Лазерные диоды или как делают мощные лазерные светильники

Основное различие между обычными светодиодами и лазерными диодами заключается в типе излучения фотонов: в светодиодах при соответствующей поляризации полупроводникового pn перехода происходит спонтанное излучение, а в лазерных диодах — вынужденное. Такое вынужденное излучение фотонов может происходить, когда в зоне проводимости полупроводника больше электронов, чем в валентной зоне, что называется инверсией заполнения. Тогда может произойти оптическое усиление пучка фотонов, генерируемых на стыке. Но изменение ширины полосы на противоположное невозможно в системе только с двумя уровнями энергии, соответствующими зоне проводимости и валентной зоне. На практике используются сложные полупроводниковые материалы с 3 или 4 уровнями.

Лазерные диоды LD

Природа испускаемого излучения зависит от того, как происходит генерация и испускание фотонов из pn-перехода. В случае светодиодов это некогерентное излучение, содержащее волны разной частоты и, следовательно, разного цвета. Лазерные диоды излучают когерентное и монохроматическое излучение, распространяющееся слегка расходящимися пучками, что влияет на возможности и области применения обоих типов диодов.

Что касается лазерных LED, они открывают возможности для производства синих диодов. Голубые лазерные диоды из нитрида галлия GaN могут излучать свет в диапазоне от ультрафиолета до голубого (370–500 нм), в зависимости от химического состава активного слоя в полупроводниковой структуре. Пороговые напряжения при которых возникает лазерный эффект, составляют от 3,8 до 5,5 В, а пороговая плотность тока находится в диапазоне 2–5 кА / см2.

Как и в случае с обычными светодиодами, белый свет в лазерных диодах (LD) чаще всего получается с использованием синего диода и люминофора. Но эти диоды предоставляют дополнительные возможности благодаря тому, что люминофор может быть установлен не только рядом с диодным кристаллом в том же корпусе, но и на некотором расстоянии от него (системы LARP — Laser Activated Remote Phosphors).

Кроме того, люминофор можно наносить на подложку, которая пропускает или отражает луч. Используя эти возможности и соответствующие оптические системы для направления и фокусирования луча, можно получить множество цветовых и геометрических вариантов освещения.

Как подключить

Особенностью лазерного диода является высокая потребность в стабилизированном напряжении питания. В момент перехода на кристалле наблюдается кратковременное увеличение мощности из-за малой площади, увеличивающей концентрацию энергии в данной точке. Это делает необходимым использование специального стабилизатора — драйвера.

Кроме того, напрямую к драйверу элемент тоже нельзя подключать — необходимо использовать токоизмерительный резистор, который включается в разрыв между лазером и драйвером. При этом исчезает электрическое соединение минуса питания с общим минусом схемы. Дополнительным недостатком является неизбежная потеря мощности на резисторе.

Источником тока для лазера могут служить разные устройства:

  • батарейка;
  • аккумулятор;
  • сетевое напряжение 220 В через специальный блок питания.

Два первых варианта способны обеспечить достаточно стабильное напряжение питания, но оно постоянно уменьшается, что также недопустимо. Если используется блок питания стандартного типа, ситуация несколько улучшается, хотя в этом случае нужна качественная защита от пробоя или выхода блока из строя.

При таком подключении используют дополнительные схемы защиты и стабилизаторы, устраняющие всплески и помехи от сетевых скачков. Использование обычного диодного мостика в данном случае не подходит, так как через стандартные выпрямители проходит масса паразитных колебаний и помех.

Драйвер для лазерного диода

Существует две основные конструкции драйверов для лазерного диода:

  • импульсный. Это одна из разновидностей импульсного преобразователя напряжения. Способен работать как на понижение, так и на повышение выходного напряжения относительно входного значения. Мощность на входе приближается к показателям на выходе, разница между ними образована некоторыми потерями на нагрев проводников;
  • линейный. Как правило, он получает от схемы большее напряжение, чем номинал полупроводника. Разницу обычно компенсируют с помощью транзистора, который излишки энергии отдает в виде тепла. КПД линейных драйверов невысок, что является причиной ограниченного применения.

Важно! Для каждого вида драйверов используется и собственная схема подключения, учитывающая специфику самого драйвера, источника питания и токоограничивающего резистора.

Суперлюминесцентные диоды

В суперлюминесцентном диоде (SLD или SLED — суперлюминесцентный светодиод) для излучения света используется явление суперлюминесценции. Как и лазерный диод, он имеет относительно высокую мощность и яркость, и в то же время — как обычный светодиод — низкую когерентность излучаемого света. В диодной структуре, которая аналогична структуре используемой в диоде LED, для усиления светового луча делается оптическое волокно, но без отражающих зеркал. Примеры применений: оптическая когерентная томография, сканирующая интерферометрия, оптические датчики, волоконно-оптические гироскопы и волоконно-оптическая связь.

Пошаговая инструкция подсоединения

Самым удобным в плане создания лазерной установки своими руками будет красный полупроводник, имеющий выходную мощность примерно в 200 милливатт.

Обратите внимание! Именно таким полупроводником оснащен любой компьютерный DVD-проигрыватель. Это значительно упрощает поиск источника света.

Подключение выглядит следующим образом:

  • для подключения необходимо использовать один полупроводник. Их обязательно нужно проверить на работоспособность (достаточно просто подключить к батарейке);
  • выбираем более яркую модель. При проверке инфракрасного светодиода (при взятии его из компьютерного проигрывателя), он будет светить слабым красным свечением. Помните, что его

ЗАПРЕЩАЕТСЯ направлять в глаза, иначе можно полностью лишиться зрения;

  • далее лазер устанавливаем на самодельный радиатор. Чтобы это сделать, нужно просверлить в алюминиевой пластине (толщина примерно 4 мм) отверстие с таким диаметром, чтобы диод входил в него достаточно туго;
  • между лазером и радиатором необходимо нанести небольшой слой термопласты;
  • далее берем проволочный керамический резистор, имеющий сопротивление 20 Ом с мощностью в 5 Вт и соблюдая полярность подключаем его к схеме. Через него нужно подключить лазер и источник питания (мобильный аккумулятор или батарейку);
  • сам лазер следует зашунтовать с помощью керамического конденсатора, имеющего любую емкость;
  • далее отворачивая устройство от себя, следует подключить его к сети питания. В результате должен включить красный луч.

Красный луч от самодельного устройства

После этого его можно сфокусировать при помощи двояковыпуклой линзы. Сфокусируйте его на несколько секунд в одной точке на бумаге, которая поглощает красный спектр. Лазер на ней оставит красный свет. Как видите, получилось работающее устройство, которое подключено к сети в 220 В. Используя различные схемы и варианты подключения, можно создать разные приспособления, вплоть до карманной лазерной указки.

Лазерные диоды для накачки твердотельных лазеров DPSSL

Также стоит обратить внимание на использование лазерных диодов в устройствах для получения зеленого, желтого и синего лазерного излучения. Популярным продуктом в этой группе выступают индикаторы, устройства измерения и нивелирования расстояний, оптические прицелы, а также источники информации и предупреждающего света.

Кроме того, с их помощью выполняются прецизионные операции в промышленности, типа сверления и обрезки печатных и гибких печатных плат, обрезки резисторов и резки плат ITO, до операций, инспекций и графических работ, а также точной маркировки продуктов и их микрообработки, включая такие материалы, как стекло, кремний, керамика и металлы. Такие лазеры также можно использовать в медицинской и косметической хирургии.

В качестве исходного компонента устройств DPSSL используется полупроводниковый GaAlAs-лазерный диод мощностью несколько сотен мВт, излучающий инфракрасную волну с длиной 808 нм. Это излучение питает (накачивает) лазерный диод — лазер Nd: YAG, сформированный на основе кристалла иттрий-алюминиевого граната, легированного ионами неодима (или на основе ортованадата иттрия, также легированного неодимом Nd: YVO4, что обеспечивает большее усиление и компактность конструкции). Этот лазер излучает в ближней инфракрасной области с длиной волны 1064 нм.

Следующим шагом будет удвоение частоты (выделение 2-й гармоники) излучаемой волны, уменьшив ее длину до 532 нм, что соответствует зеленому цвету. Это достигается за счет использования нелинейных свойств кристалла, известного под кратким названием KTP. Это титанилфосфат калия KO5PTi (или KTiOPO4). С использованием других материалов, таких как трибрат лития LBO или бетаборат бария BBO, также возможно утроить или даже учетверить частоту излучения. В случае необходимости в желтом свете желаемый эффект достигается путем управления длинами волн, излучаемых с использованием кристаллов из описываемых групп материалов. Но в устройствах DPSSL излучающих синий свет, есть и другие материалы, такие как соединения бария и бора.

Конечно использование двойного преобразования излучаемых длин волн снижает энергоэффективность, но положительным моментом будет возможность дешево получить сильные сфокусированные пучки излучения выбранных цветов. Особенно высокие уровни мощности (порядка кВт) могут быть достигнуты при импульсном режиме работы лазеров DPSSL.

Разновидности корпусов

Популяризация лазерных диодов вынуждала производителей самостоятельно разрабатывать новые типы корпусов. С учетом их специфического назначения компании выпускали всё новые и новые виды защиты и охлаждения кристалла, что привело к отсутствию унификации. В настоящее время не существует международных стандартов, регламентирующих корпуса лазерных диодов. Пытаясь навести порядок, крупные производители заключают между собой договор об унификации корпусов. Однако перед практическим применением неизвестного лазерного диода всегда следует уточнять назначение выводов и длину волны излучения, невзирая на знакомый тип корпуса. Среди промышленно выпускаемых полупроводниковых лазеров наиболее часто встречаются два вида с указанными ниже корпусами. 1 Приборы с открытым оптическим каналом:

  • TO-can (transistor-out-line metal-can package). Корпус выполнен из металла и применяется в изготовлении транзисторов;
  • C-mount;
  • D-mount.

2 Приборы с волоконным выходом:

  • DIL (Dual-In-Line);
  • DBUT (Dual-Butterfly);
  • SBUT (Single-Butterfly).

Области применения LED и LD

Доминирующее положение в качестве источников света в системах освещения сейчас занимают светодиоды, которые уже заменили лампочки накаливания и люминесцентные источники, а также ртутные и натриевые лампы. Это связано с хорошими эксплуатационными характеристиками и высокой энергоэффективностью, обеспечивающей низкие эксплуатационные расходы и значительную экономию энергии. Но лазерные диоды имеют своё преимущество в ряде устройств. Это относится не к относительно простым и массивным осветительным установкам, а скорее к устройствам и системам с особыми требованиями. Такие требования могут быть эффективно выполнены с использованием когерентных световых пучков, особенно большой мощности.

  • Основные области применения светодиодов: освещение жилых, офисных, торговых и производственных помещений, освещение открытых пространств и инфраструктуры, таких как улицы, тротуары, площади, мосты, стадионы, туннели, автостоянки, здания, элементы индикации в сигнальных и информационных системах, оборудование и освещение для авто.
  • Лазерные диоды также используются в различных устройствах и системах, например, в проекторах, отображающих надписи на козырьках и линзах очков, освещении открытых пространств, освещении сцен и автомобильных фарах. В последнем случае при меньшей выходной мощности, чем у светодиодов, дальность света почти вдвое больше (до 500 м).

Классификация драйверов

На данный момент существует два основных типа драйверов, которые можно подключить к нашему полупроводнику:

  • импульсный драйвер. Представляет собой частный случай преобразователя напряжения импульсного характера. Он может быть как понижающим, так и повышающим. У них входная мощность приблизительно равна выходной. При этом имеется незначительное преобразование энергии в тепло. Упрощенная схема импульсного драйвера имеет следующий вид;

Упрощенная схема импульсного драйвера

  • линейный драйвер. На такой драйвер схема обычно подает больше напряжения, чем требует полупроводник. Для его гашения необходим транзистор, который лишнюю энергию будет выделять с теплом. Такой драйвер имеет небольшой КПД, в связи с чем его используют крайне редко.

Обратите внимание! При использовании линейных микросхем-стабилизаторов интегрального плана при падении входного напряжения на диоде ток будет уменьшаться.

Схема линейного драйвера

В связи с тем, что питание любого лазерного диода может осуществляться через два разных типа драйверов, то схема подключения будет различаться.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]