Эксперимент № 3. ШИМ. Управление яркостью светодиода


Светодиоды используются практически во всех технике вокруг нас. Правда иногда возникает необходимость регулировать их яркость (например, в фонариках, или мониторах). Самым простым выходом в этой ситуации, кажется изменить количество тока, пропускаемого через светодиод. Но это не так. Светодиод – довольно чувствительный компонент. Постоянное изменение количества тока может существенно сократить срок его работы, или вообще сломать. Так же надо учитывать, что нельзя использовать ограничительный резистор, так как в нем будет накапливаться лишняя энергия. При использовании батареек это недопустимо. Еще одна проблема при таком подходе – цвет света будет меняться.

ШИМ-регулирование

Выходом из этой ситуации может быть использование широтно-импульсной модуляции (ШИМ). При такой системе светодиоды получают необходимый ток, а яркость регулируется с помощью подачи питания с высокой частотой. То есть, частота периода подачи изменяет яркость светодиодов. Несомненный плюс ШИМ-системы – сохранение продуктивности светодиода. КПД составит около 90%.

Устройства для управления яркостью светодиодной ленты

Перечень основных устройств, применяемых для управления яркостью светодиодной ленты:

  • Стабилизаторы напряжения и линейные регуляторы (имеют низкий КПД, считаются устаревшими и применяются ограниченно).
  • Диммеры – компактные импульсные преобразователи.
  • Драйверы – импульсные источники питания.
  • RGB-усилители – устройства, повышающие мощность RGB-светодиодов.
  • RGB-контроллеры – устройства для управления многоцветными лентами.
  • DMX-контроллеры – сложные профессиональные устройства, разработанные специально для проведения эффектных световых шоу. Современные модели управляются с компьютера с помощью специального ПО или имеют вид пультов с многочисленными кнопками и ручками.

Самый простой диммер работает на основе переменных резисторов (реостатов). Такой способ регулировки освещения считается неэффективным, обладает низким КПД, за счёт перегрева и необходимости охлаждения. Сейчас уже такие устройства производители серийно не выпускают, чаще всего их делают самостоятельно радиолюбители.

Регулятор, в основе которого лежит работа автотрансформатора, выдаёт на выходе практически идеальную синусоидальную кривую. Но такое устройство обладает большими габаритами и весом, для регулировки нужно будет прилагать немалые усилия.

  • Модульный. Их устанавливают в электрощиток. Схема подключения диммера такого исполнения работает с лампами накаливания и галогенными через понижающие трансформаторы. Чтобы их удобнее было использовать, диммер имеет выносную кнопку либо клавишный переключатель. Как правило, модульный тип диммера служит для регулирования яркости ламп у входных ворот, пролётов на лестницах либо дворового освещения.
  • На шнуре. Можно назвать его мини-устройством, осуществляющим регулировку освещения светильников, которые не подключены сразу в общую электросеть, а включены через розетку и вилку (настольные лампы, бра, торшеры). Этот регулятор работает лишь с лампами накаливания.
  • Моноблочный. Внешне он очень похож на обычный выключатель. Работает с разными видами ламп, как правило, это указывается на корпусе. В электрическую цепь устройство устанавливается на разрыв фазы, монтируется данный диммер вместо выключателя.

Зачастую в квартирах находят применение моноблочные варианты. В частных жилах домостроениях удобно устанавливать модульные устройства, когда нужно управлять светом на прилегающей территории.

Стоит отметить, что ещё существуют проходные модели диммеров, они работают по тому же принципу, что и проходные выключатели, то есть регулировку света можно осуществлять в двух мест.

Музыкальная клавиатура

Очень простой музыкальный инструмент (клавиатуру) для воспроизведения музыки можно сделать с помощью чипа 555. Можно собрать необычный музыкальный инструмент на фото выше. В качестве клавиатуры используется графит и лист бумаги с нотами представлены как дырки в бумаге.

Такая же схема, но с обычными резисторами и кнопками.

Управление устройствами регулировки яркости светодиодных лент

Кстати, с помощью подобных схем можно управлять не только оборотами двигателя постоянного тока, но и просто активной нагрузкой – лампой накаливания или каким-либо нагревательным элементом.

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Введение Кстати, с помощью подобных схем можно управлять не только оборотами двигателя постоянного тока, но и просто активной нагрузкой лампой накаливания или каким-либо нагревательным элементом. Спрашивайте, я на связи!

Генераторы ШИМ

В системе ШИМ в качестве задающего генератора могут использовать микроконтроллер, или схема, состоящая из схем малой степени интеграции. Так же возможно создание регулятора из микросхем, которые предназначены для импульсных блоков питания, или логические микросхемы К561, или интегральный таймер NE565. Умельцы используют в этих целях даже операционный усилитель. Для этого на нем собирается генератор, который можно регулировать. Одна из наиболее используемых схем основана на таймере 555. По сути, это обычный генератор прямоугольных импульсов. Частота регулируется конденсатором С1. при выходе у конденсатора должно быть высокое напряжение (это равно с соединением с плюсовым источником питания). А заряжается он тогда, когда на выходе присутствует низкое напряжение. Этот момент и дает получение импульсов разной ширины. Еще одной популярной схемой является ШИМ на основе микросхемы UC3843. в этом случае схема включения изменена в сторону упрощения. Для того, чтобы управлять шириной импульса, используется подача регулирующего напряжения положительной полярности. На выходе в таком случае получается нужный импульсный сигнал ШИМ. Регулирующее напряжение действует на выход так: при снижении широта увеличивается.

Плата и детали сборки регулятора яркости

Односторонняя печатная плата имеет размер 22х24 мм. Как видно из рисунка на ней нет ничего лишнего, что могло бы вызвать вопросы.

Плата в файле Sprint Layout 6.0: reguljator-jarkosti.lay6

После сборки схема ШИМ-регулятора яркости не требует наладки, а печатная плата легка в изготовке своими руками. В плате, кроме подстроечного резистора, используются SMD элементы.

  • DA1 – ИМС NE555;
  • VT1 – полевой транзистор IRF7413;
  • VD1,VD2 – 1N4007;
  • R1 – 50 кОм, подстроечный;
  • R2, R3 – 1 кОм;
  • C1 – 0,1 мкФ;
  • C2 – 0,01 мкФ.

Заказать готовую сборку от автора можно здесь.

Почему ШИМ?

  • Главное преимущество этой системы – легкость. Схемы использования очень просты и легки в реализации.
  • Система ШИМ – регулирования дает очень широкий диапазон регулировки яркости. Если говорить о мониторах, то возможно применение CCFL-подсветки, но в таком случае яркость можно уменьшить только в два раза, так как CCFL-подсветка очень требовательна к количеству тока и напряжению.
  • Используя ШИМ можно удерживать ток на постоянном уровне, а значит светодиоды не пострадают и цветовая температура меняться не будет.

Введение

Экспоненциальный рост светодиодного освещения сопровождается расширением выбора микросхем для управления светодиодами. Импульсные драйверы светодиодов давно заменили линейные источники тока, которые потребляют значительно больше энергии. Все приложения — от карманного фонаря до табло стадионов — требуют точного управления стабилизированным током. Во многих случаях необходимо обеспечить изменение выходной интенсивности свечения светодиодов в режиме реального времени. Эту функцию обычно называют регулировкой яркости светодиодов. В данной статье представлены базовые понятия из теории светодиодов, а также некоторые методы регулировки яркости для импульсных драйверов светодиодов.

Желаете познакомиться с NCP1014 лично? — Нет проблем!

Для тех, кто перед началом разработки собственного ИП на базе NCP1014 хочет убедиться в том, что это действительно простое, надежное и эффективное решение, компания ONSemiconductor выпускает несколько типов оценочных плат (см таблицу 1, рис. 6; доступны для заказа через компанию КОМПЭЛ).

Таблица 1. Обзор оценочных плат

Код заказаНаименованиеКраткое описание
NCP1014LEDGTGEVBДрайвер светодиодов мощностью 8 Вт с коэффициентом мощности 0,8Плата разработана с целью демонстрации возможности построения LED-драйвера с коэффициентом мощности > 0,7 (стандарт Energy Star) без применения дополнительной микросхемы PFC. Выходная мощность (8 Вт) делает представленное решение идеальным для питания структур подобных Cree XLAMP MC-E, содержащих четыре последовательных светодиода в одном корпусе.
NCP1014STBUCGEVBНеинвертирующий понижающий преобразовательПлата является доказательством утверждения, что контроллера NCP1014 достаточно для построения ИП низкого ценового диапазона для жестких условий работы.

Рис. 6. Внешний вид оценочной платы

Кроме того, существует еще несколько примеров готового дизайна различных ИП, помимо рассмотренного в статье. Это и 5 Вт AC/DC-адаптер для сотовых телефонов [6], и еще один вариант ИП для LED [7], а также большое количество статей по применению контроллера NCP1014, которые вы можете найти на официальном сайте компании ONSemiconductor — https://www.onsemi.com/.

Компания КОМПЭЛ является официальным дистрибьютором ONSemiconductor и поэтому на нашем сайте https://catalog.compel.ru/ вы всегда можете найти информацию о доступности и стоимости микросхем, выпускаемых ONS, а также заказать опытные образцы, в том числе и NCP1014.

LM3409 обеспечивает множество функций регулировки яркости

Микросхема LM3409 от National Semiconductor представляет собой уникальный драйвер светодиодов, который имеет необходимую функциональность для простой аналоговой и ШИМ-регулировки яркости. Этот прибор обеспечивает четыре возможных способа реализации регулировки яркости светодиода:

  1. Аналоговая регулировка с помощью прямого управления вывода IADJ от источника напряжения в диапазоне 0…1,24 В.
  2. Аналоговая регулировка с помощью потенциометра, включенного между выводом IADJ и землей.
  3. ШИМ-регулировка с помощью вывода разрешения.
  4. ШИМ-регулировка с помощью внешних шунтирующих FET.

Схема включения микросхемы LM3409 для аналоговой регулировки с использованием потенциометра показана на рисунке 6. Внутренний 5-мкА источник тока создает падение напряжения на RADJ, которое, с свою очередь, позволяет изменять порог внутренней чувствительности по току. С той же целью вывод IADJ может напрямую управляться от источника постоянного напряжения.

Рис. 6. Схема включения LM3409 при аналоговой регулировке яркости
На рисунке 7 показан график зависимости тока светодиода от сопротивления потенциометра, включенного между выводом IADJ и GND. Плоский участок кривой при значении тока в 1 А соответствует максимальному номинальному току светодиода, который устанавливается резистором контроля тока RSNS, показанным на рисунке 4.

Рис. 7. Зависимость тока светодиода от сопротивления потенциометра
На рисунке 8 показан ток светодиода как функция напряжения на выводе IADJ. Заметим, что на этом графике виден тот же максимальный ток светодиода, установленный резистором RSNS.

Рис. 8. Зависимость тока светодиода от напряжения на выводе IADJ
Оба варианта аналоговой регулировки просты в реализации и обеспечивают весьма линейные уровни снижения яркости светодиода вплоть до 10% от максимального значения.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]