Схема щита электрического на заказ. Составить самостоятельно.


Многие люди, которые начинают увлекаться изучением электричества и основам проектирования данного раздела инженерных сетей, часто не имеют возможности получить должный практический опыт. В теории они видят одно, а при чтении электронных схем – совсем другое. Для новичков электронные схемы кажутся сложными не только для применения, но и при попытке их расшифровки. Начинать изучение практической части лучше всего со схем, содержащих простейшую электронную базу и примитивные символические изображения. В приведённом ниже материале будут приведены простые электронные схемы с описанием и их основными обозначениями для начинающих.

Детектор скрытой проводки

Индикатор скрытой проводки – это специальное устройство для обнаружения электросети, проложенной в штробах под штукатуркой стены. Без него не обходится даже простой ремонт домашней электропроводки и розеток. Прибор необходим, когда старая проводка в стенах была проложена без исполнительных схем, и определить место её укладки в отсутствие специального прибора невозможно. При выполнении ремонтных работ целостность изоляции скрытой проводки может быть нарушена сверлом или гвоздем. Подобные действия могут вызвать поражение электрическим током, а также вывести из строя всю домашнюю сеть.


Микросхема детектора для скрытой проводки

Для обнаружения скрытой проводки в большинстве случаев будет достаточно устройства, выполненного из стрелочного или цифрового омметра с полевым транзистором. Корпусом радиоэлемента проводят по участку стены и, если он «видит» проводку, то значения на омметре сразу же меняются. Модифицированный детектор изображен на схеме ниже. Для его изготовления нужны:

  • Батарейка;
  • Светодиод для индикации;
  • Транзистор;
  • Резисторы на 1 Мом, 100 кОм, 330 Ом и 220 Ом;
  • Переключатель для начала в работы.


Детали для детектора

Автоматический регулятор оборотов кулера

Это устройство будет полезным как для простых людей, так и для специалистов по ремонту и обслуживанию ПК. Зачастую производители комплектующих для компьютерной техники подключают питание кулера, охлаждающего процессор или материнскую плату, напрямую. Из-за этого устройство непрерывно вращается на максимальной скорости, несмотря на то, что ПК бездействует. Установив самодельный автоматический регулятор, можно не беспокоиться о температуре процессора, ведь датчик будет включать охлаждение автоматически, когда это действительно необходимо.

Вам это будет интересно План электропроводки квартиры


Схема устройства

Регулятор оборотов не только увеличит срок службы кулера, но и снизит громкость шумов в помещении. Сделать его можно на основе двух транзисторов, резистора и термистора.


Самоделка в виде регулятора кулера

Беспроводной светодиод

Этот примитивный прибор не имеет какой-либо практической ценности, но способен удивить далеких от электроники людей. Он представляет собой светодиод, который начинает светиться, будучи не подключенным к источнику питания.

Схема основана на одном транзисторе, который является практически полноценным генератором тока высокой частоты. Индуктор представлен в виде обычной проволоки, которая согнута в форме кольца. У светодиода имеется приемная петля, получающая на некотором расстоянии от индуктора электрический сигнал и заставляющая лампочку гореть.


Схема беспроводного светодиода

Для схемы понадобятся:

  • 6 пальчиковых батареек;
  • Светодиод;
  • Транзистор (БФ494);
  • Конденсатор на 0.1 мкФ;
  • Резистор на 33 кОм;
  • Индуктор 330 мкГ;
  • Провода.


«Магический» светодиод

Общая классификация

Само понятие подразумевает под собой комплекс условных обозначений, которые предназначены для определения каких-либо конструктивных элементов или частей. В соответствии с правилами и требованиями ГОСТ 2.701-84 выделяют несколько видов, отличающихся как сферой применения, так и типом устанавливаемых обозначений.

Разделение по видам приведено в таблице ниже:

Таблица: разновидности схема

Вид схемыБуквенное обозначение
1ЭлектрическиеЭ
2ГидравлическиеГ
3ПневматическиеП
4Газовые (кроме пневматических)X
5КинематическиеК
6ВакуумныеВ
7ОптическиеЛ
8ЭнергетическиеР
9ДеленияЕ
10КомбинированныеС

Так, для одного и того же устройства или объекта, при необходимости, могут разрабатываться сразу несколько схем, поясняющих принцип подключения, работы или реализации функций. Для электротехнического оборудования схемы подразделяются на несколько типов:

  • Принципиальные или полные – обозначаются цифрой 3;
  • Структурные – обозначаются цифрой 1;
  • Функциональные – обозначаются цифрой 2;
  • Общие – обозначаются цифрой 6;
  • Монтажные или схемы соединений – обозначаются цифрой 4;
  • Подключений – обозначаются цифрой 5;
  • Расположения и объединенные – обозначаются цифрой 7 и 0 соответственно.

При составлении конкретной схемы используется, как правило, буквенно-цифровые обозначения, к примеру, для электрической функциональной маркировка будет выглядеть как Э2, для газовой структурной Х1 и т.д.

Принципы графического обозначения каких-либо элементов на схемах определяются отраслевыми и государственными стандартами. Они же устанавливают требования к расположению составных частей, их размеры, нанесение шифров, наименований или маркировок.

Простейший инвертер без транзисторов

Как известно из теоретического курса физики, инвертер преобразует постоянный электрический ток в переменный. Примечательно то, что в большинстве случаев при сборке такого прибора вполне можно обойтись без пайки. Достаточно соединить все контакты простой скруткой. Инвертер, конечно, будет недолговечным, так как реле рано или поздно выйдет из строя, но купить его снова не составит больших проблем. Иногда можно даже найти ненужный переключатель от старого прибора или выпаять его самостоятельно.

Важно! Процесс создания инвертера поможет понять принцип работы постоянного и переменного тока, конвертации одного типа в другой.


Схема инвертора

Для прибора понадобятся:

  • Трансформатор от радиоприемника, с обмоткой на 220 и 12 Вольт;
  • Реле на 12 Вольт;
  • Провода для соединения деталей;
  • Нагрузка на схему в виде обычной лампочки.


Инвертер простой конструкции без пайки

Схема простого металлоискателя

Самые простые электронные схемы базируются на одной микросхеме, в случае этой на TDA0161 – специализированном изделии для датчиков на основе индукции. На основе таких собирают детекторы металла, реагирующие при приближении к индукционному датчику.

Такие в некоторых случаях стоят на заводских проходных.

Детали для его сборки можно найти в магазине радиозапчастей или на алиэкспрессе. В данной схеме металлодетектр издает звук только тогда, когда обнаружит металл. Микросхема работает в диапазоне от 3,5 до 15 вольт, при поиске потребляет ток около 1 мА, в сигнальном режиме 8-12 мА, при рабочей частоте 8-10 кГц.

Запитать устройство можно с помощью телефонного аккумулятора. Также для металлоискателя понадобится «рабочий орган» в виде катушки на 140-150 витков медной проволоки, диаметром 5-7 см. При этом чувствительность прямо зависит от диаметра катушки – чем больше охват, тем чувствительнее.

Аппарат должен работать сразу после сборки, единственное в чем нуждается – в калибровке порога срабатывания переменным резистором.

Автоматический выключатель

Схема аппарата крайне проста, но очень надежна. Принцип работы выключателя основан на работе конденсаторе. Когда происходит нажатие на кнопку, загорается светодиод или лампа. Когда конденсатор будет полностью разряжен, источник света погаснет. Принцип работы следующий: при нажатии кнопки с возвратом происходит зарядка конденсатора, и он превращается в «питательный» элемент. Когда выключатель разомкнет контакт, радиоэлемент будет разряжаться и питать собой цепь, в которой установлена лампа.

Вам это будет интересно Описание фазного ротора


Электросхема выключателя на кнопке

Важно! Так как конденсатор не может вечно держать заряд, то свет рано или поздно погаснет. Когда это произойдет – сказать сложно, так как все зависит от характеристик радиоэлементов, используемых в приборе.

Полезно такое устройство будет, например, в погребе или техническом подполье. Человек нажимает кнопку, берет необходимые ему вещи и, чтобы не тянуться к выключателю с грузом в руках, просто выходит из подвала. Когда конденсатор полностью разрядится, лампочка потухнет.


Собранный выключатель

sxemy-podnial.net

Предлагаю вашему вниманию плод моих шестилетних поисков. Первые потуги в реализации идеи выключателя освещения были начаты в 2013 году. Микросхем TTP223 и C005 я тогда ещё не знал (да и не было их ещё, наверное), поэтому я экспериментировал с кнопочным псевдосенсором на моей любимой микросхеме К561ЛН2. Так же не было у меня ещё БКВП — блока автономного оптотиристорного коммутатора нагрузки с вампирным питанием внешних устройств. Была только идея и немного энтузиазма (почему немного, да потому что работа у меня командировочная, с выездом из дома на несколько месяцев, а там даже особых идей не возникает из-за напряжённого рабочего времени). Идея была таковой – заменить выключатель освещения сенсором (так как сенсора тоже не было, то – кнопочным псевдосенсором) с автоотключением через несколько часов. Ну, это для любителей забывать выключить свет, которые легли нечаянно поспать (к коим, и я иногда отношусь). При этом выключатель должен был «моргнуть» светом (спящий не увидит и не отреагирует), когда подойдёт время таймера отключения, и по прошествии примерно двух минут, выключить освещение, если никто никак не отреагирует на предупреждение. Если во время этих двух минут, кто-либо «стрельнет» пультом ДУ телевизора (или хлопнет в ладоши, всё зависит от применяемого типа сенсора), и выключатель «услышит» этот сигнал, то в ответ «моргнёт» светом и сбросит таймер отключения. Вот, пожалуй, и вся работа выключателя освещения. Да и ещё – вся схема должна была бы вместиться в монтажную коробку выключателя. К этой идее я периодически возвращался с попеременным успехом. Скажем так – отрабатывал узлы.

Так появился БКВП. Ранее использовал ключевым элементом высоковольтные транзисторы, какие мог себе позволить – 2N13003. И они нормально работали с лампами накаливания до 40 ватт. Но, сгорали, как только подключал светодиодные лампы. Тиристор решил проблемы.

Долго «изобретал» схему электронного уха. Но после нескольких испытаний, мне указали, что «такие звуки» не всем нравятся. Поэтому перешёл на ИК диапазон частот. Ведь пульты ДУ есть почти у всех и схема сразу сократилась до интегрального приёмника ИК диапазона. Схема «электронного уха» тоже имеется.

Пожалуй, самым не проверенным был RC-таймер на rобр.д — обратном сопротивлении диода по постоянному току. Только такой таймер, мне представлялся самым простым и перспективным в этой идее. Ведь, для схемы одного таймера, в принципе, нужно лишь три детали – диод, конденсатор и один логический элемент НЕ. И главное то, что по сути, это двухполюсник – подал на вход включающее напряжение и жди когда на выходе появится задержанный сигнал.

И вот когда появились TTP223 и C005 я понял, что вскоре всё сложится.


Рис. 1. Выключатель освещения с автоотключением. Вариант 1. Схема

Первая схема (смотрите рис.1), которую я хочу предложить вашему вниманию, является, скажем так – самой большой. Так как в ней применено два таймера C005. Основной таймер, это микросхема DD4, настроенная, примерно, на четыре часа и таймер «отключения» на DD3, настроен на 2 минуты.

Как работает. При подаче сетевого напряжения на клеммы питания, нужно подождать несколько секунд, пока зарядится конденсатор C9 в БКВП, ведь он установлен большой ёмкости. Когда напряжение питания появится, то микросхема сенсора DD2 будет запитана, через открытый ключевой транзистор VT5, последний открывает ток базового резистора R20. Схема находится в дежурном режиме и ток потребляет только микросхема сенсора. Микросхема DD1 находится в статическом режиме и практически не потребляет тока.

Сразу скажу, что конденсатор стоящий возле выводов питания микросхемы сенсора ёмкостью 0,1 микрофарада стоит на плате рядом с последней, так как в этой конструкции я применял модуль-плату сенсора на TTP223, потому что, кроме микросхемы она содержит и сенсор E1. Да, светодиод с этой платы снят, за ненадобностью.

Так как вывод 4 микросхемы DD2 никуда не подключен, то сенсор работает в триггерном режиме. Если прикоснуться к сенсору E1, то на выводе 1 микросхемы появится лог. 1, которая запустит две схемы — схему включения питания основного таймера, и схему питания светодиодов индикации включения и оптрона U1.1, который запустит тиристор VD6. Светодиод HL2 погаснет, а лампа LH1 загорится.

Когда таймер DD4 досчитает время до конца, то на его выводе 3 появится лог. 1, и через логические элементы DD1.5 и DD1.6 будет запущен таймер DD3, который начнёт отсчёт своих двух минут. С выхода DD1.5 лог. 0 будет подан на левый вывод конденсатора C5, и пока он будет заряжаться через резистор R6, лог. 1 с выхода DD1.1 через открытый диод VD3 откроет транзистор VT4, что вызовет «моргание» света примерно на пол секунды. Так же этот лог. 0 с выхода DD1.5 откроет ключ VT2 питания внешнего сенсора. Это напряжение запитает так же индикаторный светодиод HL1 (см. рис. 2) на плате внешнего сенсора. Он установлен для визуализации включения внешнего сенсора.

Если внешний сенсор не сработает, то через две минуты на выводе 3 таймера DD3 появится лог. 1, которая откроет транзистор VT8, а он уже практически закроет транзистор VT5. Микросхема сенсора DD2 будет обесточена и всё чем она управляла закроется. Пропадёт так же и напряжение питания на микросхеме таймера DD3. Транзистор VT8 закроется тоже, и опять напряжение питания появится на сенсоре DD2. Вся схема перейдёт в ждущий режим.

Но, если, в последние две минуты, кто-то направит любой пульт ДУ (главное, чтобы совпадали частоты кодировки импульсов) в сторону ИК-приёмника U1 (см. на рис. 2 б) и нажмёт на любую кнопку, то несколько импульсов попадут на умножитель напряжения (конденсаторы C1, C3 и диоды VD1, VD2), которое будет приложено к базе транзистора VT1. Он откроется и подключит левый вывод конденсатора C4 к общему проводу, и пока последний будет заряжаться через резистор R7, лог. 1 с выхода DD1.2 через открытый диод VD4 откроет транзистор VT4, что вызовет «моргание» света примерно на пол секунды. Так же эта лог. 1 с выхода DD1.2 откроет ключ VT3, который прервёт цепочку питания основного таймера DD4, на те же пол секунды. И этого времени хватит, чтобы обнулить его выход. Таймер DD4 начнёт считать заново свои четыре часа.

Если внешним сенсором будет стоять «электронное ухо», то в ответ на «моргание» нужно произвести громкий резкий звук, коим может быть хлопок в ладоши или свист. В подтверждение принятия сигнала выключатель «моргнёт» светом и погаснет светодиод HL1 на плате внешнего сенсора.


Рис. 2. Внешние сенсоры. Схема

На рисунке 2 представлены схемы двух внешних активных сенсоров – звуковой и ИК — диапазона. Звуковой сенсор (рис. 2 а), это переделанная плата Звукового включателя светодиодных и ламп накаливания – с неё сняты не нужные детали (те, что остались, помечены звёздочками со своими позиционными номерами). И добавлен световой индикатор HL1, который показывает, что действительно сработал основной таймер. Так же добавлен трёхжильный кабель со своим разъёмом XR1.

Приёмник ИК – диапазона (рис. 2 б) также оснащён световым индикатором HL1 сработки основного таймера. К нему так же нужно подключить трёхжильный кабель со своим разъёмом XR2. Для чего нужны кабели? Дело в том, что как правило, выключатель любого помещения, находится вне этого помещения. И что бы всё работало хорошо, внешние сенсоры должны находиться в том помещении которое освещается. И нужно их расположить так, чтобы вы хорошо видели светящийся светодиод из основного места пребывания в комнате (к примеру, между стеной и наличником двери). Из двух сенсоров, нужно выбрать один и из схемы убрать ненужные детали. Так же, на рис. 2 в изображён кнопочный «сенсор», может кому-то такой вариант ближе по реализации. Плату с кнопкой и светодиодом нужно поставить близко к месту вашей постоянной дислокации.

Детали. В этих конструкциях могут стоять любые маломощные транзисторы соответствующей структуры с коэффициентом усиления не менее 120, а транзистора VT7 не менее 150. Номиналы резисторов и конденсаторов могут изменяться в широких пределах. Только несколько деталей имеют ограничения в номиналах. Конденсаторы C3 и C9 – ёмкости должны быть не ниже указанных на схеме. Резисторы R15 и R16 подобрать таких номиналов, которые вам нужны по времени таймеров. Если вам не нужна индикация включения, то HL1 и R14 можно исключить. Да и ещё – дорожки печатной платы в цепи питания должны выдерживать нужную мощность нагрузки. А также, должна быть обеспечено малая потеря тока в цепи запитывания светодиода оптрона.


Рис. 3. Выключатель освещения с автоотключением. Вариант 2. Схема

На рисунке 3 изображен второй вариант выключателя с автоотключением – это «облегчённая» схема на один интегральный таймер C005. Его заменил RdC – таймер на диоде VD1, конденсаторе C3 и логическом элементе DD1.1. Диод VD1 нужно подобрать, что бы при конденсаторе ёмкостью 0,1 микрофарада таймер выдал время 27-33 секунды. Тогда при номинальной ёмкости C3 таймер выдаст примерно нужное время – 2-2,5 минуты.

Эта схема, практически работает аналогично предыдущей, только отличие в ключе питания микросхемы сенсора DD2. Здесь транзистор VT5 другой структуры. Всё поменялось из-за изменённой схемы таймера отключения. Когда ключ VT2 питания внешнего сенсора выключен, то катод диода VD1 находится на общем проводе. Конденсатор C3 разряжен и на выводе 3 логического элемента DD1.1 присутствует лог. 0. Соответственно на выводе 4 лог. 1, которая открывает транзистор VT6 через базовый резистор R8. А уже VT6 через базовый резистор R20 открывает ключ питания микросхемы сенсора VT5. Когда же сработает основной таймер DD3 и откроет ключ VT2 питания внешнего сенсора, ток через диод VD1 начнёт заряжать конденсатор C3. И когда RdC – таймер сработает, то на выводе 4 DD1.1 появится лог. 0, который последовательно закроет VT6, VT5 и отключит питание сенсора. И всё вернётся к дежурному режиму.


Рис. 4. Выключатель освещения с автоотключением. Вариант 3. Схема

На рисунке 4 изображен третий вариант выключателя с автоотключением – это ещё более «облегчённая» схема, здесь совсем нет интегральных таймеров C005. В этом варианте, в качестве таймеров используются два RdC – таймера. Логика работы совершенно не изменилась. Основной RdC – таймер: диод VD6, конденсатор C8 и логический элемент DD1.4, а также триггер Шмитта на логических элементах DD1.5, DD1.6 и резисторе R17. Триггер Шмитта нужен для правильной работы индикатора включения индикации.


Рис. 5. Выключатель освещения с автоотключением. Вариант 4. Схема

На рисунке 5 изображён четвёртый вариант выключателя с автоотключением. Это схема, так сказать — alma mater всех этих схем. С этого варианта я начинал. Здесь нет сенсора на TTP223 и интегральных таймеров C005. Только кнопка и два RdC – таймера. Логика работы та же. В первоначальном варианте не было триггера Шмитта и по-другому организовывалась индикация «моргания». Схемное построение кнопочного выключателя описано в [1].


Рис. 6. Выключатель освещения с автоотключением. Вариант 5. Схема

На рисунке 6 изображён пятый вариант выключателя с автоотключением. Эта схема родилась благодаря триггеру Шмитта. На предыдущих двух схемах, триггер Шмитта представляет собой классическую схемотехнику внутренности микросхемы К561ТЛ1 [2]. Тем более, что каждый логический элемент этой микросхемы имеет два входа – И-НЕ. Благодаря этому и родилась новая, ещё более облегчённая схема.


Рис. 7. Двойной выключатель освещения с автоотключением. Схема

На рисунке 7 изображен вариант двойного выключателя с автоотключением. Такие выключатели, как правило, мы ставим в зале, на большую многорожковую люстру. Для примера, я объединил два выключателя из схем на рисунке 3 с «удвоенным» симисторным БКВП х 2.

Настройка. Если монтаж выполнен правильно, то единственной настройкой, кроме времени работы таймеров, будет настройка напряжения питания схем. Оно должно быть выше 2,6 вольт (при таком напряжении уже нормально работают логические микросхемы 561 серии). Если напряжение будет ниже, или не будет работать схема (из-за питания), то тогда, первым делом повысьте напряжение, подключая параллельно аноду и катоду тиристора (или анодам симистора) добавочные резисторы, до получения нужного. Если, при включении нагрузки не будет полностью погасать светодиод индикации готовности работы схемы (а это означает, что тиристор (симистор) не полностью открылся), то нужно увеличить ёмкость конденсатора в БКВП или уменьшить номинал резистора в цепи управляющего электрода тиристора (симистора), до полного погасания светодиода.

P.S.: Да, схемы получились великоваты, хотя и работоспособны. И, наверное, никто и не решится их повторить, я-то уж точно. Почему? Да потому, что время не то. Лет бы 15-20 назад, точно сделал бы. Хотя бы, для того, чтобы у меня было, а у вас нет. Почему я не буду себе делать? Да, потому, что собираюсь, делать по другой концепции, которую я описывал в своих идеях, в материале — «Аварийное бесперебойное освещение в доме». В выключателях будут только сенсоры и световая индикация (примерно как в предыдущем материале – «Выключатель освещения и вытяжки душевой кабины»), а вся остальная электроника с аккумулятором в другом блоке.

Вот, не давно, погорел распределительный трансформатор в квартале, так пол дня сидели все без света. И хорошо, что быстро сделали. А если бы день –два? Как жить без света в современном мире? Да и живу я в ремонте квартиры уже много лет. И могу себе позволить переделать проводку по своему усмотрению. А тот, у кого в квартире уже сделан красивый ремонт, может, я думаю, легко повторить эти схемы, если применит SMD радиодетали.

Внимание!

Все эти конструкции находятся в гальванической связи с сетью, с высоким напряжением! Будьте предельно осторожны при макетировании и испытаниях! Обеспечивайте этим конструкциям хорошую изоляцию, с целью безопасной эксплуатации!

Литература:

  1. Популярные цифровые микросхемы/ В.Л.Шило: Справочник. — Челябинск: Металлургия, Челябинское отделение, 1989. — 352 с.: ил. — (Массовая радиобиблиотека. Вып. 1111). 1988 г. стр.213.
  2. Популярные цифровые микросхемы/ В.Л.Шило: Справочник. — Челябинск: Металлургия, Челябинское отделение, 1989. — 352 с.: ил. — (Массовая радиобиблиотека. Вып. 1111). 1988 г. стр.202.

Лабораторный блок питания своими руками

БП – полезный прибор для любого человека, занимающегося электроникой. Устройство способно регулировать выходное напряжение и ограничивать ток до тех параметров, которые будут необходимы для корректной работы той или иной схемы.

Важно! Купить БП можно в любом магазине электроники, но гораздо выгоднее и полезнее будет изготовить его своими руками с использованием простой схемы.


Чертеж блока

Схема состоит из следующих деталей:

  • Блока питания из трансформатора, диодного моста и конденсатора;
  • Регулятора на транзисторе или стабилитроне;
  • Клемм и радиатора;
  • Светодиода;
  • Вольтметра;
  • Резисторов.


Самодельное устройство в корпусе
Первым делом подготавливается плата, в которую впаиваются все необходимые элементы, фигурирующие в схеме, после чего ее подключают к трансформатору. На этом этапе блок питания уже может функционировать. Можно, конечно, сделать для него корпус, но эта процедура уже не относится к электронике.

Схема цветомузыки

В данной схеме три транзистора разной мощности, три светодиода – зеленый, синий, красный, и резисторы с конденсаторами.

Красный диод горит при низких частотах в сигнале и имеет соответствующий фильтр, синий для среднего диапазона, и зеленый, когда звук «пищит». С резисторами подстройки R4 — R6 можно настроить чувствительность каждого из трех каналов.

Транзисторы VT1 – VT3 задают коммутацию диодов, и сюда подойдут маломощные n-p-n транзисторы, вроде BC547, BC337, КТ3102. Если одиночных лампочек маловато, то можно впаять в схему куски светодиодной гирлянды, и ставить транзисторы помощнее, например, BD139, 2N4923, КТ961.

А входной сигнал «заливается» с любого аудиоустройства, к примеру со смартфона или ноутбука. Если же схема еле мерцает и света явно не хватает, то стоит спаять однотранзисторный «усилок», например на основе КТ3102.

Но для той же цели подойдет любой маломощный транзистор. Подстроечным резистором R1 получится управлять уровнем сигнала, идущего на цветомузыку. Вольтаж у него 9 – 12 вольт, и он усилит любой слабый сигнал, даже с выхода смартфона.

Дальше идет еще одна сложная для неискушенного радиолюбителя часть – печать платы.

Но научно-технический прогресс и его доступность выручают и здесь. Плату можно изготовить методом лазерно-утюжной технологии, для чего понадобится лазерный принтер, фольгированный текстолит, глянцевая бумага (печатать нужно с глянцевой стороны в зеркальном отображении), мелкая шкурка-нулевка и утюг.

  • печатаем плату на глянце, выставив в настройках плотность и контрастность тонера на максимум,
  • зашкуриваем и обезжирить заготовку платы ацетоном, бензином или специальным обезжиривателем;
  • прикладываем рисунком к плате, не касаясь рабочей поверхности пальцами;
  • проглаживаем заготовку утюгом;
  • смываем водой и щеткой слой бумаги с платы;
  • вытравливаем плату в емкости с раствором хлорного железа или медного купороса на час-полтора (рекомендуется сверху приклеить кусочек пенопласта или другого материала который не разъест купорос, за который потом придется вынимать плату);
  • смываем растворителем остатки тонера с платы;
  • сверлим отверстия под детали и лудим дорожки, плата готова к пайке.

Скачать плату:

Чтобы подключить питание и звуковывод, лучше использовать клеммы для удобства. Закончив пайку, нужно аккуратно протереть плату, на всякий случай прозвонить.

Перед подачей сигнала с плеера на звуковой вход стоит выставить подстроечные резисторы в «среднее», после чего сигналы пойдут и на цветомузыку, и на колонку.

Для этого подойдет вставляемый в вывод смартфона или плеера разветвитель. После этого регулированием резисторов можно добиться одинаковой яркости свечения резисторов – сначала с помощью R1, потом с R4 — R6.

Акустический моргалик

Принцип работы акустических приборов всегда связан с улавливанием звуков и голоса человека с помощью микрофона. Попадая на чувствительные элементы динамика, звуковые волны конвертируются в электрический сигнал, который заставляет светодиоды на плате «моргать». Схема состоит из следующих радиоэлементов:

  • Двух транзисторов КТ315Б;
  • Резисторов (3 штуки) на 4700 Ом, 1 МоМб, 10 кОм;
  • Микрофона;
  • Конденсаторов полярного типа (2 штуки) на 47 и 1 мкФ;
  • Светодиодов на 3 Вольта в размере 6 штук.

Вам это будет интересно Как подключить дверной звонок


Схема моргалика

Функционирует прибор следующим образом: увеличивающий частоту звуковых колебаний усилитель, при попадании на него звуковых волн, начинает менять свое сопротивление. Переменный сигнал проходит через конденсатор и поступает на транзистор, открывая его. Ток достигает коллектора и поступает на второй элемент, который также открывается и лампочки начинают «моргать».


Моргалик на практике

Реле времени для фотопечати

Исходя из названия, реле времени позволяет управлять включением и выключением приборов в автоматическом режиме с помощью временных интервалов. Самый простой вариант можно собрать на транзисторах (из восьми элементов).

Важно! Такие реле активно применяются в системе «умный дом» для автоматизации осветительных приборов.

Состоит устройство из следующих элементов:

  • Резисторы (2 штуки) на 100 Ом и 2.2 мОм;
  • Транзистор биполярного типа КТ937А;
  • Реле для переключения нагрузки;
  • Резистор на 820 Ом;
  • Конденсатор на 3300 мкФ;
  • Диод выпрямительного типа;
  • Переключатель для запуска отсчета времени.


Схема автоматического реле
Работает электросхема на батарейках (9 Вольт) или на аккумуляторах (12 Вольт). Питать реле можно и обычным переменным током из домашней электрической сети. Последний способ возможен лишь при использовании специального преобразователя на постоянный ток с напряжением в 12 Вольт.


Внешний вид реле

В статье были приведены описания и подробно разобраны простые электрические схемы для детей и начинающих радиолюбителей. Они помогут понять основные принципы электроники, базовые обозначения радиоэлементов на схемах и, в конечном итоге, применить свои теоретические знания на практике.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]