Базовые измерительные приборы. Осциллограф: «рисующий сигнал»

Осциллограф – электронный прибор для измерения электрических сигналов в цепи и наблюдения за ними. Определение формы и параметров колебаний необходимо для отслеживания корректности работы оборудования.
Первые попытки создать прибор для определения электрических колебаний относятся ещё к 1880 году. Их делали французские и русские физики. Первые осциллографы были аналоговыми. С 1980-х годов сигналы стали фиксироваться с помощью цифрового оборудования.

Что такое осциллограф

Осциллограф позволяет визуально изучать характеристики сложных сигналов, рассчитывать временные и амплитудные параметры. Аналоговые модели отображают данные в реальном времени, современные цифровые позволяют архивировать информацию и проводить ее анализ. Для сравнения сигналов применяют устройства с несколькими информационными входами. В зависимости от решаемых задач, встречаются модификации в виде приставок к компьютеру или комбинированные с другой измерительной аппаратурой.

Краткая история

История осциллографа насчитывает уже 100 с лишним лет. В разное время над усовершенствованием прибора работали такие известные люди как Адре Блондель, Роберт Андреевич Колли, Уильям Крукс, Карл Браун, И. Ценнек, А. Венельт, Леонид Исаакович Мандельштам и многие другие.

Кстати, а вы знали, что первое подобие осциллографа создали в Российской Империи? Это сделал В 1885 году русский физик Роберт Колли. Прибор назывался осциллометр. Осциллографы того времени сильно отличались от тех, что используются сейчас!

Основные параметры

Программируемый термостат W1209

Для выбора осциллографа рекомендуется правильно оценивать следующие характеристики:

  • чтобы исключить искажения при работе с несколькими высокочастотными сигналами, следует приобрести двух,- или многолучевой прибор;
  • в разных моделях погрешность составляет 5-15%, поэтому следует учитывать ограниченную точность измерений;
  • цифровые аппараты оснащают цветными экранами, разнообразными устройствами для синхронизации, дополнительными сервисными режимами;
  • функциональность аналоговых приборов скромнее, но стоят они дешевле;
  • ограниченные возможности амплитудно-частотных преобразователей затрудняют качественную обработку цифровой электроникой высокочастотных сигналов;
  • режим застывшей картинки с функцией увеличения поможет изучить мельчайшие детали сложных изображений.

Перед детальным анализом нужно уточнить, для чего именно предназначается прибор. Далее оценивают соответствие по следующим параметрам:

  • полоса пропускания;
  • частотный диапазон;
  • входное сопротивление;
  • допустимые значения амплитуды (переменной и постоянной составляющей);
  • погрешность измерений;
  • развязка между каналами;
  • объем внутренней памяти (цифровая техника).

Устройство и принцип действия прибора

Объясним устройство аналогового осциллографа просто, «для чайников». Прибор состоит из следующих элементов:

  • лучевая трубка;
  • блок питания;
  • канал вертикального / горизонтального отклонения;
  • канал модуляции луча;
  • устройство синхронизации и запуска развёртки.

Для управления параметрами сигнала и его отображения на экране есть регуляторы. У старых моделей экрана не было. Изображение фиксировалось на фотоленте.

Горизонтальная развёртка

Канал горизонтального подключения подключается к генератору развёртки. Он вырабатывает сигналы горизонтального отклонения лучей. Генератор Х (развёртки) работает в нескольких режимах.

  • Внутренняя синхронизация. Автоколебания с выставленной вручную частотой;
  • Внешняя синхронизация. От входных импульсов запускается генератор. Она включает в себя три режима: запуск от внешнего источника, по фронту импульсов или их спаду;
  • Синхронизация от питания (50Гц);
  • Ручной запуск. Так же называется однократным.

При исследовании стабильных сигналов удобно использовать режим внутренней синхронизации. В этих условиях изображение будет неподвижным. Чтобы увеличить стабильность можно организовать захват частоты на входе генератором развёртки.

Также этот режим называется ждущим. В нём запуск генератора происходит в тот момент, когда входной сигнал достигает определённого уровня. Или от внешнего источника. В режиме внешней синхронизации удобно исследовать не очень стабильные колебания, особенно если есть синхронизация между генератором развёртки и схемы от одного источника колебания. Прибор поддаётся регулировка, чтобы точно установить уровень, на котором генератор запускается.

Если синхронизация происходит от сети питания, то запуск развёртки будет синхронизирован с колебанием напряжения сети. Так что синхронизация от сети так же предусмотрена, чтобы наблюдать за помехами и искажениями. Ручная синхронизация подходит для исследования различных непериодических сигналов. К примеру, в логических схемах.

Вертикальная развёртка

Канал вертикального отклонения называется каналом Y, по аналогии с горизонтальной осью Y в системе координат. В нём входной исследуемый сигнал обрабатывается. Сигнал этот поступает в канал через аттенюатор. Аттенюатор – это ступенчатый регулятор уровня. Это делается для того, чтобы амплитуда параметра, который измеряют, не превышала допустимый уровень. А картинка тем временем не выходила за пределы экрана. Канал Y может передать сигнал на генератор горизонтального отклонения для его синхронизации.

Обычно канал вертикального отклонения работает в открытом режиме. Это значит, что само отклонения луча будет чётко совпадать с уровнем сигнала. Когда есть постоянная составляющая, то это мешает наблюдению за колебаниями. Происходит это из-за того, что картинка будет слишком смещена к границам экрана сверху или снизу. Так же она может вообще выходить за границы. Эту постоянную составляющую можно убрать, если включить режим закрытого входа. Или настроить аттенюатор под размеры экрана.

Про закрытый вход. Сигнал поступает через конденсатор, не создающий препятствия для переменного напряжения. Тогда оба канала обладают оконченными усилителями, формирующими нужные уровни сигналов, которые подаются на отклоняющие пластины.

Базовые измерительные приборы. Осциллограф: «рисующий сигнал»

«ГРАФО» ЗНАЧИТ «РИСУЮ»

ПРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ ФОРМЫ 3 РАДИОТЕХНИЧЕСКИХ СИГНАЛОВ

Мы живем в технологической цивилизации. Люди создали вторую природу – мир механизмов, сложнейших машин, радиоэлектронных устройств, которые используют практически весь известный диапазон электромагнитных излучений. Но человеческие органы зрения способны воспринимать только видимый свет. Мы не можем увидеть электрический ток, радиоволны, не можем без помощи приборов измерить даже простейшие параметры электрического сигнала. При работе со сложной радиоэлектронной аппаратурой часто возникает задача воспроизведения формы сигналов, т.е. зависимости мгновенного значения напряжения от времени. Её решение позволяет сразу оценить многие параметры колебаний, например, искажение их формы, наличие помех и многое другое. Воспроизведение формы сигналов играет важную роль при проверке и настройке аудио- и видеотрактов аппаратуры.

Для визуализации сигналов используются приборы, которые называются осциллографами, однако определение формы сигналов возможно не только во временной области, но и в частотной. Задачу воспроизведения сигнала в частотной области решают анализаторы спектра и измерители амплитудно-частотных характеристик, о которых будет рассказано в заключительной части этой брошюры.

ЭЛЕКТРОННЫЕ ОСЦИЛЛОГРАФЫ

В настоящее время одним из наиболее распространенных радиоизмерительных приборов является электронный осциллограф, и это не удивительно, ведь он обладает исключительной наглядностью представления исследуемых сигналов, удобством и универсальностью. Осциллограф позволяет рассмотреть любые электрические процессы, даже если сигнал появляется в случайный момент времени и длится миллиардные доли секунды. По изображению на экране осциллографа можно определить амплитуду рассматриваемого сигнала и длительность любого его участка. С помощью осциллографа можно измерять частоту, фазу и коэффициент модуляции сигнала, а также производить другие комплексные измерения.

Осциллографические измерения отличаются широким диапазоном исследуемых частот (от постоянного тока до СВЧ), возможностью запоминания и последующего воспроизведения сигналов, высокой чувствительностью и возможностью отделения сигналов от помех.

КЛАССИФИКАЦИЯ ОСЦИЛЛОГРАФОВ

По назначению и принципу действия

осциллографы разделяются на: Универсальные, скоростные, стробоскопические, запоминающие и специальные.

По числу одновременно наблюдаемых сигналов

их делят на одно-, двух- и многоканальные осциллографы.

По отображающему устройству

осциллографы делят на электронно-лучевые и матричные (газоразрядные, плазменные, жидкокристаллические и т.п.).

По принципу обработки информации

осциллографы делят на аналоговые и цифровые.

Универсальные осциллографы – приборы общего назначения, предназначенные для наблюдения гармонических и импульсных сигналов. С их помощью можно исследовать одиночные импульсы и пачки импульсов, получать одновременно изображение двух сигналов на одной развертке, детально исследовать любую часть сложного сигнала и многое другое. Они позволяют исследовать сигналы с длительностью от единиц наносекунд до нескольких секунд в диапазоне амплитуд от долей милливольт до сотен вольт, а также измерять параметры таких сигналов с приемлемой для практики погрешностью 5-7%. Полоса пропускания универсальных осциллографов составляет 300… 500 МГц и более.

Универсальные осциллографы разделяют на две группы: приборы моноблочной конструкции и приборы со сменными блоками.

Моноблочные осциллографы общего назначения – наиболее распространенный тип осциллографов.

Осциллографы со сменными блоками отличаются многофункциональностью, достигаемой за счет применения сменных блоков различного назначения.

Скоростные и стробоскопические осциллографы

применяются для исследования переходных процессов в быстродействующих полупроводниковых приборах, интегральных микросхемах и переключающих элементах.

Запоминающие осциллографы

могут сохранять и воспроизводить изображение сигнала в течение длительного времени после исчезновения его на входе. Основное назначение этих приборов – исследование однократных и редко повторяющихся процессов.

Осциллографы специального назначения предназначены для исследования телевизионных сигналов, они позволяют не только исследовать любую часть телевизионного сигнала с высокой временной стабильностью, но и передавать его в цифровом виде на компьютер для дальнейшей обработки.

ОСНОВНЫЕ БЛОКИ УНИВЕРСАЛЬНОГО ОСЦИЛЛОГРАФА


Рис. 1. Осциллограф С1-107 Общий вид

На рис. 1 показан внешний вид универсального аналогового осциллографа С1-107, а на рис. 2 показана его функциональная схема. Несмотря на разнообразие универсальных осциллографов, их функциональные схемы в целом одинаковы.

Осциллограф состоит из:

  • Электронно-лучевой трубки (ЭЛТ);
  • Канала вертикального отклонения Y
    ;
  • Канала горизонтального отклонения X
    ;
  • Канала Z
    ;
  • Мультиметра;
  • Блока питания.

Канал вертикального отклонения

усиливает или ослабляет исследуемый сигнал до значения, удобного для изучения на индикаторе. Положение ручки управления
V/дел
устанавливает усиление канала
Y
. Канал состоит из входного делителя, в который входят разъемы, аттенюаторы и переключатели; усилителя, усиливающего сигнал и расщепляющего полярность сигнала для симметричной подачи на пластины ЭЛТ, линии задержки и выходного усилителя. Линия задержки задерживает сигнал на время, необходимое для срабатывания канала горизонтального отклонения, т. е. генератора развертки и усилителя по оси
X
, чтобы движение луча по горизонтали началось раньше, чем усиленный сигнал поступит на пластины ЭЛТ. Это позволяет наблюдать передний фронт сигнала.


Рис. 2. Функциональная схема осциллографа С1-107

Канал горизонтального отклонения

формирует синхронное с исследуемым сигналом пилообразное напряжение для создания оси времени на экране ЭЛТ. Формирователь импульсов запуска вырабатывает короткие запускающие импульсы. Генератор развертки создает линейно-нарастающее напряжение. Скорость нарастания регулируется ручкой
Время/дел
. Это напряжение поступает на выходной усилитель
X
) который расщепляет полярность сигнала и усиливает напряжение развертки до значения, необходимого для требуемого масштаба изображения. Положительно нарастающее пилообразное напряжение подается на правую отклоняющую пластину ЭЛТ, а отрицательное – на левую. В результате луч по экрану трубки проходит слева направо установленное количество делений шкалы за единицу времени. При переключении синхронизатора в режим непрерывных колебаний обеспечивается автоколебательный режим работы развертки.

Усилитель внутренней синхронизации усиливает часть исследуемого сигнала и передает его для запуска развертки.

Осциллографы имеют калиброванные развертки и снабжаются для удобства отсчета сетчатыми шкалами, которые наносятся с внутренней стороны экрана трубки. Это избавляет оператора от ошибки из-за явлений параллакса.

В состав осциллографа входят также калибраторы амплитуды и времени, предназначенные для калибровки масштабов каналов вертикального и горизонтального отклонения, и источники питания со стабилизацией.

Многие современные осциллографы имеют встроенные мультиметры, которые позволяют с высокой точностью измерять значения постоянных и переменных напряжений, токов и сопротивлений. Мультиметр осциллографа С1-107 работает следующим образом. Измеряемые переменные токи и сопротивления преобразуются в переменное напряжение. Затем переменные напряжения преобразуются в постоянное напряжение, пропорциональное величине измеряемых параметров. Затем аналоговый сигнал преобразуется в цифровой с помощью АЦП и поступает в знакогенератор, предназначенный для формирования и написания знаков на экране ЭЛТ.

Осциллограф может работать либо в режиме осциллографирования, либо в режиме мультиметра. Совмещение этих режимов в данной модели невозможно.

ЦИФРОВЫЕ ОСЦИЛЛОГРАФЫ


Рис. 3. Цифровой осциллограф

Цифровой осциллограф позволяет одновременно наблюдать на экране сигнал и получать численные значения ряда его параметров с большей точностью, чем это возможно путем считывания количественных величин непосредственно с экрана обычного осциллографа. Это возможно потому, что параметры сигнала измеряются непосредственно на входе цифрового осциллографа, тогда как сигнал, прошедший через канал вертикального отклонения, может быть измерен с существенными ошибками. Эти ошибки могут достигать 10%.

Параметрами, измеряемыми современными цифровыми осциллографами, являются: амплитуда сигнала, его частота или длительность. На экране осциллографа, помимо собственно осциллограмм, отображается состояние органов управления (чувствительность, длительность развертки и т. п.). Предусмотрен вывод информации с осциллографа на печать и другие функциональные возможности. Однако этим не ограничиваются возможности цифровых осциллографов. Сопряжение цифровых осциллографов с микропроцессорами позволяет определять действующее значение напряжения сигнала и даже вычислять и отображать на экране преобразования Фурье для любого вида сигнала.

В устройствах цифровых осциллографов осуществляется полная цифровая обработка сигнала, поэтому в них, как правило, используется отображение на новейших индикаторных панелях.

В современных цифровых осциллографах автоматически устанавливаются оптимальные размеры изображения на экране трубки.

Функциональная схема цифрового осциллографа (рис. 4) содержит аттенюатор входного сигнала; усилители вертикального и горизонтального отклонения; измерители амплитуды и временных интервалов; интерфейсы сигнала и измерителей; микропроцессорный контроллер; генератор развертки; схему синхронизации и электронно-лучевую трубку.

Цифровые осциллографы обеспечивают автоматическую установку размеров изображения, автоматическую синхронизацию, разностные измерения между двумя метками, автоматическое измерение размаха, максимума и минимума амплитуды сигналов, периода, длительности, паузы, фронта и спада импульсов и пр.

Амплитудные и временные параметры исследуемого сигнала определяются с помощью встроенных в прибор измерителей. На основании данных измерений микропроцессорный контроллер производит вычисление требуемых коэффициентов отклонения и развертки и через интерфейс устанавливает эти коэффициенты в аппаратной части каналов вертикального и горизонтального отклонения. Это обеспечивает неизменные размеры изображения по вертикали и горизонтали, а также автоматическую синхронизацию сигнала.

Микропроцессорный контроллер также опрашивает положение органов управления на передней панели, и данные опроса после кодирования снова поступают в контроллер, который через интерфейс включает соответствующий режим автоматического измерения. Результаты измерений индицируются на экране трубки, причем амплитудные и временные параметры сигнала отображаются одновременно.


Рис. 4. Функциональная схема цифрового осциллографа

ПОРТАТИВНЫЕ МУЛЬТИМЕТРЫ-ОСЦИЛЛОГРАФЫ

В последнее время на рынке контрольно-измерительных приборов появилась новая и довольно оригинальная их разновидность: портативные цифровые мультиметры-осциллографы.

Эти малогабаритные и сравнительно недорогие приборы сочетают в себе функцию мультиметра, позволяющего измерять параметры напряжений, токов и сопротивлений, измерять емкости, индуктивности, параметры транзисторов и диодов, и простого осциллографа.

Наиболее распространены на российском рынке мультиметры-осциллографы фирм BEETECH (рис. 5), Velleman, METEX и Tektronix.

Рис. 5. Мультиметр-осциллограф BEETECH 70


Рис. 6. Портативный персональный осциллограф Velleman HPS10

Осциллограф Velleman HPS10 (рис. 6) не обладает функциями мультиметра, но зато это полноценный осциллограф с полосой пропускания 2 МГц и частотой квантования АЦП 10 МГЦ. Прибор имеет высокую чувствительность – от 5 мВ на 12 делений, а диапазон разверток находится в пределах от 200 нс до 1 часа (!) на 32 деления. Прибор может работать от сети через адаптер или от встроенных аккумуляторов, которых хватает на 20 часов работы. Прибор имеет ЖК-дисплей с разрешением 128 х 64 точки. Такой осциллограф позволяет просматривать даже телевизионный сигнал (правда, довольно грубо).

Портативные осциллографы часто поставляются в пластиковых чемоданчиках, в которых кроме самого прибора находятся переходники, щупы, адаптер питания и руководство по эксплуатации.

В большинстве случаев такого прибора вполне достаточно для проведения измерений сигналов при выполнении инсталляций.

РАБОТА С ОСЦИЛЛОГРАФОМ

Современные осциллографы предоставляют богатый набор инструментов для исследования формы сигналов и измерения их параметров.

Проще всего работать с низкочастотными сигналами, например, с сигналами звукового диапазона частот (рис. 7), исследование высокочастотных сигналов и сигналов сложной формы (рис. 8) требует дополнительных навыков.


Рис. 7. Сигнал звуковой частоты на экране цифрового осциллографа

Специализированные телевизионные осциллографы имеют схемы развертки, позволяющие выделить из телевизионного сигнала любой кадр и любую строку, а вот при работе с осциллографами общего назначения нужно выбирать, какими импульсами синхронизации запускать развертку – кадровыми или строчными. Некоторые осциллографы имеют на переключателе режима развертки позиции TV-V и TV-H (запуск кадровыми и строчными синхроимпульсами соответственно). Если таких режимов нет, то для просмотра одного кадра нужно установить скорость развертки в положение 2 мс/дел, а для просмотра одной строки – 10 мкс/дел. Обычно запуск развертки телевизионным сигналом осуществляется при отрицательной полярности импульсов запуска.

При работе с осциллографом важно правильно выбрать режим запуска синхронизации развертки. Чаще всего выбирают режим запуска исследуемым сигналом, т.н. внутреннюю синхронизацию (в двухканальных осциллографах эти режимы называются CH1 и CH2). Если исследуемая аппаратура использует внешние сигналы синхронизации, то логично использовать их для запуска развертки осциллографа. Этот вид синхронизации называется внешней и обычно обозначается EXT. Если исследуются электротехнические устройства, то полезной может оказаться синхронизация от сети – LINE.

Удобный масштаб изображения устанавливается переключателем V/дел.


Рис. 8. Телевизионные сигналы на экране цифрового осциллографа

Двухканальный осциллограф позволяет, как показано на рис. 8, одновременно просматривать различные компоненты телевизионного сигнала.


Рис. 9. Гасящий импульс


Рис. 10. Сигнал цветовой синхронизации

Меняя скорость развертки и значение V/дел можно исследовать общий вид сложного сигнала или «растянуть» отдельный его фрагмент. На рис. 9 показана одна строка телевизионного сигнала, а на рис. 10 – «растянутый» сигнал цветовой синхронизации.


Рис. 11. Измерение длительности

Очень часто при работе с осциллографами возникает необходимость в измерении параметров исследуемых сигналов. Аналоговые осциллографы менее удобны. Для того чтобы определить амплитуду или длительность сигнала, нужно подсчитать, сколько клеток по вертикали или по горизонтали занимает исследуемый сигнал, а затем умножить количество клеток на цену деления переключателя В/дел или Время/дел. Например, если сигнал по вертикали занимает 3,5 клетки, а переключатель В/дел установлен в положение 100 мВ, то амплитуда сигнала составит 350 мВ. Точность такого метода невелика.

Цифровые осциллографы гораздо удобнее. Например, для того чтобы измерить амплитуду импульса на осциллограмме рис. 9, нужно включить режим измерения напряжений, затем подвести курсор 1 к вершине импульса, а курсор 2 – к его основанию. Осциллограф автоматически измерит напряжение, и в правой части экрана появится надпись: Delta – 296 mV.

Аналогично производится измерение длительностей, только в этом режиме курсоры имеют вид вертикальных линий (рис. 11).

На периферии экранов цифровых осциллографов (рис. 7-11) выводится разнообразная служебная информация, позволяющая, не глядя на органы управления прибором, определить, в каком положении находится переключатели В/дел, Время/дел, режимы синхронизации, ознакомиться с отсчетами напряжений, длительностей и пр.

Интерфейсы современных цифровых осциллографов у разных производителей различаются, поэтому перед началом работы следует внимательно изучить Руководство пользователя.

СОВЕТЫ ПО РАБОТЕ С ОСЦИЛЛОГРАФОМ

  • Основным режимом измерений должен быть режим • с закрытым входом (см. рис. 2). Это защитит цепи прибора от повреждения неожиданно высоким напряжением;
  • Перед началом измерений поставьте переключатель В/дел на самый «грубый» предел, последовательно увеличивая усиление, добейтесь нужного размера изображения на экране;
  • Пользуйтесь штатными щупами и пробниками осциллографа, это повышает точность измерений и снижает риск повреждения прибора;
  • Если изображение на экране осциллографа имеет достаточную амплитуду, но рассмотреть его не удается, скорее всего, неверно выбрано положение переключателя Время/дел. Меняя его положение, добейтесь наиболее устойчивого изображения, затем выберите элемент сигнала, по которому будет осуществляться синхронизация с помощью ручки Амплитуда синхронизации. При необходимости измените полярность сигнала синхронизации и вид синхронизации.

КАК ВЫБРАТЬ ОСЦИЛЛОГРАФ?

Осциллограф – это сложный и дорогостоящий прибор, на рынке присутствуют сотни моделей – от самых простых и бюджетных до чрезвычайно дорогих, специализированных и прецизионных приборов. Как сделать правильный выбор и приобрести именно тот осциллограф, который окажется вам полезным при настройке аудио- видеооборудования? В этой главе мы дадим вам несколько советов.

Прежде чем приступить к выбору осциллографа, нужно четко понять, какие задачи предстоит решать с его помощью. При этом необходимо помнить и о перспективах, поскольку осциллограф приобретается не на один год и не для выполнения одной-единственной работы.

1. Какой осциллограф выбрать: аналоговый или цифровой?

Аналоговые осциллографы дают возможность непрерывно наблюдать аналоговый сигнал в реальном масштабе времени, имеют простые, понятные органы управления и невысокую стоимость. Вместе с тем аналоговые осциллографы имеют низкую точность по сравнению с цифровыми, на малых скоростях развертки для них характерно мерцание.

Цифровые осциллографы позволяют «замораживать» картинку на экране, имеют высокую точность измерений, яркое, хорошо сфокусированное изображение сигнала на любой скорости развертки, однако они стоят значительно дороже, сложны в управлении и в отдельных случаях неправильно отображают сигнал.

Неоспоримыми преимуществами цифровых осциллографов также являются возможности измерения напряжений и длительностей сигнала «на лету», а также возможность подключения к внешним регистрирующим устройствам, наличие средств автодиагностики и автокалибровки.

2. Определите необходимую полосу пропускания

Одной из основных характеристик осциллографа, влияющих на выбор прибора, является полоса пропускания, которая зависит от того, какие сигналы и с какой точностью необходимо измерять.

Имейте в виду, что цифровые осциллографы имеют два принципиально разных значения полосы пропускания: полоса для повторяющихся сигналов (или аналоговая) и полоса для однократных сигналов. Большинство реальных сигналов содержит множество высокочастотных гармоник, поэтому широкополосные осциллографы отображают такие сигналы более точно.

При проведении точных измерений временных характеристик величина полосы пропускания осциллографа должна как минимум в три раза превышать значение первой гармоники наиболее высокочастотного из измеряемых сигналов. А для точных измерений амплитуды желательно, чтобы полоса пропускания осциллографа была в десять раз больше, чем частота измеряемого сигнала.

Полоса пропускания аналоговых осциллографов редко превышает 400 МГц., в то время как цифровые осциллографы могут иметь полосу до 50 ГГц.

3. Определите необходимое количество каналов

Наибольшей популярностью пользуются двухканальные осциллографы, однако в последнее время все большее распространение получают четырехканальные модели, поскольку удельная стоимость канала у них меньше, чем у двухканальных моделей, а возможности существенно шире. Однако управлять таким прибором может быть непросто.

Некоторые осциллографы имеют 2 полных канала и 2 дополнительных канала с ограниченным диапазоном чувствительности. В этом случае в осциллографе имеются только 2 аналого-цифровых преобразователя (АЦП), входы которых коммутируются на 4 канала.

4. Определите необходимую частоту дискретизации (для цифровых осциллографов)

Для задач, связанных с изменением однократных или переходных процессов, частота дискретизации имеет первостепенное значение. Параметр «частота дискретизации» обозначает скорость, с которой осциллограф может оцифровывать входной сигнал. Более высокая частота дискретизации определяет более широкую полосу пропускания для однократных сигналов и дает большее временное разрешение.

Большинство производителей цифровых осциллографов используют отношение между частотой дискретизации и полосой для однократных сигналов на уровне 4:1 (если есть средства интерполяции) или 10:1 (без средств встроенной интерполяции) для предотвращения искажения сигнала.

5. Определите необходимый объем памяти (для цифровых осциллографов)

Требуемый объем памяти зависит от общей длительности сигнала, параметры которого необходимо исследовать, и желаемого разрешения по времени. Если исследуются сигналы в большом промежутке времени с большим разрешением, то потребуется большая память. Большой объем памяти позволит использовать более высокую частоту дискретизации на медленных скоростях развертки, уменьшая вероятность получения искаженного сигнала и обеспечивая получение большего объема информации о сигнале.

Следует иметь в виду, что увеличение объема памяти может привести к сильному замедлению работы осциллографа, поскольку ему потребуется обрабатывать больший массив данных.

6. Определите требуемые возможности по запуску прибора

Для большинства пользователей осциллографов общего назначения просто запуска по фронту (перепаду) сигнала часто бывает недостаточно. Для решения многих задач бывает также полезно иметь дополнительные возможности по запуску, позволяющие обнаружить события, которые иначе очень трудно отследить. Возможность запуска по телевизионному сигналу позволяет настроить прибор на определенное поле или строку.

7. Определите требуемые возможности по обнаружению импульсных помех

В принципе, любой аналоговый осциллограф всегда способен отобразить импульсные помехи и джиттер. Вопрос состоит лишь в том, достаточно ли скорости нарастания в канале вертикального отклонения (в конечном счете – полосы пропускания) и яркости осциллограммы для исследования этих процессов. Осциллографы с возможностями запуска по импульсной помехе позволяют выделять трудно обнаруживаемые импульсные помехи и производить по ним запуск осциллографа. Эта дополнительная возможность очень полезна при поиске причины ненормальной работы исследуемой схемы.

8. Дополнительные возможности

Многие современные цифровые осциллографы могут выполнять функцию анализатора спектра, однако в области звуковых частот она реализована, как правило, плохо.

Большинство цифровых и аналого-цифровых осциллографов могут взаимодействовать с персональным компьютером, принтером или плоттером через интерфейсы GPIB, RS-232 или Centronics. В последние годы все чаще используется интерфейс USB.

Многие современные цифровые осциллографы оснащены дисководами или разъемами для флэш-памяти, которые позволяют сохранять изображения экрана с осциллограммами (в различных форматах) и результаты измерений в числовом виде, а затем быстро перенести их в компьютер для дальнейшей обработки. Эти возможности позволяют сэкономить время, когда, например, требуется вставить изображение с экрана осциллографа в отчет или скопировать данные сигналов электронную таблицу.

9. Оцените удобство работы с прибором

Попробуйте поработать с прибором, оцените, насколько он прост в работе, возможно ли интуитивное управление прибором в то время, когда основное внимание уделяется исследуемой схеме? Оцените скорость реакции экрана, а также время, которое затрачивает осциллограф на выполнение команд. Есть ли у прибора память команд?

ИЗМЕРЕНИЕ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК

При контроле технического состояния радиоэлектронной аппаратуры важное место занимает измерение амплитудно-частотных характеристик различных ее узлов.

При снятии амплитудно-частотных характеристик (АЧХ) приборов или их узлов удобно представлять их в виде четырехполюсника. Тогда АЧХ – это зависимость модуля (абсолютного значения) коэффициента передачи четырехполюсника от частоты сигнала.

Коэффициент передачи – это отношение мощности или напряжения на выходе четырехполюсника к мощности или напряжению на его входе.

Если выходное напряжение меньше входного, при прохождении сигнала через четырехполюсник происходит ослабление сигнала. Такой четырехполюсник называется пассивным (пример – пассивный электрический фильтр), а коэффициент передачи является коэффициентом ослабления.

При выходном напряжении больше входного происходит усиление сигнала, и коэффициент передачи является коэффициентом усиления. Четырехполюсник в этом случае называется активным (пример – усилитель сигналов звуковых частот).

Значение коэффициента передачи четырехполюсника и значение частоты сигнала, на которой проводилось его определение, образуют точку в системе координат, а совокупность таких точек образуют кривую АЧХ в требуемом диапазоне частот. На рис. 12 в качестве примера приведена АЧХ антенного усилителя, работающего в диапазоне телевизионного вещания.


Рис. 12. АЧХ антенного усилителя

МЕТОДЫ ИЗМЕРЕНИЯ ПАРАМЕТРОВ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК

Измерение параметров амплитудно-частотных характеристик четырехполюсников проводится с помощью генератора качающейся частоты (ГКЧ) и индикаторного устройства.

Частота генератора плавно изменяется по определенному закону в требуемой полосе частот, а на индикаторе осциллографического типа воспроизводится кривая АЧХ.

Структурная схема простейшего автоматического измерителя АЧХ приведена на рис. 13.


Рис. 13. Структурная схема автоматического измерителя АЧХ

Сигнал с ГКЧ подается на вход исследуемого четырехполюсника. Из-за наличия у этого четырехполюсника зависимости модуля коэффициента передачи от частоты сигнала на его выходе сигнал модулирован по амплитуде. Огибающая этого сигнала, выделенная на детекторной головке, входящей в состав индикаторного устройства, управляет отклонением луча индикатора по вертикали, рисуя кривую АЧХ.

Управление частотой ГКЧ и отклонением луча индикатора по горизонтали осуществляется блоком модулирующего напряжения, одновременно синхронизирующим работу этих двух узлов.

В измерителе АЧХ, построенном по такой структурной схеме, горизонтальное положение луча на экране индикатора соответствует частоте на входе исследуемого четырехполюсника, а вертикальное – значению модуля коэффициента передачи на этой частоте. Таким образом, на экране автоматически вычерчивается кривая АЧХ исследуемого четырехполюсника.

Блок автоматической регулировки амплитуды служит для обеспечения постоянства уровня выходного сигнала во всем диапазоне качания частоты.

Часть сигнала с ГКЧ подается на блок частотных меток, в котором вырабатывается целый спектр калибровочных частот в пределах рабочего диапазона ГКЧ. В момент совпадения частоты ГКЧ с любой из этих частот образуются сигналы, которые подаются в индикаторный блок и наблюдаются на экране в виде амплитудных меток.

Для калиброванного изменения выходного напряжения ГКЧ служит аттенюатор.

В зависимости от ширины полосы качания приборы подразделяются на узкополосные, среднеполосные, широкополосные и комбинированные. Узкополосные измерители АЧХ обеспечивают полосу качания, составляющую доли и единицы процента центральной частоты, а широкополосные – полосу качания, составляющую полный диапазон частот прибора. Комбинированные совмещают в себе функции как узкополосных, так и широкополосных приборов.

Измерители АЧХ могут иметь линейный и логарифмический масштаб по амплитуде.

Наиболее широкое применение находят универсальные измерители АЧХ, позволяющие решать широкий круг измерительных задач. На рис. 14 показан измеритель АЧХ Х1-50 отечественного производства, который применяется при настройке и испытании телевизионной техники. Наличие в его составе встроенного генератора сетчатого поля позволяет осуществлять проверку линейности телевизионного изображения, а с помощью внешнего измерительного моста – проверку согласования антенных выводов.


Рис. 14. Измеритель АЧХ Х1-50

СОВЕТЫ ПО РАБОТЕ С ИЗМЕРИТЕЛЯМИ АЧХ

  • Важную роль играет согласование выхода прибора с нагрузочным сопротивлением. Если на частотах до десятков мегагерц рассогласование приводит лишь к уменьшению уровня выходного сигнала, то на более высоких частотах – к увеличению неравномерности выходного сигнала в полосе качания. Согласование входа исследуемого устройства возможно путем подключения на конце кабеля, соединяющего их с выходом измерителя АЧХ, сопротивления, близкого к волновому. Если исследуемый четырехполюсник имеет низкоомный вход с волновым сопротивлением, отличным от выходного сопротивления измерителя АЧХ, то его необходимо соединять с прибором через согласующее устройство.
  • При низкоомном выходе исследуемого устройства, например фильтра, телевизионного антенного усилителя, коаксиальной линии передачи, его следует подключать к входу индикаторного устройства через согласованную детекторную головку, а при отличии выходного сопротивления четырехполюсника от сопротивления нагрузки детекторной головки между ними необходимо устанавливать согласующее устройство.
  • При исследовании АЧХ усилителей возможны искажения, вызванные их перегрузкой, в результате чего вершина кривой АЧХ будет выглядеть более плоской, чем на самом деле. В этом случае на вход усилителя нужно подавать сигнал с минимальным уровнем.
  • При настройке многокаскадных устройств, например усилителей промежуточной частоты, видеоусилителей, когда необходимо просмотреть АЧХ каждого каскада в отдельности, используйте высокоомную детекторную головку из комплекта прибора.
  • Если ваш измеритель АЧХ имеет двухканальный индикатор, можно настраивать АЧХ устройств, сравнивая их с эталонными. Для этого сигнал с выхода измерителя АЧХ подается одновременно на входы настраиваемого и эталонного устройств, а их выходы подключаются к отдельным каналам индикатора, усиление которых устанавливается одинаковым. Изменяя настройки устройства, добиваются совмещения его АЧХ с эталонной.
  • Наряду с исследованием АЧХ четырехполюсников измерители АЧХ позволяют решать ряд других измерительных задач, таких как измерение добротности колебательного контура, крутизны АЧХ, полных сопротивлений и КСВ нагрузки, исследование кабелей.

ИЗМЕРЕНИЕ ПАРАМЕТРОВ СПЕКТРА РАДИОСИГНАЛОВ

В практике работы со сложной современной радиоэлектронной аппаратурой визуальное наблюдение формы сигнала с помощью осциллографа иногда оказывается недостаточным. Более чувствительным и информативным является анализ спектральных характеристик сигналов

. Особенно важным является знание спектрального состава сигналов в настоящее время, когда остро встает проблема электромагнитной сов

Где применяется

Сферы применения:

  • всегда в научных, технических лабораториях, исследовательских отделениях на заводах, выпускающих электроприборы, например, производитель должен знать, как реагирует его продукция на помехи;
  • при углубленном анализе сборок, при наладке, ремонте электроустройств: от радио и сотовой связи до цепей двигателей машин. Для радиолюбителей прибор незаменим.

Аппарат выдает визуальную информацию о характеристиках сложных сигналов, показывает временные и амплитудные данные изменений, что важно для расчетов и определения, как будет себя вести изучаемый объект за периоды в конкретных условиях.

Что может измерить осциллограф

Осциллограф может измерить:

  • покажет по сигналам: форму;
  • частотность;
  • период;
  • амплитуду;
  • угол сдвига фазы;
  • сравнение сигналов;
  • АЧХ (ампл.-частотную х-ку);
  • через закон Ома по показателям прибора исчисляют ток (при этом его преобразовывают в напряжение резисторами).
  • O-Scope — фактически это вольтметр, но отображающий изменения напряжения онлайн, им можно обозначить форму тока, подключив последовательно к обслуживаемой сети резистор (Rt, «t» — токовый, он же шунтирующий). Его число Ом подбирают намного меньшим, чем у цепи, чтобы отсутствовали влияния на схему. Далее, вычисляют по формуле и, зная величину Rt, можно найти ток.

    Какие они бывают?

    После того, как мы выяснили зачем нужен аналоговый и любой другой осциллограф, можно перейти к его классификации. Существует 6 основных типов измерительных приборов:

    1. Аналоговые. Считаются классическими моделями измерительных устройств. Аналоговый осциллограф — это прибор для измерения средних сигналов. Нижний предел частоты — 10 Гц. Цена такого оборудования намного ниже, чем цифрового, потому оно до сих пор популярно среди начинающих электронщиков. Главный плюс аналоговых моделей — наименьшее искажение наблюдаемого сигнала. В остальном они сильно проигрывают цифровой техники. Основные узлы устройства: a. делитель входного сигнала; b. схема синхронизации и отклонения горизонтальной плоскости; c. лучевая трубка; d. блок питания.
    2. Цифровые запоминающие. Устройства предлагают больше возможностей по проведению исследований и измерений, поэтому их цена намного выше, чем аналоговых моделей. Анализирующие способности — главное преимущество запоминающих приборов. Задав определенные настройки, можно заставить оборудование записывать данные в цифровом формате сразу после нормализации. Изображение сигнальных данных более устойчивое, а итоговый результат пользователь может отредактировать путем нанесения меток или масштабированием. Примеры цифровых запоминающих осциллографов: TBS1052B Tektronix, TBS1152B-EDU Tektronix, R&S RTC1000. Основные компоненты прибора: a. делитель входного сигнала; b. усилитель нормализации; c. АЦП-преобразователь; d. устройства вывода и ввода информации; e. запоминающее устройство.
    3. Цифровые люминофорные. Приборы этого типа работают на цифровом люминофоре и считаются самыми дорогими среди всех типов осциллографов. Они способны имитировать изменение интенсивности выводимых данных. Это особенность упрощает диагностику отклонений в импульсных блоках. Примеры люминофорных осциллографов: Tektronix MSO DPO2000B, Tektronix DPO70804C, DPO72304SX Tektronix.
    4. Цифровые стробоскопические. В этих моделях используется эффект последовательного сигнального стробирования. Используются они для анализа высокочастотных повторяющихся сигналов, частота которых превышает частоту дискретизации устройства. Они осуществляют выборку множества сигнальных точек за несколько последовательных периодов, а затем воссоздают исходную форму волны. Рабочая частота оборудования этого типа превышает 50 Гц. Одной из популярных моделей стробоскопических осциллографов является DSA8300 Tektronix. Отличительная особенность устройства — широкий выбор оптических, электрических модулей для испытаний.
    5. Портативные. Измерительные технологии быстро развиваются, поэтому появилось компактное оборудование для проведения исследований сигналов. Плюс таких устройств заключается в низком потреблении электроэнергии и небольших габаритах. Портативное оборудование часто используют в своей работе электронщики. Примеры малогабаритной измерительной техники: серия R&S RTH Scope Rider, серия R&S (HAMEG) HMO Compact.
    6. Комбинированные. В эти приборы встроены анализаторы спектра, поэтому они способны не только собирать информацию о поступающем сигнале, но и определить количество гармоник вместе с уровнем. Примеры комбинированного оборудования: MDO3024 Tektronix, MDO3104 Tektronix, MDO4054C Tektronix.

    Будет интересно➡ Понятие и способы измерения светового потока

    Осциллографы незаменимы при измерении временных и амплитудных параметров электрического сигнала. Современные модели устройств также способны проводить спектральный анализ.

    Виды

    У цифровых моделей есть функция записи и архивирования, что расширяет возможности. Для сопоставления результатов онлайн используют аппараты с несколькими каналами. Есть экземпляры, подключаемые к ПК и комбинации с другими измерительными девайсами.

    Выбор аналоговых моделей (кроме простых и учебных) подразумевает наличие познаний во множестве настроек, регулировка усложненная. С другой стороны, такие приборы дают углубленную практику.

    Цифровые модели — это рекомендованный выбор, на таком аппарате можно быстро освоить основы. Это вычислительные комплексы, с ними получение данных, интерпретация проще и намного быстрее. Есть также модели аналогово-цифровые.

    Как функционирует осциллограф

    Если смотреть на быстро пробегающие объекты, то увидим размытую линию. Но если периодически открывать «окошко», то будут выхватываться статичные кадры. Это принцип стробоскопа, так же, но в электронной форме работает Oscilloscope.

    Действие «окошка» синхронизуется (главное условие) со скоростью объектов (сигнала), поэтому при его открытии их место стабильно. В противном случае возникнет рассинхронизация.

    Аппарат визуализирует периодические изменения в реальном времени на табло синусоидой или линией другой формы (пила, меандр и прочее). Каждый будущий отрезок схожий с прошедшим, он «останавливается» и показывается (в 1 момент — 1 период).

    Что измеряет осциллограф

    На экране осциллографа отображается двухмерная картинка сигнала, который подали на измерительный вход. На экране есть две оси координат. Горизонтальная — ось времени, вертикальная — напряжение. Эти параметры и измеряют. А уже из них высчитывают остальные.

    На экране осциллографа отображаются сигналы, которые подаются на его входы. Это например, двухлучевой аналоговый осциллограф, который показывает форму сигнала на входе (синусоида) и выходе (прямоугольный) импульсного преобразователя напряжения

    Вот что можно измерить и отследить при помощи осциллографа:

    • Напряжение (амплитуду).
    • Временные параметры, по которым можно рассчитать частоту.
    • Отслеживать сдвиг фаз.
    • Видеть искажения, которые вносит элемент или участок цепи.
    • Определить постоянную и временную составляющие сигнала.
    • Увидеть наличие шума.
    • Рассчитать соотношение сигнал/шум.
    • Видеть/определить параметры импульсов.

    Сигнал, который показывает осциллограф, довольно информативен. Видны искажения, которые вносит та или иная деталь, можно отследить, как меняется форма/амплитуда/частота в каждой точке схемы, после каждой детали.

    Кроме наблюдения за формой сигнала, осциллограф можно использовать для определения целостности сопротивлений, конденсаторов, катушек индуктивности (см. видео ниже).

    Общие определения

    Электронно-лучевой осциллограф, или осциллоскоп (oscilloscope), отображает на своем экране график зависимости амплитуды сигнала от времени. Несмотря на сложный внешний вид, работа с прибором не вызывает существенных затруднений, также как с тензометром. Многочисленные элементы управления помогают настроить удобный для пользователя масштаб изображения.


    Осциллограмма

    Этот проверочный цикл работы форсунок двигателя внутреннего сгорания используют для ремонта электронных блоков и регулировки угла зажигания. Рисунок наглядно демонстрирует, для чего нужен осциллограф. С применением обычного мультиметра невозможно получить аналогичный результат, чтобы объективно оценить форму сложного сигнала.

    Назначение осциллографа определить несложно по перечню типовых задач:

    • измерение временных, амплитудных и частотных характеристик;
    • изучение сдвига фаз в разных участках цепей;
    • выявление искажений формы, постоянной и переменной составляющих сигнала.

    Как подключить импортный осциллограф

    Нужно внимательно ознакомиться с руководством пользователя, подготовить рабочее место для прибора, качественно его заземлить.

    Важно! Заземление гарантирует, что при работе на корпусе не будет опасного статического заряда, коснувшись которого рукой можно получить удар.

    Далее нужно определить точки для снятия сигнала, нулевую магистраль, посредством щупа произвести их коммутацию с аттенюатором (при неизвестных уровнях сигнала выставить максимальную амплитуду). Включить прибор, дать ему прогреться, выставить необходимые режимы и произвести замеры. Снять показания, замеры повторить несколько раз.

    Как работать с осциллографом

    Первоначально выставляются режим работы осциллографа (автоколебательный, ждущий или одиночный). Затем выбирается режим аттенюатора или устанавливается соответствующий делитель напряжения. Это касается аналоговых приборов. Цифровые на входе анализируют сигнал и понижает/повышает его до необходимого уровня. В них на входе стоит аналитический блок, который сам понижает или повышает входной сигнал до требуемого уровня.

    В комплекте с осциллографом идет измерительный шнур или шнуры. Их количество зависит от числа входных каналов конкретной модели. Если канал один, то и шнур один. Может быть два, три и до шестнадцати. Подключать надо столько, сколько собираетесь использовать.

    Шнуры для осциллографа трудно спутать с другими. Один конец — со щупом и ответвлением. Это «измерительная» сторона. С другой находится характерный круглый разъем. Эта часть подключается к измерительному входу.

    Провод, который идет в сторону от щупа — для подключения к «земле». Он часто бывает снабжен прищепкой или «крокодилом». Его подключать обязательно, вольтаж может быть разный и заземление необходимо.

    Измерительные шнуры для осциллографа

    Некоторые шнуры для осциллографа имеют на рукоятке переключатель, который работает как небольшой усилитель (на фото справа).

    После подключения измерительных шнуров включаем прибор в сеть. Затем, перед работой, переводим в рабочее положение тумблер/кнопку включения прибора. Можно считать что осциллограф готов к работе.

    Перед началом работы надо проверить осциллограф. Включаем его в сеть, устанавливаем измерительный шнур. К щупу прикасаемся пальцем, на экране появляется синусоида частотой 50 Гц — наводки от бытовой электросети.

    Если пальцем прикоснуться к измерительному щупу, на экране появится синусоидальной формы сигнал. Синусоида неидеальна, но если она есть и ее частота 50 Гц, это значит, что осциллограф исправен

    Затем берем земляной щуп и прикасаемся им к измерительному (палец продолжаем держать на острие щупа). Сигнал пропадает (отображается прямая). Это значит, что прибор исправен.

    Как уже говорили, напряжение на экране осциллографа отображается по вертикали. Весь экран разбит на квадраты. Цена деления по вертикали выставляется переключателем, который подписан «V/дел». Что и обозначает, Вольт на одно деление. Перед подачей сигнала выставляем луч точно по горизонтальной оси — это важно.

    Подаем сигнал и считаем, на сколько клеточек от нулевого уровня поднимается или опускается сигнал. Затем умножаем количество клеток на «цену деления», взятую с регулятора. В результате получаем напряжение сигнала. В случае с синусоидой или меандром (положительные и отрицательные прямоугольные импульсы) считается напряжение полуволны — верхней или нижней.

    Измерение напряжения осциллографом

    Чтобы было понятнее, разберем пример. На фото есть сигнал, полуволна которого понимается и опускается на три клеточки. Цена деления на регуляторе — 5 В. Имеем: 3 дел * 5 V/дел = 15 V. Получается, данный сигнал имеет напряжение 15 вольт.

    Если надо измерить постоянное напряжение, снова выставляем луч по горизонтали. Подаем напряжение и смотрим, на сколько клеток «подпрыгнул» или опустился луч. Дальше все точно так же: умножаем на цену деления и получаем значение постоянного напряжения.

    Будет интересно➡ Источник питания постоянного тока

    Частота определяется как 1/T, где Т — период сигнала. А период — это время, за которое сигнал проходит полный цикл. Для сигнала на экране это 5,7 клетки. Считаем от места пересечения с горизонтальной осью и до второй аналогичной точки.

    Как определить частоту сигнала по осциллографу

    Далее определяем частоту деления по переключателю развертки. Положение переключателя стоит на 50 миллисекунд. Берем количество делений и умножаем на количество клеток. Получаем 50 мс * 5,7 = 285 мс. Переводим в секунды. Для этого надо разделить на 1000. Получаем 0,285 сек. Считаем частоту: 1/0,285 = 3,5 Гц

    Виды развёрток

    В разных режимах работы осциллографа линейные (создаваемых пилообразным напряжением) развёртки могут различаться:

    • Однократная. Генератор запускается один раз, затем блокируется. Такая развёртка нужна для фиксирования неповторяющихся сигналов.
    • Ждущая. Запуск происходит сразу после сигнала. Нужна для наблюдения за редкими колебаниями.
    • Автоколебательная. Генератор периодически включается при отсутствии сигнала. Удобна для отображения частых периодических импульсов.

    Как проводятся измерения

    Продолжаем описывать, как пользоваться цифровым осциллографом или аналоговым

    Важно отметить, что у них у всех есть недостаток. Стоит упомянуть одну особенность – все измерения осуществляются визуально, поэтому имеется риск того, что погрешность окажется высокой

    Также следует учитывать тот факт, что напряжения развертки обладают крайне малой линейностью, что приводит к погрешности измерений сдвига фаз или частоты примерно на 5%. Чтобы минимизировать эти погрешности, требуется выполнить одно простое условие – график должен занимать примерно 90% площади экрана. Когда проводятся измерения частоты и напряжения (имеется временной интервал), следует регуляторы корректировки усиления сигнала на входе и скорости развертки выставить в крайние правые положения. Стоит заметить одну особенность: так как пользоваться цифровым осциллографом может даже новичок, приборы с электронно-лучевой трубкой потеряли актуальность.

    Как правильно пользоваться осциллографом

    После того, как стало понятны устройство и виды, нужно понять, как пользоваться осциллографом.

    Начать стоит с калибровки. Для этого предусмотрены выходы встроенного калибратора, в котором значения частоты и напряжения строго фиксированы. Изображение на экране подгоняют под норму, регулируя чувствительность и частоту. Следует помнить, что щупы у этого устройства имеют два выхода, один из которых подключается к массе – общей точке всей электросхемы.

    Далее на входном аттенюаторе нужно выставить уровень напряжения измеряемого сигнала. Если оно неизвестно, то устанавливается максимальное положение. Обычно – 100В на одно деление экрана. Переключениями аттенюатора нужно добиться, чтобы картинка заняла большую часть экрана.

    Следующий шаг – выставить нужный режим синхронизации и частоту задающего генератора. Значения длительности периода колебаний установлены на регуляторе частот. Например, переключатель установлен на 20 мс/дел. Это обозначает, что период колебаний, длящийся 20мс, уложится в одно деление на координатной сетке. Частота будет равна 50Гц.

    Регулируя уровень и синхронизацию, нужно добиться неподвижности изображения.

    Чтобы произвести измерения, нужно следовать алгоритму:

    1. Определить уровень сигнала. То есть посчитать, сколько делений по вертикали занимает изображение.
    2. Число, полученное в первом шаге, нужно умножить на значение аттенюатора.
    3. Определить длительность сигнала. То есть посчитать, сколько делений по горизонтали занимает изображение.
    4. Умножить число, полученное в третьем шаге, на значение регулятора длительности.
    5. Частоту нужно определить по формуле F=1/T, где F – это частота, а T – период колебания (наименьший промежуток времени, за который происходит колебание).

    Классификация

    Энергия конденсатора

    По виду используемой схемотехники (электронных компонентов) различают цифровые и аналоговые измерительные приборы. Простые модели показывают только динамическую картинку. Современные – оснащены функцией запоминания для обеспечения лучших условий при изучении сложных процессов. Некоторые электронные осциллографы способны выводить на экран до 14 и более сигналов одновременно. Для исследования оптических сигналов производители выпускают стробоскопические высокоскоростные модификации.

    Отдельно следует отметить специализированные приставки, которые подключаются через стандартный порт или коммуникационную плату к ноутбуку (стационарному компьютеру). Такое комбинированное оборудование можно перенастроить с применением специализированного программного обеспечения.


    Плагин vst обеспечивает удобство обработки волновых процессов в звуковом диапазоне

    Отличие аналогового осциллографа от цифрового

    Принципиальная разница между этими разновидностями заключается в габаритах, возможностях запоминания, а также в методах обработки. Например, аналоговые осциллографы транслируют сигнал в реальном времени, без возможности записи. Аналогово-цифровые модели позволяют увидеть динамику изменения времени или амплитуды.

    Полностью цифровые аналоги, соответственно, способны осуществлять цифровую обработку, оцифровывая синусоиду и передавая полученную информацию на дисплей. Следует учитывать то, что циклическая память не позволяет хранить большие массивы данных. Поэтому в случае если пользователю требуется записать сигналы длиной пять-десять минут, потребуется осциллограф с большой глубиной памяти (запоминающий).

    Также существуют цифровые осциллографы с режимом сегментированной памяти, позволяющие записывать только определенную информацию, форма которой задается пользователем через меню. Это позволяет исследовать однократные или редко повторяющиеся процессы.

    Измеряемые процессы

    По принципу работы приборы делят на:

    • Специальные. Имеют блоки для целевого использования (например, телевизионные осциллографы).
    • Стробоскопические. Чувствительные приборы для исследования кратковременных повторяющихся процессов.
    • Скоростные. Используют для фиксации процессов с высокой скоростью (с точностью до нано- и пикосекунд).
    • Запоминающие. Сохраняют полученное изображение. Обычно применяют для изучения редких однократных действий.
    • Универсальные. Исследуют разные процессы.

    Применение цифрового осциллографа

    Широкий диапазон развертки позволяет контролировать даже наносекундные интервалы, наблюдать сигналы в различных точках схемы и измерить время нарастания импульса, что имеет большую важность в работе с цифровой аппаратурой.

    Оборудование разных типов помогает осуществлять проверку, настройку и регулировку многообразной радиоэлектроники, электронной техники, ремонт бытовой техники и диагностику ТС. Такие устройства широко применяются в медицине, прикладных, лабораторных и научно-исследовательских сферах.

    Синхронизация с наблюдаемым сигналом

    Получить заданное неподвижное изображение на дисплее позволяет особая двигательная траектория луча на экране в процессе развёртывания. Он должен перемещаться по одной и той же кривой линии. Обеспечением этого процесса занимается схема синхронизации, дающая старт развёртке на одинаковом фронте и уровне исследуемых сигналов.

    В качестве примера допустимо рассмотрение ситуации исследования синусоидального сигнала при такой настройке схемы, что запуск развёртывания в нарастании синусоидов будет иметь значение ноль. В момент запускания узкий луч обрисует несколько схожих или одну единую волну, на что будет влиять настроенная заранее скорость. Отсутствие повторного запуска заставит дождаться очередного прохождения волны с нулевым значением при нарастающем фронте.

    Без синхронизации с изучаемым сигналом картинка на дисплее будет выглядеть нечёткой, размазанной. Это вызвано одновременным отображением различных участков исследуемого сигнала на экране. Базовые настройки, доступные каждому оператору: тип запуска и его уровень.

    Ошибки при выборе и работе с осциллографом

    Понимание, как пользоваться осциллографом, приходит только с практическим опытом работы, теоретических знаний недостаточно – нужно руками произвести все настройки, коммутацию и измерения. Цифровой прибор сильно облегчает процесс, но стоимость аппаратуры очень высока.

    Важно! Не стоит приобретать старый советский прибор, т.к. погрешности измерений не дадут достоверных данных, откалибровать его уже не получится.

    Обязательно необходимо соблюдать технику безопасности: напряжение на ЭЛТ, как на кинескопе телевизора, – убить не убьет, но покалечить может. Паспорт и руководство описывают, как работать с осциллографом, но здравый смысл никто не отменял: экспериментировать нужно осторожно.

    Дополнительные возможности и советы

    Осциллографы могут быть двулучевыми. Двулучевые осциллографы необходимы для построения изображений большего количества сигналов. Эти устройства имеют в своей комплектации специальную ЭЛТ с двумя лучами. Конструкция её состоит из стеклянной колбы, в которой есть две системы отклоняющихся пластин, независимые друг от друга.

    Один сигнал выбирают главным, по нему синхронизируют осциллограф и относительно главного сигнала наблюдают за остальными. Для увеличения входного диапазона используются входные делители 1:10 или 1:100, поднимающие верхнее допустимое значение до 10 или 100 раз. Это нужно учитывать в дальнейших расчётах, чтобы не допустить ошибки. Наличие входного делителя при этом увеличивает и входное сопротивление.

    Цифровые осциллографы не требуют подсчёта амплитуд и частот вручную. Эти значения выводятся на экран. Более того, изображение можно занести в память и распечатать.

    Когда нет дополнительных входов Y, для определения фазовых сдвигов нужен осциллограф с входом Х, у которого отключён внутренний генератор развёртки. Тогда, подавая колебания на эти входы, фазы и частоты можно сравнивать по «фигурам Лиссажу».


    Следующая

    РазноеЧто такое активная мощность?

    Специфика выбора товара

    Приобретая такую узкоспециализированную технику, следует учитывать ряд важных параметров. В первую очередь следует обратить внимание на следующие:

    • Полосу пропускания. В среднем полоса должна быть на 5 пунктов выше значения частоты исследуемого сигнала. Для использования простого усилителя звуковых частот и цифровой схемы достаточным параметром будет 25 МГц. Научные изыскания и профессиональные исследования потребуют использование устройства с минимальной полосой пропускания около 150 МГц.
    • Тип питания. В случае проведения работ вдали от сети или на выезде рекомендуется приобрести модель с аккумулятором. В любой другой ситуации целесообразно использовать аппаратуру, работающую от сети.
    • Частота дискретизации. Пункт влияет на качество разрешения изображений на экранах, количество выборок сигнала за секунду. Для более точного изображения потребуется увеличение числа точек сигнала. Частота важна и для измерения однократных и переходных процессов.
    • Число каналов. Каналы влияют на количество отображаемых на дисплее независимых сигналов. Обеспечивают возможность анализировать и сравнивать несколько графиков одновременно. Работа с простыми техническими приборами не требует более 3 каналов. Более продвинутая аппаратура должна быть оснащена логическим анализатором и 16 каналами.

    Вам это будет интересно Прибор для электрика: тестер напряжения

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]