Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять. Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной. Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).
Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.
В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии. Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю. Рассмотрим, возможно ли подобное, и насколько можно приблизиться к идеалу.
Активная и реактивная мощность
Активная мощность
Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.
Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность . Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).
Реактивная мощность
Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности. В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток диэлектрик (тонкая полимерная пленка или пропитанная маслом бумага).
Реактивная емкостная мощность
Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет. Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке. Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.
Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения. Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному). Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.
Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности.
Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.
Реактивная индуктивная мощность
Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.
Активная нагрузка
К устройствам с активной нагрузкой причисляются нагревательные приборы (утюги, электроплиты, лампы накаливания, электрические чайники). Подобные приборы вырабатывают тепло и свет. Они не содержат индуктивности и емкости. Активная нагрузка преобразовывает электроэнергию в свет и тепло.
Реактивная нагрузка содержит емкость и индуктивность. Данные параметры имеют качество собирать энергию, а потом отдавать ее в сеть. Примером может служить электродвигатель, электрическая мясорубка, бытовой инструмент (пылесос, кухонный комбайн). То есть, все устройства, которые содержат электродвигатели.
Компенсация по теории
Из приведенного графика вполне ясно, как добиться уменьшения паразитных токов вплоть до полного их устранения, по крайней мере, теоретически. Для этого следует параллельно с индуктивной нагрузкой включить конденсатор соответствующей величины емкости. Векторы при сложении дадут ноль, и останется только полезная активная составляющая.
Расчет производится по формуле:
- C = 1 / (2πFX), где X – полное реактивное сопротивление всех включенных в сеть устройств; F – частота напряжения питания (у нас – 50 Hz);
Вроде бы — чего проще? Перемножить «X» и число «пи» на 50 да поделить. Однако все несколько сложнее.
Треугольник мощностей
Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.
где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;
Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;
S – полная мощность используется для расчета электрических цепей.
Для расчета полной мощности применяем теорему Пифагора: S 2 =P 2 +Q 2 . Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.
Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.
А как на практике?
Формула несложна, но определить и рассчитать X не так-то просто. Для этого нужно взять все данные об устройствах, узнать их реактивное сопротивление, причем в векторном виде, и уже тогда… На самом деле, никто этим не занимается, кроме студентов на лабораторных работах.
Определить реактивную мощность можно и иначе, при помощи специального прибора — фазометра, указывающего косинус фи, или сравнив показания ваттметра, амперметра и вольтметра.
Осложняется дело тем, что в условиях реального производственного процесса величина нагрузки постоянно меняется, так как одни машины в процессе работы включаются, другие, напротив, отключаются от сети, как того требует технологический регламент. Соответственно, необходимы постоянные меры по отслеживанию ситуации. Во время ночных смен работает освещение, зимой в цехах может осуществляться нагрев воздуха, а летом — его охлаждение. Так или иначе, но компенсация реактивной мощности производится на основе теоретических расчетов с большой долей практических замеров cos φ.
Нелинейная нагрузка
Имеет особенность в том, что напряжение и ток не пропорциональны. К нелинейной нагрузке относятся телевизоры, музыкальные центры, настольные электронные часы, компьютеры и его компоненты. Сама нелинейность обусловлена тем, что данное электронное устройство использует импульсные блоки питания. Для подзарядки конденсатора, которые стоят в импульсном блоке питания, достаточно вершины синусоиды.
В остальное время энергию из сети конденсатор не потребляет. В этом случае ток имеет импульсное качество. К чему это все приводит? Это приводит к тому, что синусоида искажается. Но не все электронные устройства работают с искаженной синусоидой. Эта проблема решается за счет применения стабилизаторов двойного преобразования, где сетевое питание преобразуется в постоянное. Затем из постоянного преобразуется в переменное нужной формы и амплитуды.
Устройство компенсатора
Обычный компенсатор реактивной мощности представляет собой металлический шкаф стандартных размеров с панелью контроля и управления на лицевой панели, обычно открываемой. В нижней части его располагаются наборы конденсаторов (батареи). Такое расположение обусловлено простым соображением: электрические емкости довольно тяжелые, и вполне логично стремление сделать конструкцию более устойчивой. В верхней части, на уровне глаз оператора, находятся необходимые контрольные приборы, в том числе и фазоуказатель, при помощи которого можно судить о величине коэффициента мощности. Имеется также различная индикация, в том числе и аварийная, органы управления (включения и выключения, перехода на ручной режим и проч.). Оценку сравнения показаний измерительных датчиков и выработку управляющих воздействий (подключение конденсаторов нужного номинала) выполняет схема, основой которой служит микропроцессор. Исполнительные устройства работают быстро и бесшумно, они, как правило, построены на мощных тиристорах.
Пусковой ток
При расчете необходимо учитывать и пусковые токи устройства. Например, сопротивление нити накаливания в лампочке в момент включения в 10 раз меньше, чем в рабочем режиме. Следовательно, пусковой ток этой лампочки в 10 раз больше. Через некоторое время она начнет потреблять ту мощность, которая записана в данных этой лампочки. Поэтому, при включении она перегорает за счет больших пусковых токов.
В радиоэлектронной аппаратуре пока не зарядится конденсатор в блоке питания, также образуется пусковой ток.
В электродвигателях тоже образуется пусковой ток, пока двигатель не наберет номинальные обороты.
В нагревательных приборах пусковой ток образуется, пока спираль не нагреется до дежурной температуры.
Автоматика и интеллектуальные алгоритмы
В настоящее время есть системы, позволяющие надежно удерживать cos φ в пределах от 0,9 до 1. Так как подключение конденсаторов в них происходит дискретно, то идеального результата добиться невозможно, но экономический эффект автоматический компенсатор реактивной мощности все равно дает очень хороший. В основе работы этого прибора лежат интеллектуальные алгоритмы, обеспечивающие работу сразу после включения, чаще всего даже без дополнительных настроек. Технологические достижения в области вычислительной техники позволяют добиваться равномерного подключения всех ступеней конденсаторных батарей для того, чтобы избежать преждевременного выхода из строя одной или двух из них. Время срабатывания также минимизировано, а дополнительные дроссели снижают величину перепада напряжения во время переходных процессов. Современный щит управления питанием предприятия обладает соответствующей эргономической компоновкой, которая создает условия для быстрой оценки оператором ситуации, а в случае аварии или выхода из строя он получит немедленный тревожный сигнал. Цена такого шкафа немалая, но заплатить за него стоит, пользу он приносит.
Смысл реактивной нагрузки
В электрической цепи с реактивной нагрузки фаза тока и фаза напряжения не совпадают во времени. В зависимости от характера подключенного оборудования напряжение либо опережает ток (в индуктивности), либо отстаёт от него (в ёмкости). Для описания вопросов используют векторные диаграммы. Здесь одинаковое направление вектора напряжения и тока указывает на совпадение фаз. А если вектора изображены под некоторым углом, то это и есть опережение или отставание фазы соответствующего вектора (напряжения или тока). Давайте рассмотрим каждый из них.
В индуктивности напряжение всегда опережает ток. «Расстояние» между фазами измеряется в градусах, что наглядно иллюстрируется на векторных диаграммах. Угол между векторами обозначается греческой буквой «Фи».
В идеализированной индуктивности угол сдвига фаз равен 90 градусов. Но в реальности это определяется полной нагрузкой в цепи, а в реальности не обходится без резистивной (активной) составляющей и паразитной (в этом случае) емкостной.
В ёмкости ситуация противоположна – ток опережает напряжение, потому что индуктивность заряжаясь потребляет большой ток, который уменьшается по мере заряда. Хотя чаще говорят, что напряжение отстаёт от тока.
Если сказать кратко и понятно, то эти сдвиги можно объяснить законами коммутации, согласно которым в ёмкости напряжение не может изменится мгновенно, а в индуктивности – ток.
Что это такое
Первым делом необходимо узнать, что такое активная энергия. Эта величина, расходуемая нагрузкой в обычном сопротивлении. Это относится к нагревательный устройствам (чайники, электрические камины, микроволновые печи и прочее). Расходуемая мощность данных устройств полностью активная. В таким устройствах используемая энергия навсегда и полностью трансформируется в другую группу энергии.
Мощность указывается символом P и обозначается в Ваттах (Вт).
Чтобы найти эту величину, необходимо воспользоваться формулой:
P = U * I;
В таком случае работа будет выполняться без изменений.
График индуктивной мощности
В цепях с переменным напряжением есть только активная энергия, потому что показатели мгновенной и средней мощности там сходятся.
Индуктивная работа — через нее проходит сила тока и отстает от напряжения. В результате будет расходоваться реактивная энергия.
Для примера, такая нагрузка используется в асинхронных двигателях, датчиках холостого хода, реакторах, трансформаторов тока, выпрямителях и прочих преобразователях.
Асинхронный двигатель индуктивного вида
Треугольник мощностей и косинус Фи
Если взять всю цепь, проанализировать её состав, фазы токов и напряжений, затем построить векторную диаграмму. После этого изобразить активную по горизонтальной оси, а реактивную – по вертикальной и соединить результирующим вектором концы этих векторов – получится треугольник мощностей.
Он выражает отношение активной и реактивной мощности, а вектор, соединяющий концы двух предыдущих векторов – будет выражать полную мощность. Всё это звучит слишком сухо и запутано, поэтому посмотрите на рисунок ниже:
Буквой P – обозначена активная мощность, Q – реактивная, S – полная.
Формула полной мощности имеет вид:
Самые внимательные читатели наверняка заметили подобие формулы теореме Пифагора.
- P – Вт, кВт (Ватты);
- Q – ВАр, кВАр (Вольт-амперы реактивные);
- S – ВА (Вольт-амперы);
Подключая и отключая конденсаторы
Наиболее простой и очевидный способ решить проблему – посадить возле фазометра специального работника, который бы включал или выключал нужное количество конденсаторов, добиваясь минимальной величины отклонения стрелки от единицы. Так вначале и делали, но практика показала, что пресловутый человеческий фактор не всегда позволяет добиваться нужного эффекта. В любом случае компенсация реактивной мощности, имеющей чаще всего индуктивный характер, производится подключением электрической емкости соответствующей величины, но делать это лучше в автоматическом режиме, иначе нерадивый работник может подвести родное предприятие под крупный штраф. Опять же, труд этот квалифицированным назвать нельзя, автоматизации он вполне поддается. Простейшая схема включает оптическую электронную пару из излучателя и приемника света. Стрелка перекрыла минимальное значение – значит, нужно добавить емкости.
Расчёты
Для вычисления полной мощности используют формулу в комплексной форме. Например, для генератора расчет имеет вид:
А для потребителя:
Но применим знания на практике и разберемся как рассчитать потребляемую мощность. Как известно мы, обычные потребители, оплачиваем только за потребление активной составляющей электроэнергии:
P=S*cosФ
Здесь мы видим, новую величину cosФ. Это коэффициент мощности, где Ф – это угол между активной и полной составляющей из треугольника. Тогда:
cosФ=P/S
В свою очередь реактивная мощность рассчитывается по формуле:
Q = U*I*sinФ
Для закрепления информации, ознакомьтесь с видео лекцией:
Всё вышесказанное справедливо и для трёхфазной цепи, отличаться будут только формулы.
Теория и практика
Все теоретические выкладки имеют ценность тем большую, чем применимее они на практике. Картина на любом развитом промышленном предприятии следующая: большая часть электроэнергии потребляется двигателями (синхронными, асинхронными, однофазными, трехфазными) и прочими машинами. А ведь есть еще и трансформаторы. Вывод простой: в реальных производственных условиях преобладает реактивная мощность индуктивного характера. Следует отметить, что на предприятиях устанавливают не один электросчетчик, как в домах и квартирах, а два, один из которых активный, а другой — несложно догадаться какой. И за перерасход напрасно «гоняемой» по линиям электропередач энергии соответствующие органы беспощадно штрафуют, так что администрация кровно заинтересована в том, чтобы произвести расчет реактивной мощности и принять меры к ее снижению. Ясно, что без электрической емкости при решении этой задачи не обойтись.
Катушка индуктивности в цепи постоянного тока.
Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет