насколько высоко качество изготовления трансформатора. Значение имеет и импеданс сети. Если он низкий, возникнет больший бросок. Катушки при пуске берут очень много электричества некоторое время, до восстановления параметров в сердечнике.

Пусковой ток нагревает элементы блока питания. Это может стать причиной их выхода из строя в результате подгорания контактов в выключателях из-за появления «дуги». Завышенный пусковой бросок сглаживается при использовании дополнительных элементов так называемого «мягкого включения». Стартовые броски и подача излишнего напряжения приходят в норму, а поэтому исключается срабатывание предохранительных приборов.

Как рассчитать пусковой ток электродвигателя

Чтобы объективно оценить сложность условий запуска двигателя, необходимо предварительно узнать величину необходимого для этого пускового тока. Основные этапы расчета следующие:

  • вычисление номинального тока;
  • определение значения пускового тока (в амперах).

Для того чтобы получить значение номинального тока для используемой модели электродвигателя, применяют формулу, которая имеет вид Iн=1000Pн / (Uн*cosφ*√ηн). Pн и Uн – это номинальные показатели мощности и напряжения, cosφ и ηн – номинальные коэффициенты мощности и полезного действия.

Собственно пусковой ток, который обозначается как Iп, определяется при помощи формулы Iп = Iн * Kп, где Kп – это кратность постоянного тока по отношению к его номинальному значению (Iн). Всю необходимую для проведения расчетов информацию (значения Kп, Pн, ηн, cosφ, Uн) можно найти в технической документации, которая прилагается к электродвигателю.

Корректный расчет пускового тока двигателя способствует правильному выбору автоматических выключателей, предназначенных для защиты линии включения, а также приобретению дополнительного оборудования (генераторы и пр.) с подходящими параметрами.

Источник: www.szemo.ru

Как подобрать автоматический выключатель для двигателя

Правильный подбор автоматического выключателя для защити электродвигателя имеет огромное значение для оборудования. Надежность работы, защита двигателя от аварийных режимов работы и проводки напрямую зависит от подбора автоматического выключателя.

В этой статье наведем условия выбора автоматического выключателя для защиты электродвигателя. Для того чтобы выбрать автоматический выключатель необходимо знать:

— номинальный ток двигателя;

— кратность пускового тока к номинальному;

— максимально допустимый ток электропроводки.

Номинальный ток двигателя

– это ток который имеет электродвигатель во время работы при номинальной мощности. Он указывается на паспорте электродвигателе или берется с таблиц паспортных данных электродвигателей.

Кратность пускового тока к номинальному

– это соотношение пускового ток который возникает в электродвигателе во время пуска к номинальному. Он тоже указывается на паспорте электродвигателя или в таблицах электродвигателей.

Максимально допустимый ток электропроводки

– это допустимый ток, который может проходить по проводу, кабеля, что подключен к электродвигателю.

Условия для правильного выбора автоматического выключателя

для защиты электродвигателя:

— номинальный ток автоматического выключателя должен бить больше или равен номинальному току электродвигателя. Например: ток электродвигателя АИР112М4У2 Ін. дв. =11,4А выбираем автоматический выключатель ВА51Г2534 на номинальный ток Ін. = 25А и ток расцепителя Ін..рас. = 12.5А.

После этого проверим автоматический выключатель на не срабатывания при пуске электродвигателя используя условие :

Iу.е.>kзап. · kр.у ·kр.п. ·Iн.дв ·kі

где Kзап . — коэффициент запаса, который учитывает колебания напряжения, Kзап . = 1,1 ;

kр.у — коэффициент, который учитывает неточность вставки по току срабатывания электромагнитного расцепителя автоматического выключателя , Kр.у = 1,2 ;

Пусковые токи электрооборудования

Пользователей электроэнергии не оставляет равнодушными мощность электроприборов, которые окружают нас в повседневности, ведь в конце концов она упирается в возможности нашего кошелька. Суммарную мощность, из указанных в документации на электроприборы цифр мы учитываем при проектировании будущей сети, правда, не всегда принимаем во внимание, что производитель указывает электрические характеристики для оборудования, работающего в номинальном режиме.

В реальных условиях большинство электроприборов превышает номинальные мощности, достигая максимальной нагрузки в момент включения. Происходит это из-за пусковых токов, которые в течение краткого периода времени (от десятых долей до нескольких секунд) превышают номинальный потребляемый ток до 10 раз.

Такими особенностями отличаются электроприборы, имеющие электродвигатели (холодильники, кондиционеры, электронасосы), электронагревательные приборы, использующие ТЭНы. Как ни странно даже обычные лампы накаливания имеют достаточно высокие величины пускового тока от 5 до 13 раз превышающие номинальные значения (недаром практически всегда они перегорают в момент включения).

Природа пусковых токов

Проиллюстрировать причину возникновения пускового тока легко на простом примере. Кто когда-либо катался на велосипеде, знает – больше всего усилий требуют первые повороты педалей, когда велосипед трогается с места, долее при достижении номинальной скорости это делать значительно легче.

Аналогичные процессы происходят при запуске электродвигателя, ведь для преодоления инерции вала мотора и сопряженных с ним механизмов требуется мощное электромагнитное поле, которое действует до набора рабочих оборотов. Оно характеризуется более высокими токами при запуске двигателя, связанными с номинальными значениями при помощи коэффициентов пускового тока (кратностью пускового тока к номинальному значению).

Иная природа пусковых токов у ламп накаливания. Величина сопротивления вольфрамовой нити 100 ваттной лампочки в холодном (выключенном) состоянии составляет 40 Ом, а в накаленном (включенном) – 490 Ом, не удивительно, что ток в момент включения имеет более чем 12 кратное превышение над номинальным током лампы. Аналогичным образом меняется сопротивление нихромовой нити ТЭНа нагревательного электрического прибора.

Технические характеристики источников питания

На сегодняшний день создать ИП мощностью до 1 кВт не является сложной технической задачей. Доступность элементной базы и большое количество наработок в этой области позволяют в сжатые сроки наладить производство источников питания на основе известных компонентов и по известным рекомендациям. Неудивительно, что схемотехника, технические характеристики и внешний вид недорогих выпрямительных устройств как ведущих мировых производителей, так и малоизвестных компаний очень схожи.

Одними из недорогих источников питания, часто используемыми для питания светодиодных лент, являются модули серии LRS производства компании MEAN WELL (рисунок 1). При разработке данной линейки были использованы как последние достижения в области производства импульсных источников питания, так и самая современная элементная база, что позволило вывести ИП семейства LRS на современный технический уровень и обеспечить хорошее соотношение «цена/качество».

Рис. 1. Выпрямитель из семейства LRS

Ключевыми особенностями семейства LRS (таблица 1) являются возможность работы в универсальном диапазоне входных напряжений (85…264 B AC), компактный размер (высота профиля 1U – 30 мм), высокий КПД (до 91,2%) и малое потребление при отключении нагрузки (0,2…0,75 Вт). ИП семейства LRS имеют множество сертификатов, среди которых IEC/EN 60335-1 (PD3) и IEC/EN61558-1, 2-16. Все источники питания LRS проходят тестирование при 100% нагрузки и имеют трехлетнюю гарантию.

Таблица 1. Основные технические характеристики выпрямителей семейства LRS

НаименованиеНоминальная выходная мощность, ВтВыходное напряжение, ВВходное напряжение В ACПотребляемый ток при 230 В АС, АСтартовый ток при 230 В АС, А
LRS-35355…4885…2640,4245
LRS-50503,3…4885…2640,5645
LRS-75755…4885…2640,8565
LRS-1001003,3…4885…2641,250
LRS-15015012…4885…132/170…2641,760
LRS-150F1505…4885…2641,760
LRS-2002003,3…4890…132/180…2642,260
LRS-3503503,3…4890…132/180…2643,460

Одной из специфических особенностей светодиодного освещения является возможность установки оборудования в специализированных электрических шкафах, поэтому наряду с ИП в перфорированных корпусах на практике может возникнуть реальная потребность в модулях с форм-фактором, рассчитанном на установку на DIN-рейку. В этом случае следует обратить внимание на семейство HDR производства компании MEAN WELL, выпускаемое в малогабаритных пластмассовых корпусах (рисунок 2).

Рис. 2. Внешний вид выпрямителей семейства HDR производства MEAN WELL

Несмотря на то, что выпрямители HDR изначально были спроектированы для использования в автоматизированных системах управления и имеют изоляцию с электрической прочностью вплоть до Class II, сфера их применения не ограничивается питанием только промышленных контроллеров. Благодаря широкому диапазону входных напряжений, хорошему уровню электробезопасности, высокому КПД и малому энергопотреблению при отключении нагрузки (не более 0,3 Вт) эти модули (таблица 2) можно с успехом применить в самых разнообразных приложениях, начиная от питания элементов сложных технологических линий и заканчивая тем же светодиодным освещением.

Таблица 2. Основные технические характеристики выпрямителей семейства HDR

НаименованиеМаксимальная выходная мощность, ВтВыходное напряжение, ВВходное напряжение, В ACПотребляемый ток при 230 В АС, АСтартовый ток при 230 В АС, А
HDR-15155…4885…2640,2545
HDR-30365…4885…2640,4825
HDR-60605…4885…2640,860
HDR-10010012…4885…2641,670
HDR-15015012…4885…2641,670

Анализируя данные таблиц 1 и 2, можно увидеть, что у всех рассмотренных ИП пусковой ток в десятки раз превышает ток, потребляемый при максимальной нагрузке. Причем чем меньше мощность источника питания, тем больше это соотношение. Например, для самой маломощной из рассмотренных моделей – ИП HDR-15 пусковой ток (45 А), согласно технической документации, в 180 раз превышает максимальное значение во время работы (0,25 А). Для мощных выпрямителей это соотношение хоть и немного меньше, но все равно является достаточно большим. Абсолютный рекорд по величине пускового тока (70 А) принадлежит моделям HDR-150. При таком пусковом токе в момент включения устройства хоть и кратковременно, но будет потребляться около 15 кВт, что достаточно много даже для промышленного оборудования.

Ситуацию не спасает и введение в ИП корректора коэффициента мощности (ККМ). Если проанализировать технические характеристики модулей семейства RSP производства MEAN WELL (рисунок 3), отличающихся от рассмотренных выше выпрямителей LRS наличием активного корректора коэффициента мощности, то окажется, что их пусковые токи также превышают номинальные значения в 15…70 раз (таблица 3). Это, конечно, меньше, чем в модулях без ККМ, однако все равно много, даже несмотря на высокий коэффициент мощности (не менее 0,93).

Рис. 3. Выпрямитель семейства RSP производства MEAN WELL

Таблица 3. Основные технические характеристики выпрямителей семейства RSP

НаименованиеМаксимальная выходная мощность, ВтВыходное напряжение, ВВходное напряжение, В АСПотребляемый ток при 230 В АС, АСтартовый ток при 230 В АС, А
RSP-75753,3…4885…2640,535
RSP-1001003,3…4885…2640,5530
RSP-1501503,3…4885…2640,845
RSP-2002002,5…4888…2641,140
RSP-3203202,5…1288…2641,540
RSP-5005003,3…4885…2642,6540

Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Основные типы электродвигателей

Существует множество типов и модификаций электродвигателей. Каждый из них обладает собственной мощностью и другими параметрами.

Основная классификация разделяет эти устройства на электродвигатели постоянного и переменного тока. Первый вариант применяется значительно реже, поскольку для его эксплуатации требуется обязательное наличие источника постоянного тока или устройства, преобразующего переменное напряжение в постоянный ток. Выполнение данного условия в современном производстве потребует значительных дополнительных затрат.

Но, несмотря на существенные недостатки, двигатели постоянного тока имеют высокий пусковой момент и стабильно работают даже при больших перегрузках. Благодаря своим качествам, эти агрегаты нашли широкое применение на электротранспорте, в металлургической и станкостроительной отрасли.

Тем не менее, большинство современного оборудования работает с двигателями переменного тока. В основе действия этих устройств лежит электромагнитная индукция, которую создает в магнитном поле проводящая среда. Магнитное поле создается с помощью обмоток, обтекаемых токами, или с применением постоянных магнитов. Электродвигатели, работающие на переменном токе, могут быть синхронными и асинхронными.

Использование синхронных электродвигателей практикуется в оборудовании, где требуется постоянная скорость вращения. Это генераторы постоянного тока, насосы, компрессоры и другие аналогичные установки. Различные модели отличаются собственными техническими характеристиками. Например, значение скорости вращения может находиться в пределах 125-1000 оборотов в минуту, а мощность достигает 10 тыс. киловатт.

Во многих конструкциях имеется короткозамкнутая обмотка, расположенная на роторе. С ее помощью, в случае необходимости, производится асинхронный пуск, после чего синхронный двигатель продолжает работу в обычном режиме, максимально сокращая потери электрической энергии. Эти двигатели отличаются небольшими размерами и высоким коэффициентом полезного действия.

Гораздо более широкое распространение в производственной сфере получили асинхронные двигатели переменного тока. Они отличаются очень высокой частотой вращения магнитного поля, значительно превышающей скорость вращения ротора. Существенным недостатком этих устройств считается снижение КПД до 30-50% от нормы при низких нагрузках. Кроме того, во время пуска параметры тока становятся в несколько раз больше по сравнению с рабочими показателями. Данные проблемы устраняются путем использования частотных преобразователей и устройств плавного пуска.

Асинхронные двигатели используются на тех объектах, где требуются частые включения и выключения оборудования, например, в лифтах, лебедках, и других устройствах.

Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

Реальные измерения тока

Как я говорил выше, по моему мнению лучший способ “увидеть” пусковой ток – использовать активный (резистивный) шунт, и смотреть на нём напряжение осциллографом.

Я использовать вот такой шунт:

Шунт для измерения пускового тока при помощи осциллографа

Подопытный – мотор-редуктор, который через цепную передачу крутит вертикальный шнек:

Мотор-редуктор, на котором измеряем пусковой ток

Шнек на момент пуска был полным, поэтому его рабочий ток (7,7 А, измерено клещами) был почти равен номинальному (8,9 А, видно на шильдике).

Шильдик двигателя вертикального шнека

Ситуация по пусковому току видна на осциллографе:

Осциллограмма пускового тока 500 мс/дел

Приблизим интересующий момент, ускорив развертку до 100 мс/дел:

Осциллограмма пускового тока 100 мс/дел

Тут уже легко увидеть синус питающего тока и оценить коэффициент кратности пускового тока Кп, который примерно равен 4.

Ещё приблизим момент истины (до 50 мс/дел):

Момент пуска двигателя – ток пуска

Тут уже видны хорошо и переходные процессы, обусловленные индуктивностью и ЭДС самоиндукции обмоток двигателя. Этот импульс, длительность которого гораздо меньше периода сети 20 мс, даёт хорошую помеху с широким спектром в питающую сеть и радиоэфир.

Ещё один повод для использования ПЧ? Не совсем, там с помехами ситуация гораздо хуже!

Для тех, кто не хочет заморачиваться, повторю – есть клещи с функцией Inrush, которые могут измерять пусковой ток.

Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

cosφ=P/√3UIη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Подключение асинхронного двигателя

Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы). В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник». С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).

Подключение звездой

Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.

Метод соединения в треугольник отличается тем, что при этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.

Подключение треугольником

При этом, соединении фазное и линейное напряжения одинаковы, следовательно, при линейном напряжении в 220 вольт, правильным соединением обмоток будет именно треугольник. Положительной стороной этого соединения является большая мощность, тогда как отрицательной – большие токи пуска.

Для выполнения реверса (смены направления вращения) трехфазного движка асинхронного типа, достаточно поменять местами выводы двух его фаз. На производстве это делается при помощи пары магнитных пускателей с зависимым включением.

Значительные величины токов пуска у асинхронных моторов являются весьма нежелательным явлением, потому как они могут привести к эффекту нехватки напряжения для других видов оборудования, подключенного к той же сети. Это стало причиной того, что подключая и налаживая двигатели этого типа, появляется задача минимизации токов пуска и повышения плавности запуска моторов методом использования специализированного оборудования. Наиболее эффективым типом таких приспособлений считаются софтстартеры и частотные преобразователи. Одним из наиболее ценных их качеств считают то, что они способны поддержать ток запуска мотора довольно долгое время (обычно больше минуты).

Помимо стандартного способа включения моторов асинхронного типа, существуют и методы включения их в питающую сеть, имеющую лишь одну фазу.

Конденсаторный пуск асинхронного двигателя

Для этого, в основном, применяют конденсаторный способ включения. Конденсатор может устанавливаться как один, так и пара (один пусковой, а второй рабочий). Пара кондеров ставится тогда, когда есть надобность в процессе пуска-работы менять емкость, что делают при помощи подключения-отключения одного из кондеров (пускового). Для этого, как правило, применяются емкости бумажного исполнения, поскольку они не имеют полярности, а при работе на переменном токе это очень важно.

Для расчета рабочего конденсатора существует следующая формула:

Ср=4800(i/u).

Пусковой конденсатор должен иметь емкость в пару-тройку раз большую емкости рабочего и рабочее напряжение в полтора раза превышающее напряжение питания.

Пусковой и рабочий конденсаторы соединяют параллельно, причем так, что параллельно пусковому, включено шунтирующее сопротивление и одним концом пусковой кондер включается через ключ. При пуске двигателя ключ замыкают, поднимая ток запуска, затем, размыкают.

Однако, не нужно забывать, что к однофазной сети можно подключить далеко не каждый движок. Кроме того, мощность мотора в таком подключении будет составлять лишь 0.5-0.6 мощности трехфазного включения.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]