Защита трансформатора от перенапряжения и перегрузки

Источником питания электрооборудования на предприятиях являются силовые трансформаторы, чаще всего их работа связана с высоким напряжением (более 1000 В) и большими токами. Поэтому их габариты, стоимость, а также затраты на ремонт являются ощутимыми даже для крупного производства. В связи с этим соответственно, чтобы и сами эти дорогостоящие устройства и электрооборудование, которое с помощью их питается, были надёжно защищены применяется целый рад защит. Выбор их и настройка дело довольно непростое, поэтому стоит подробно разобрать каждый из них. Конечно же, это касается только крупных трёхфазных трансформаторов на подстанциях. Для питания и защиты маломощных трансформаторов достаточно автоматического выключателя или же предохранителей. Слишком дорого и неоправданно устанавливать полный список защит, например, на все сварочные трансформаторы, применяемые в цехе.

Виды повреждений


Рис. 1. Повреждения трансформаторов
В связи с тем, что трансформатор включается в работу совместно с другими устройствами, любые повреждения на питающей линии, в низковольтных цепях или внутри бака одинаково опасны.

Среди актуальных видов аварий следует отметить следующие:

  • Короткое замыкание между обмотками;
  • Замыкание обмотки на корпус;
  • Межфазные замыкания в линии;
  • Межвитковые замыкания;
  • Повреждение встроенного оборудования;
  • Перегрев мест подключения, электрических контактов;
  • Обрыв в цепи, нарушение целостности точек подключения или обмоток;
  • Нарушение крепления железа, расшихтовка листов при ослаблении стяжек ярма с последующим перекрытием или разрушением витков.

Мероприятия для защиты обмоток от перенапряжений

Для защиты обмоток трансформаторов от перенапряжений применяются внешняя и внутренняя защита.

Первая группа мероприятий, внешняя защита — это применение заземленных тросов и ограничителей перенапряжений (ОПН). Эти меры позволяют ограничить амплитуду волн напряжения, подходящих к трансформатору. Хотя ПУЭ указывает также применение вентильных разрядников в качестве защитных мероприятий, но в настоящее время они все-таки повсеместно заменяются на ОПН из-за преимуществ последних.

Основная активная часть ОПН (рис. 3) состоит из набора варисторов, соединённых последовательно и составляющих так называемую «колонку». В зависимости от требуемых характеристик ОПН и его конструкции ограничитель может состоять из одной колонки или из ряда колонок, соединённых последовательно либо параллельно. Отличие материала варисторов ОПН от материала резисторов вентильных разрядников состоит в том, что у нелинейных резисторов ограничителей перенапряжения присутствует повышенная пропускная способность, а также высоко нелинейная вольт-амперная характеристика (ВАХ), благодаря которой возможно непрерывное и безопасное нахождение ОПН под напряжением, при котором обеспечивается высокий уровень защиты электрооборудования. Данные качества позволили исключить из конструкции ОПН искровые промежутки.

Материал нелинейных резисторов ОПН состоит в основном из оксида и оболочки в виде глифталевой эмали, повышающей пропускную способность варистора. В процессе изготовления оксид цинка смешивается с оксидами других металлов. Варисторы на основе оксида цинка являются системой, состоящей из последовательно и параллельно включённых p — n переходов. Именно эти p — n переходы определяют нелинейность ВАХ варистора.


Рис. 3. Устройство ОПН

ОПН конструктивно представляет собой колонку варисторов, заключённых в высокопрочный полимерный корпус из высокомолекулярного каучука (в случае полимерной изоляции прибора), либо колонку варисторов, прижатую к боковой поверхности стеклопластиковой трубы, расположенной внутри фарфора (в случае фарфоровой изоляции). В ОПН с полимерной изоляцией пространство между стеклопластиковой трубой и колонкой варисторов заполняется низкомолекулярным каучуком, а сама труба имеет расчётное количество отверстий для обеспечения взрывобезопасности конструкции при прохождении токов короткого замыкания. У ограничителей перенапряжений с фарфоровой изоляцией на торцевых сторонах покрышки располагают мембраны и герметизирующие резиновые уплотнительные кольца, а на фланцах устанавливают специальные крышки с выхлопными отверстиями. На крышке ограничителя перенапряжений имеется контактный болт для подключения к токоведущей шине. ОПН снабжён изолированной от земли плитой основания. Внутренняя стеклопластиковая труба, мембраны и крышки обеспечивают взрывобезопасность конструкции при прохождении токов короткого замыкания.

Характеристики различных модификаций ОПН приведены на рис.4.

Вольтамперная характеристика ОПН представлена на рис. 5.

Внешний вид ОПН различных конструкций приведен на рис. 6.


Рис. 4. Характеристики различных модификаций ОПН.


Рис. 5. Вольтамперная характеристика ОПН.


Рис. 6. Внешний вид различных конструкций ОПН

Деление защит трансформаторов на основные и резервные

Любой вид повреждения в трансформаторе несет потенциальную опасность, как целостности оборудования, так и надежности работы всей энергосистемы. Поэтому крайне важно грамотно отстраивать работу защит на электростанциях, тяговых и трансформаторных подстанциях, местных КТП и ТП. Для этой цели защита трансформатора условно подразделяется на две категории – основную и резервную.

Основная защита – это такой вид автоматики, который направлен на анализ внутреннего состояния трансформатора (обмоток, железа, дополнительного оборудования). Данный тип охватывает как само устройство, так и прилегающие к нему шины, провода и т.д.

Резервная защита охватывает те нарушения в работе, которые происходят за пределами трансформатора, но могут непосредственно повлиять на его проводники и внутренние элементы. Это всевозможные перегрузки, замыкания и перенапряжения в линиях, на смежных устройствах и т.д.


Рис. 2. Основные и резервные защиты

Пленочная защита трансформаторного масла

Наиболее совершенной является пленочная защита масла трансформатора. Расширитель изготавливается разъемным. Он наполняется маслом точно до разъема и накрывается маслостойкой пластиковой пленкой. Пленка собрана в складки., .При расширении масла пленка надувается пузырем, но с каким-либо газом масло в соприкосновение не приходит, и его качество (дегазованность) сохраняется полностью (рис.5).

Рис.5. Пленочная зашита трансформаторного масла: Кр. Тр-ра — крышка трансформатора; ГР -газовое реле; Р -расширитель; М — масло; В — воздух; П — пленка, разделяющая масло и воздух

Рис.5. Термосифоны для сушки масла трансформатора: а — установка термосифона, б-г — конструкции термосифонов на 10 — 200 кг адсорбента силикагеля. I — бак трансформатора; 2 — расширитель; 3 — газовое реле; 4 — термосифонный фильтр; 5 — воздухоосушителъ на. дыхательной трубке

Защита масла от увлажнения выполняется посредством термосифонных фильтров ТСФ (рис.5). ТСФ — это сосуд, наполненный адсорбентом — обычно силикагелем или алюмогелем — веществом, впитывающим в свои поры влагу, но не вступающим с ним в химическую реакцию. Когда силикагель насытится водой, его заменяют на свежий, а влажный сушат при 400-500°С.

В адсорбент добавляется 3% хлористого кобальта. Его нормальный цвет — голубой. При насыщении силикагеля влагой индикатор становится розовым. За цветом индикатора можно наблюдать через окно ТСФ. Количество адсорбента — около 1% масла в трансформаторе. Для мощных трансформаторов — 0,75%.

Масло циркулирует через ТСФ естественным путем: горячее масло поступает сверху ТСФ и, остывая, опускается вниз, отдавая по пути влагу силикагелю.

Разновидности защит и их суть

Все защиты для трансформаторов должны обладать достаточным быстродействием, чтобы вовремя отключить опасный режим. Так как при возникновении сверхбольших электрических величин он запросто приведет к разрушению изоляции, отпуску металла, возгораниям и прочим неприятным последствиям.

Для предотвращения перегрузок выполняется установка того или иного вида защиты на трансформатор. Какая именно защита используется на понижающих подстанциях, в оборудовании распределительных устройств, определяется местными условиями и особенностями режима работы.

Продольная дифференциальная защита

Область применения дифференциальной токовой защиты охватывает как сам силовой трансформатор, так и окружающие его присоединения вплоть до измерителей токовой нагрузки. Нормальным режимом работы каждого трансформатора считается равномерное перераспределение нагрузки между всеми тремя фазами, когда электрический ток в каждой из них получается приблизительно одинаковым.

Продольные дифференциальные защиты осуществляют сравнение токовой нагрузки во всех фазах. Так как ток примерно одинаков, то их геометрическая сумма должна равняться нулю. В результате сравнения получается, что токовая составляющая отсутствует или слишком мала для реакции. Но, как только произойдет замыкание одной фазы или сразу между несколькими, токи в них перестанут компенсировать друг друга, и их сумма будет отличаться от нуля, сработает дифференциальная отсечка.


Рис. 3. Пример дифференциальной защиты

Релейная

Для предотвращения повреждения трансформаторов применяется достаточно большое количество релейных защит. Однако отдельного внимания заслуживает реле контроля уровня масла. Этот вид предусматривает контроль за состоянием изоляционной среды. Конструктивно реле представляет собой поплавок с контактами, который удерживается выше контактов цепи срабатывания.

Если аварийный режим приведет к утечке масла и последующему снижению менее нормы, после которой может произойти пробой, произойдет отключение. Может располагаться в основном баке или иметь резервную релейную защиту в расширителе, которая предварительно даст сигнал о начале процесса.

Тепловая

Основой для тепловой защиты в трансформаторах служит классическая термопара. Место ее расположения определяется типом устройства, его мощностью и габаритами, так как перегрев может привести к нарушению изоляционных свойств, привести к термическому расширению масла.

К наиболее эффективным местам размещения относятся:

  • в верхней части бака;
  • у высоковольтных вводов;
  • в обмотках.

Имеет две ступени – первая производит включение резервных вентиляторов или других средств охлаждения. Вторая, если первой не удалось сбросить перегрев ниже предельного значения, производит отключение трансформатора.

Токовая отсечка


Рис. 4. Пример токовой отсечки
Данный вид защиты применяется для отключения повреждения, которое могло возникнуть внутри трансформатора. Она размещается со стороны вводов защищаемого трансформатора, однако воздействие охватывает все обмотки, с которых может быть подано напряжение. Особенностью ее применения является схема питания, которая используется в соответствующей линии.

Так для трехфазных цепей с изолированной нейтралью токовая отсечка должна устанавливаться в двух фазах. А при использовании цепей с глухозаземленной нейтралью защита должна применяться в каждом фазном присоединении. При отключении трансформатора полностью отсутствует какая-либо выдержка времени.

Недостатком отсечки является срабатывание исключительно на токи большой величины. Поэтому некоторые межфазные КЗ, межвитковых или КЗ на землю в цепи с изолированной нейтралью могут остаться незамеченными. На практике это один из самых простых способов, отключающих трансформатор в аварийном режиме.

Газовая защита

Газовое реле, как вид защиты, нашло широкое применение в маслонаполненных трансформаторах, где роль диэлектрика, разделяющего токоведущие элементы и заземленную конструкцию корпуса, выполняет трансформаторное масло. В нормальном режиме работы понижающие трансформаторы не воздействуют на жидкий диэлектрик, и масло пребывает в постоянном физическом состоянии.

Но, в случае возникновения межвитковых замыканий, контакта проводников со сталью или других ситуаций внутри бака горение дуги или разогрев металла приводит к локальному закипанию масла. От этого места и начинается выделение газов, которые поднимаются в верхнюю точку емкости.


Рис. 5. Пример газовой защиты

Для всей емкости верхняя точка – это расширительный бак, поэтому устанавливают газовое реле в соединительной трубе между расширителем и баком трансформатора. Конструктивно газовая защита представляет собой поплавок, с двумя контактами. При погружении в масло поплавок находится в незамкнутом положении. Как только выделившиеся газы поднимутся по трубе, поплавок упадет и замкнет контакты, масляный трансформатор отключится.

Струйная защита

Используется в трансформаторах с первичными и вторичными обмотками на 110, 35, 10, 6, 3,3кВ, где присутствует возможность переключения величины напряжения под нагрузкой. Устройство РПН, как правило, размещается в отдельном баке внутри основного, который изолирует его от высоковольтных обмоток. Переключение позиций РПН под нагрузкой может обуславливать как штатные коммутационные явления, так и аварийные. Последние приводят к выбросу масла от бака к расширителю.

Для реакции на такие повреждения и устанавливается струйная защита, так как поток масла от РПН активирует измерительный датчик. Далее происходит отключение выключателя, который обесточит обмотки трансформатора.

Максимальная токовая защита


Рис. 6. Пример максимальной токовой защиты
Максимальная токовая защита применяется для срабатывания в ответ на токи КЗ, расположенные в непосредственной близости к источнику. Сюда относятся повреждения как на обмотках, так и на ближайших шинах подстанции, в окружающем оборудовании и ит.д.

На практике выделяют большое количество вариантов исполнения МТЗ:

  • От внутренних и внешних КЗ;
  • МТЗ с комбинированным пуском по напряжению;
  • МТЗ с пуском по напряжению и фильтром напряжения обратной последовательности;
  • Обратной последовательности комбинированная с устройством против трехфазных КЗ;

Помимо аварийных режимов для МТЗ может устанавливаться режим защиты от перегрузки. Для этого устанавливается ток срабатывания в определенных пределах. Уставка выбирается исходя из максимального значения нагрузки, чтобы не происходило срабатывания автоматического выключателя в нормальном режиме работы.

Токовая защита нулевой последовательности


Рис. 7. Пример токовой защиты нулевой последовательности
Предназначена для защиты трансформатора от возможного замыкания как одной, так и двух фаз на землю. Это те ситуации, когда в трехфазной системе нарушится симметрия нагрузки и относительно нулевой точки сумма токов больше не будет равна нулю.

Равновесие системы нарушится, что и спровоцирует отключение питания спустя заданный временной промежуток. Часто комбинируется с АПВ, тогда через несколько секунд происходит повторное включение выключателя, на случай если замыкание самоустранилось.

Специальная резервная защита

Специальная резервная защита предназначена для автономного резервирования МТЗ по токовым цепям. Может использоваться как по высокой, так и по низкой стороне трансформатора. Их действие нацелено на первичные и вторичные максимальные токи, которые могут возникнуть в непосредственной близости от защищаемого объекта. Работа СРЗ, как правило, имеет выдержку по времени относительно основных МТЗ по стороне 110 – 220 кВ.

Токовая ступенчатая защита

Как и предыдущий вариант, представляет собой разновидность МТЗ, которая выстраивается в ключе последовательности срабатывания для разных обмоток. Широко используется в цепях, где потребители подключаются к источнику с большими пусковыми токами. Однако чувствительность максимальной защиты имеет дополнительную привязку к напряжению, что и обеспечивает блокировку автоматического отключения в случае запитки слишком мощной нагрузки, так как просадка напряжения не достигает установленного предела.

Ступени отстраиваются с таким временным промежутком, чтобы воздействие на выключатели нагрузки производились после основной токовой защиты.

Защита от минимального напряжения

В случае снижения питающего напряжения возможны два варианта развития событий – удаленное короткое замыкание, которое другими защитами распознается как большая нагрузка или подключение слишком большой суммарной нагрузки. И тот и другой вариант пагубно сказывается на работе трансформатора, поэтому и при аварийном режиме, и при перегрузке устанавливается выдержка времени, после которой происходит один из таких вариантов:

  • отключение аварийного участка;
  • вывод неприоритетных потребителей из работы;
  • автоматическое включение резерва.

Более подробно о таком типе защиты в статье

Измерение температуры термопарами

Принцип работы тепловой защиты трансформатора заключается в измерение температуры термопарами представляет большое удобство при проведении испытаний на нагрев, главным образом в тех случаях, когда возникает необходимость в определении температур отдельных точек конструкции трансформатора.

При помощи термопары может быть измерена температура не только на поверхности магнитопровода, но и в любой точке внутри его. Может быть также измерена наибольшая температура обмотки с помощью термопары, установленной в месте предполагаемого наибольшего нагрева обмотки. Можно сказать, что для измерения температуры термопарой недоступных мест нет. Но вместе с тем измерение термопарами бывает часто связано и с большими затруднениями, которые вызываются наличием в трансформаторах высокого напряжения. Поэтому установка термопар в обмотке и других узлах, находящихся под напряжением, не всегда возможна, так как она связана с опасностью для обслуживающего персонала во время испытания трансформатора.

Термопары могут быть широко использованы при измерении температуры магнитопровода и других заземленных узлов трансформаторов. Надо только проследить, чтобы провода термопар на своем пути были достаточно удалены от токоведущих частей трансформатора. Установка термопар в обмотке (даже на изоляции) при наличии высокого напряжения практически невозможна.

В тех случаях, когда это вызывается особой необходимостью, измерение температуры обмоток термопарами допускается проводить только при испытании методом короткого замыкания. При этом возможность прикосновения обслуживающего персонала к измерительному прибору должна быть исключена.

Чтобы убедиться в надежности изоляции термопар после установки их и оборки трансформатора, перед началом испытаний на нагрев, изоляцию трансформатора следует испытать приложенным и индуктированным напряжениями на 30—40% больше того, которое будет при испытании.

Термопара состоит из двух проводников разнородных металлов. При нагреве места спая обоих проводников образуется э. д. с., величина которой зависит от примененных металлов и температуры нагрева спая.

В табл. 9-3 приводится э. д. с. термопар, выполненных из спая различных проводников. При испытании трансформаторов обычно применяются термопары из проводников константана и меди К—Си диаметром 0,4—0,7 мм и длиной 5—20 м, хорошо изолированных друг от друга бумажной, шелковой или другой изоляцией.

Материал проводников термопарыЭлектродвижущая сила при 100° С, мв
Платина — платинорадий0,64
Константам — серебро4,0
Константин—медь4,1
Константам—сталь5,3
Константан—хромоникель5,6
Висмут—сурьма10
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]