Биполярный транзистор. Что он собой представляет, как устроен и как работает?

Пожалуй, сегодня сложно представить себе современный мир без транзисторов, практически в любой электронике, начиная от радиоприёмников и телевизоров, заканчивая автомобилями, телефонами и компьютерами, так или иначе, они используются.

Различают два вида транзисторов: биполярные и полевые. Биполярные транзисторы управляются током, а не напряжением. Бывают мощные и маломощные, высокочастотные и низкочастотные, p-n-p и n-p-n структуры. Транзисторы выпускаются в разных корпусах и бывают разных размеров, начиная от чип SMD (на самом деле есть намного меньше чем чип) которые предназначены для поверхностного монтажа, заканчивая очень мощными транзисторами. По рассеиваемой мощности различают маломощные до 100 мВт, средней мощности от 0,1 до 1 Вт и мощные транзисторы больше 1 Вт.

Когда говорят о транзисторах, то обычно имеют в виду биполярные транзисторы. Биполярные транзисторы изготавливаются из кремния или германия. Биполярными они названы потому, что их работа основана на использовании в качестве носителей заряда как электронов, так и дырок. Транзисторы на схемах обозначаются следующим образом:

Одну из крайних областей транзисторной структуры называют эмиттером. Промежуточную область называют базой, а другую крайнюю — коллектором. Эти три электрода образуют два p-n перехода: между базой и коллектором — коллекторный, а между базой и эмиттером — эмиттерный. Как и обычный выключатель, транзистор может находиться в двух состояниях — во «включенном» и «выключенном». Но это не значит, что они имеют движущиеся или механические части, переключаются они из выключенного состояния во включенное и обратно с помощью электрических сигналов.

Транзисторы предназначены для усиления, преобразования и генерирования электрических колебаний. Работу транзистора можно представить на примере водопроводной системы. Представьте смеситель в ванной, один электрод транзистора – это труба до краника (смесителя), другой (второй) – труба после краника, там где у нас вытекает вода, а третий управляющий электрод – это как раз краник, которым мы будем включать воду. Транзистор можно представить как два последовательно соединенных диода, в случае NPN аноды соединяются вместе, а в случае PNP – соединяются катоды.

Различают транзисторы типов PNP и NPN, PNP транзисторы открываются напряжением отрицательной полярности, NPN – положительной. В NPN транзисторах основные носители заряда – электроны, а в PNP – дырки, которые менее мобильны, соответственно NPN транзисторы быстрее переключаются.

Uкэ = напряжение коллектор-эмиттер Uбэ = напряжение база-эмиттер Ic = ток коллектора Iб = ток базы

В зависимости от того, в каких состояниях находятся переходы транзистора, различают режимы его работы. Поскольку в транзисторе имеется два перехода (эмиттерный и коллекторный), и каждый из них может находиться в двух состояниях: 1) открытом 2) закрытом. Различают четыре режима работы транзистора. Основным режимом является активный режим, при котором коллекторный переход находится в закрытом состоянии, а эмиттерный – в открытом. Транзисторы, работающие в активном режиме, используются в усилительных схемах. Помимо активного, выделяют инверсный режим, при котором эмиттерный переход закрыт, а коллекторный – открыт, режим насыщения, при котором оба перехода открыты, и режим отсечки, при котором оба перехода закрыты.

При работе транзистора с сигналами высокой частоты время протекания основных процессов (время перемещения носителей от эмиттера к коллектору) становится соизмеримым с периодом изменения входного сигнала. В результате способность транзистора усиливать электрические сигналы с ростом частоты ухудшается.

Некоторые параметры биполярных транзисторов

Постоянное/импульсное напряжение коллектор – эмиттер. Постоянное напряжение коллектор – база. Постоянное напряжение эмиттер – база. Предельная частота коэффициента передачи тока базы Постоянный/импульсный ток коллектора. Коэффициент передачи по току Максимально допустимый ток Входное сопротивление Рассеиваемая мощность. Температура p-n перехода. Температура окружающей среды и пр…

Граничное напряжение Uкэо гр. является максимально допустимым напряжение между коллектором и эмиттером, при разомкнутой цепи базы и токе коллектора. Напряжение на коллекторе, меньше Uкэо гр. свойственны импульсным режимам работы транзистора при токах базы, отличных от нуля и соответствующих им токах базы (для n-p-n транзисторы ток базы >0, а для p-n-p наоборот, Iб 0 2

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

Расчет входного тока базы Ib

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно – Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить – около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

Читать также: Диагностика и ремонт блока питания компьютера

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.

В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы I B , сильно меняется ток коллектора I С. Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току. Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзистором.

Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз – далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

Режим отсечки (cut off mode).

Активный режим (active mode).

Режим насыщения (saturation mode).

Инверсный ражим (reverse mode ).

Когда напряжение база-эмиттер ниже, чем 0.6V – 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки

.

В активном режиме

напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току

– соотношение тока коллектора IС к току базы IB. Обозначается
β
,
hfe
или
h21e
, в зависимости от специфики расчетов, проводимых с транзисторов.

β – величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий – в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление

– сопротивление в транзисторе, которое «встречает» ток базы. Обозначается
Rin
(
Rвх
). Чем оно больше – тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость

– проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).

Частотная характеристика

– зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.

Биполя́рный транзи́стор

— трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar ), в отличие от полевого (униполярного) транзистора.

Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).

Читать также: Рэс9 рс4524 200 характеристики

Расчет ключа на транзистор

Добавим в схему полезную нагрузку в виде светодиода. Резистор R_к при этом остается на месте, он будет ограничивать ток через нагрузку и обеспечивать необходимый режим работы:

Пусть для включения светодиода нужно подать на него напряжение 3В (U_д). При этом диод будет потреблять ток равный 50 мА (I_д). Зададим параметры транзистора (в реальных схемах эти значения берутся из документации на используемый транзистор):

  • Коэффициент усиления по току h_{21э} = 100…500 (всегда задан именно диапазон, а не конкретное значение)
  • Падение напряжения на переходе база-эмиттер, необходимое для открытия этого перехода: U_{бэ} = 0.6 medspace В.
  • Напряжение насыщения: U_{кэ medspace нас} = 0.1 medspace В.

Мы берем конкретные значения для расчетов, но на практике все бывает несколько иначе. Как вы помните, параметры транзисторов зависят от многих факторов, в частности, от режима работы, а также от температуры. А температура окружающей среды, естественно, может меняться. Определить четкие значения из характеристик при этом бывает не так просто, поэтому нужно стараться обеспечить небольшой запас. К примеру, коэффициент усиления по току при расчете лучше принять равным минимальному из значений, приведенных в даташите. Ведь если коэффициент в реальности будет больше, то это не нарушит работоспособности схемы, конечно, при этом КПД будет ниже, но тем не менее схема будет работать. А если взять максимальное значение h_{21э}, то при определенных условиях может оказаться, что реальное значение оказалось меньше, и его уже недостаточно для обеспечения требуемого режима работы транзистора.

Итак, возвращаемся к примеру Входными данными для расчета кроме прочего являются напряжения источников. В данном случае:

  • E_{вх} = 3.3medspace В. Я выбрал типичное значение, которое встречается на практике при разработке схем на микроконтроллерах. В этом примере подача и отключение этого напряжения осуществляется переключателем S_1.
  • E_{вых} = 9medspace В.

Первым делом нам необходимо рассчитать сопротивление резистора в цепи коллектора. Напряжения и ток выходной цепи во включенном состоянии связаны следующим образом:

U_{кэ medspace нас} + U_{R_к} + U_д = E_{вых}

При этом по закону Ома:

U_{R_к} = I_к R_к

А ток у нас задан, поскольку мы знаем, какой ток потребляет нагрузка (в данном случае диод) во включенном состоянии. Тогда:

U_{R_к} = I_д R_кU_{кэ medspace нас} + I_д R_к + U_д = E_{вых}

Итак, в этой формуле нам известно все, кроме сопротивления, которое и требуется определить:

R_к = frac{E_{вых} medspace — medspace U_д medspace — medspace U_{кэ medspace нас}}{I_д} enspace= frac{9 medspace В medspace — medspace 3 medspace В medspace — medspace 0.1 medspace В}{0.05 medspace А} medspaceapprox 118 medspace Ом.

Будет интересно➡ Чем отличается УЗО от дифавтомата

Выбираем доступное значение сопротивления из стандартного ряда номиналов и получаем R_{к} = 120medspace Ом. Причем важно выбирать именно бОльшее значение. Связано это с тем, что если мы берем значение чуть больше рассчитанного, то ток через нагрузку будет немного меньше. Это не приведет ни к каким сбоям в работе. Если же взять мЕньшее значение сопротивления, то это приведет к тому, что ток и напряжение на нагрузке будут превышать заданные, что уже хуже

Пересчитаем величину коллекторного тока для выбранного значения сопротивления:

I_к = frac{U_{R_к}}{R_к} medspace = frac{9 medspace В medspace — medspace 3 medspace В medspace — medspace 0.1 medspace В}{120 medspace Ом} medspaceapproxmedspace 49.17 medspace мА

Пришло время определить ток базы, для этого используем минимальное значение коэффициента усиления:

I_б = frac{I_к}{h_{21э}} = frac{49.17 medspace мА}{100} = 491.7 medspace мкА

А падение напряжения на резисторе R_б:

U_{R_б} = E_{вх} medspace — medspace 0.6 medspace В = 3.3 medspace В medspace — medspace 0.6 medspace В = 2.7 medspace В

Теперь мы можем легко определить величину сопротивления:

R_б = frac{U_{R_б}}{I_б}medspace = frac{2.7 medspace В}{491.7 medspace мкА} approx 5.49 medspace КОм

Опять обращаемся к ряду допустимых номиналов. Но теперь нам нужно выбрать значение, мЕньшее рассчитанного. Если сопротивление резистора будет больше расчетного, то ток базы будет, напротив, меньше. А это может привести к тому, что транзистор откроется не до конца, и во включенном состоянии бОльшая часть напряжения упадет на транзисторе (U_{кэ}), что, конечно, нежелательно.

Поэтому выбираем для резистора базы значение 5.1 КОм. И этот этап расчета был последним! Давайте резюмируем, наши рассчитанные номиналы составили:

  • R_{б} = 5.1medspace КОм
  • R_{к} = 120medspace Ом

Кстати в схеме ключа на транзисторе обычно добавляют резистор между базой и эмиттером, номиналом, например, 10 КОм. Он нужен для подтяжки базы при отсутствии сигнала на входе. В нашем примере, когда S1 разомкнут, то вход просто висит в воздухе. И под воздействием наводок транзистор будет хаотично открываться и закрываться. Поэтому и добавляется резистор подтяжки, чтобы при отсутствии входного сигнала потенциал базы был равен потенциалу эмиттеру. В этом случае транзистор будет гарантированно закрыт.

Сегодня мы прошлись по классической схеме, которой я стараюсь придерживаться, то есть — от теории к практике Надеюсь, что материал будет полезен, а если возникнут какие-либо вопросы, пишите в комментарии, я буду рад помочь!

Устройство [ править | править код ]

Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E ), базы («Б», англ. B ) и коллектора («К», англ. C ). В зависимости от порядка чередования слоёв различают n-p-n

(эмиттер —
n
-полупроводник, база —
p
-полупроводник, коллектор —
n
-полупроводник) и
p-n-p
транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты [1] .

С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь большое электрическое сопротивление.

Общая площадь перехода база-эмиттер выполняется значительно меньше площади перехода коллектор-база, что увеличивает вероятность захвата неосновных носителей из базового слоя и улучшает коэффициент передачи. Так как в рабочем режиме переход коллектор-база обычно включён с обратным смещением, в нём выделяется основная доля тепла, рассеиваемого прибором, и повышение его площади способствует лучшему охлаждению кристалла. Поэтому на практике биполярный транзистор общего применения является несимметричным устройством (то есть инверсное включение, когда меняют местами эмиттер и коллектор, нецелесообразно).

Для повышения частотных параметров (быстродействия) толщину базового слоя делают меньше, так как этим, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей. Но при снижении толщины базы снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.

В первых транзисторах в качестве полупроводникового материала использовался металлический германий. Полупроводниковые приборы на его основе имеют ряд недостатков, и в настоящее время (2015 г.) биполярные транзисторы изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.

Особенности устройства транзистора

npn транзистор включает в себя три области:

  • эмиттер;
  • базу – очень тонкую, которая изготавливается из слаболегированного полупроводника, сопротивление этой области высокое;
  • коллектор – его область больше по размерам, чем область эмиттера.

К каждой области припаяны металлоконтакты, служащие для подсоединения прибора в электроцепь.

Электропроводность коллектора и эмиттера одинакова и противоположна электропроводности базы. В соответствии с видом проводимости областей, различают p-n-p или n-p-n приборы. Устройства являются несимметричными из-за разницы в площади контакта – между эмиттером и базой она значительно ниже, чем между базой и коллектором. Поэтому К и Э поменять местами путем смены полярности невозможно.

Принцип работы [ править | править код ]

В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении [2] (открыт), а коллекторный переход смещён в обратном направлении (закрыт).

В транзисторе типа n-p-n

[3] основные носители заряда в эмиттере (электроны) проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того, что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико [4] . Сильное электрическое поле обратносмещённого коллекторного перехода захватывает неосновные носители из базы (электроны) и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (
Iэ=Iб + Iк
).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ

), называется
коэффициентом передачи тока эмиттера
. Численное значение коэффициента α = 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малый ток базы управляет значительно бо́льшим током коллектора.

Принцип работы npn транзистора


В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.
Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Режимы работы [ править | править код ]

Напряжения на эмиттере, базе, коллекторе ( U E , U B , U C ,U_,U_> )Смещение перехода база-эмиттер для типа n-p-nСмещение перехода база-коллектор для типа n-p-nРежим для типа n-p-n
U E U B U Cпрямоеобратноенормальный активный режим
U_>»> U E U B > U C U_> U_>»/>прямоепрямоережим насыщения
U_ U E > U B U C >U_U_обратноеобратноережим отсечки
U_>U_>»> U E > U B > U C >U_>U_> U_>U_>»/>обратноепрямоеинверсный активный режим
Напряжения на эмиттере, базе, коллекторе ( U E , U B , U C ,U_,U_> )Смещение перехода база-эмиттер для типа p-n-pСмещение перехода база-коллектор для типа p-n-pРежим для типа p-n-p
U E U B U Cобратноепрямоеинверсный активный режим
U_>»> U E U B > U C U_> U_>»/>обратноеобратноережим отсечки
U_ U E > U B U C >U_U_прямоепрямоережим насыщения
U_>U_>»> U E > U B > U C >U_>U_> U_>U_>»/>прямоеобратноенормальный активный режим

Нормальный активный режим [ править | править код ]

Переход эмиттер-база включён в прямом направлении [2] (открыт), а переход коллектор-база — в обратном (закрыт):

Инверсный активный режим [ править | править код ]

Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>

0;
UЭБ Режим насыщения [ править | править код ]
Оба p-n

перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный
р-n
-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками
Uэб
и
Uкб
. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (
I
Э. нас) и коллектора (
I
К. нас).

Напряжение насыщения коллектор-эмиттер

(UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог
RСИ. отк
у полевых транзисторов). Аналогично
напряжение насыщения база-эмиттер
(UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.

Режим отсечки [ править | править код ]

В данном режиме коллекторный p-n

переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).

Читать также: Формы для литья свинцовых грузил

Режим отсечки соответствует условию U

ЭБ [5] [6] .

Барьерный режим [ править | править код ]

В данном режиме база

транзистора по постоянному току соединена накоротко или через небольшой резистор с его
коллектором
, а в
коллекторную
или в
эмиттерную
цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включённый последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Принцип действия

Основа работы прибора заключается в способности n-p перехода пропускать ток в одну сторону. При подаче напряжения на одном переходе возникает его прямое падение, а на другом обратное. Зона перехода с прямым напряжением обладает малым сопротивлением, а с обратным — большим. Между базой и эмиттером протекает небольшой ток управления. От значения этого тока изменяется сопротивление между коллектором и эмиттером.

Биполярный прибор бывает двух типов:

  • p-n-p;
  • n-p-n.

Отличие заключается лишь в основных носителях заряда, т. е. направлении тока.

Если соединить два полупроводника разного типа между собой, то на границе соединения возникает область или, как принято называть, p-n переход. Тип проводимости зависит от атомного строения материала, а именно насколько прочны связи в материале. Атомы в полупроводнике располагаются в виде решётки, и сам по себе такой материал не является проводником. Но если в решётку добавить атомы другого материала, то физические свойства полупроводника изменяются. Примешанные атомы образовывают, в зависимости от своей природы, свободные электроны или дырки.

Образованные свободные электроны формируют отрицательный заряд, а дырки — положительный. В области перехода существует потенциальный барьер. Он образуется контактной разностью потенциалов, и его высота не превышает десятые доли вольта, препятствуя протеканию носителей заряда вглубь материала. Если переход находится под прямым напряжением, то величина потенциального барьера уменьшается, а величина проходящего через него тока увеличивается. При прикладывании обратного напряжения, величина барьера увеличивается и сопротивление барьера прохождению тока возрастает. Понимая работу p-n перехода, можно разобраться, как устроен транзистор.

Схемы включения [ править | править код ]

Любая схема включения транзистора характеризуется двумя основными показателями:

Схема включения с общей базой [ править | править код ]

  • Среди всех трёх конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Не инвертирует фазу сигнала.
  • Коэффициент усиления по току: I
    вых/
    I
    вх =
    I
    к/
    I
    э = α [α Достоинства
  • Хорошие температурные и широкий частотный диапазон, так как в этой схеме подавлен эффект Миллера.
  • Высокое допустимое коллекторное напряжение.

Недостатки

  • Малое усиление по току, равное α, так как α всегда немного менее 1
  • Малое входное сопротивление

Схема включения с общим эмиттером [ править | править код ]

  • Коэффициент усиления по току: I
    вых/
    I
    вх =
    I
    к/
    I
    б =
    I
    к/(
    I
    э-Iк) = α/(1-α) = β [β>>1].
  • Входное сопротивление: R
    вх =
    U
    вх/
    I
    вх =
    U
    бэ/
    I
    б.

Достоинства

  • Большой коэффициент усиления по току.
  • Большой коэффициент усиления по напряжению.
  • Наибольшее усиление мощности.
  • Можно обойтись одним источником питания.
  • Выходное переменное напряжение инвертируется относительно входного.

Недостатки

  • Имеет меньшую температурную стабильность. Частотные свойства такого включения по сравнению со схемой с общей базой существенно хуже, что обусловлено эффектом Миллера.

Схема с общим коллектором [ править | править код ]

  • Коэффициент усиления по току: I
    вых/
    I
    вх =
    I
    э/
    I
    б =
    I
    э/(
    I
    э-Iк) = 1/(1-α) = β+1 [β>>1].
  • Входное сопротивление: R
    вх =
    U
    вх/
    I
    вх = (
    U
    бэ +
    U
    кэ)/
    I
    б.

Достоинства

  • Большое входное сопротивление.
  • Малое выходное сопротивление.

Недостатки

  • Коэффициент усиления по напряжению немного меньше 1.

Схему с таким включением часто называют «эмиттерным повторителем

».

Схема с коллекторной стабилизацией

(рис. 2.16).

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Эта схема обеспечивает лучшую стабильность начального режима. В схеме имеет место отрицательная обратная связь по напряжению (выход схемы — коллектор транзистора соединен со входом схемы — базой транзистора с помощью сопротивления Rб.). Рассмотрим ее проявление на следующем примере.

Пусть по каким-либо причинам (например, из-за повышения температуры) ток iк начал увеличиваться. Это приведет к увеличению напряжения uRк, уменьшению напряжения uкэ и уменьшению тока iб ( iб = uкэ/ Rб), что будет препятствовать значительному увеличению тока iк, т. е. будет осуществляться стабилизация тока коллектора.

Основные параметры [ править | править код ]

  • Коэффициент передачи по току.
  • Входное сопротивление.
  • Выходная проводимость.
  • Обратный ток коллектор-эмиттер.
  • Время включения.
  • Предельная частота коэффициента передачи тока базы.
  • Обратный ток коллектора.
  • Максимально допустимый ток.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  • коэффициент усиления по току α;
  • сопротивления эмиттера, коллектора и базы переменному току r
    э,
    r
    к,
    r
    б, которые представляют собой:
  • r
    э — сумму сопротивлений эмиттерной области и эмиттерного перехода;
  • r
    к — сумму сопротивлений коллекторной области и коллекторного перехода;
  • r
    б — поперечное сопротивление базы.

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h

».

Входное сопротивление

— сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

Коэффициент обратной связи по напряжению

показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

Коэффициент передачи тока

(коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

Выходная проводимость

— внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Собственные параметры транзистора связаны с h

-параметрами, например для схемы ОЭ:

h 11 ∍ = r δ + r ∍ 1 − α <11ackepsilon >=r_+<1-alpha >>> ;

h 12 ∍ ≈ r ∍ r κ ( 1 − α ) <12ackepsilon >approx (1-alpha )>>> ;

h 21 ∍ = β = α 1 − α <21ackepsilon >=eta =<1-alpha >>> ;

h 22 ∍ ≈ 1 r κ ( 1 − α ) <22ackepsilon >approx <1>(1-alpha )>>> .

С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода C

к. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода
C
э также снижается, однако он шунтируется малым сопротивлением перехода
r
э и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются
граничными частотами коэффициента передачи тока
для схем ОБ и ОЭ соответственно.

В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения

транзистора называется τвкл = τз + τф.

Технические характеристики и маркировка

Главными параметрами, по которым подбираются эти полупроводниковые элементы, является цоколевка и цветовая маркировка.


Фото — цоколевка маломощных биполярных триодов


Фото — цоколевка силовых

Также используется цветовая маркировка.


Фото — примеры цветовой маркировки


Фото — таблица цветов

Многие отечественные современные транзисторы также обозначаются буквенным шифром, в который включается информация о группе (полевые, биполярные), типе (кремниевые и т. д.,) годе и месяце выпуска.


Фото — расшифровка

Основные свойства (параметры) триодов:

  1. Коэффициент усиления по напряжению тока;
  2. Входящее напряжение;
  3. Составные частотные характеристики.

Для их выбора еще используются статические характеристики, которые включают сравнение входных и выходных ВАХ.

Необходимые параметры можно вычислить, если произвести расчет по основным характеристикам (распределение токов каскада, расчет ключевого режима). Коллекторный ток: Ik=(Ucc-Uкэнас)/Rн

  • Ucc – напряжение сети;
  • Uкэнас – насыщение;
  • Rн – сопротивление сети.

Потери мощности при работе:

Купить биполярные транзисторы SMD, IGBT и другие можно в любом электротехническом магазине. Их цена варьируется от нескольких центов до десятка долларов, в зависимости от назначения и характеристик.

На выходных характеристиках транзистора определяют и отмечают режим покоя, который характеризуется током покоя и напряжением покоя при В. Этот режим выбирается исходя из заданного значения амплитуды выходного напряжения и связанной с ней амплитудой тока .

Координаты точки покоя должны удовлетворять следующим условиям

и ,

где — коллекторное напряжение в режиме насыщения транзистора.

.

Ток покоя также определяется выражением

,

где — напряжение в цепи эмиттера, выбираемое в пределах .

Путем совместного решения двух последних выражений для тока покоя , определяют сопротивление в цепи коллектора

.

Значение обратного тока коллектора приводится в справочниках для . При температуре окружающей среды отличной от значение обратного тока коллектора необходимо скорректировать, воспользовавшись следующей формулой

,

где — для германиевых транзисторов,

— для кремниевых транзисторов.

Выбранной точке покоя и и отображенной на выходной характеристике транзистора соответствуют определенное значение тока покоя базы и напряжение покоя базы , определяемое по входной характеристике транзистора.

После определения параметров режима покоя выполняется проверка этого режима на соответствие допустимой рассеиваемой мощности коллектора

,

где — максимально допустимая мощность коллекторной цепи при заданной температуре окружающей среды

,

где — максимально допустимая температура коллекторного перехода транзистора (ориентировочно, для кремниевых транзисторов , для германиевых – ).

Сопротивление в эмиттерной цепи определяется из выражения

.

Значение сопротивления резистора установки нуля на выходе усилителя

.

Для уменьшения шунтирования входного сопротивления усилителя ток делителя в цепи базы транзистора принимается равным

.

После принятия значения тока делителя определяют величины сопротивлений резисторов делителя

и .

Коэффициент усиления каскада по напряжению

,

где — эквивалентное сопротивление одного плеча дифференциального усилителя с симметричным выходом

,

— входное сопротивление усилителя, которое при симметричном входе определяется выражением

.

Полученный коэффициент усиления сравнивают с требуемым коэффициентом

.

Расчет считается законченным при выполнении условия . Если же окажется, что , то для получения требуемого коэффициента усиления увеличивают сопротивление резистора в цепи коллектора или выбирают транзистор с большим коэффициентом передачи тока . После чего производят корректировку расчетов с учетом внесенных изменений. В случае значительного расхождения коэффициента усиления применяют еще один каскад.

Задача №3

АНАЛИЗ РАБОТЫ АНАЛОГОВЫХ И ЦИФРОВЫХ ЭЛЕКТРОННЫХ УСТРОЙСТВ

В табл. 3 по двум последним цифрам учебного шифра выбираются вопросы, а из табл. 4 — содержание вопроса. Ответ на вопрос должен содержать не менее 3-4 страниц.

Вариант (последняя цифра шифра)Номер вопросаВариант (предпоследняя цифра шифра)Номер вопроса
Номер вопросаСодержание вопроса
Назначение микропроцессора (МП). Структурная схема МП с названием элементов и их функциональным назначением.
Общие сведения о микропроцессорах. Базовые команды микропроцессоров и их типы.
Устройства ввода-вывода микропроцессора и вспомогательные аппаратные средства.
Устройство и принцип действия операционных усилителей (ОУ). Схематическое изображение и основные характеристики ОУ. Классификация ОУ и область применения.
Практическое применение операционных усилителей (ОУ). Инвертирующие и неинвертирующие усилители. Генерирующие устройства на ОУ, сумматоры и устройства сравнения.
Мультиплексор. Назначение, обобщенная схема и классификация. Интегральные микросхемы мультиплексоров, обозначение и основные параметры.
Демультиплексор. Назначение, обобщенная схема и классификация. Интегральные микросхемы демультиплексоров, схемное обозначение, функциональное назначение и основные параметры.
Продолжение табл. 4
Шифратор. Назначение и принцип построения. Интегральные микросхемы шифраторов, условное схематическое изображение, виды и назначение входных сигналов.
Дешифратор. Назначение и принцип построения. Схема дешифратора и его условное изображение. Принцип построения дешифратора на примере преобразования двоичного кода в унитарный. Интегральные микросхемы дешифраторов, их характеристики.
Виды аналого-цифровых преобразователей (АЦП) и их особенности. Основные характеристики и структурные схемы АЦП. Интегральные схемы АЦП.
Аналого-цифровые преобразователи (АЦП) средних значений. Структурная схема АЦП и графики процесса преобразования. Основные характеристики интегрирующих АЦП.
Классификация интегральных аналого-цифровых преобразователей (АЦП). АЦП последовательного действия, структурная схема, графики процесса преобразования напряжения в цифровой код. АЦП параллельного действия. Структурная схема, принцип работы.
Назначение и виды цифро-аналоговых преобразователей (ЦАП). Основные параметры, принцип построения, упрощенные схемы ЦАП и их работа преобразования. Серийные микросхемы ЦАП.
Регистры. Основные сведения, классификация, назначение, интегральные микросхемы регистров и их основные параметры. Привести схему регистра сдвига и временные диаграммы.
Счетчики. Основные определения и виды счетчиков. Классификация счетчиков, применение, схема и временные диаграммы. Интегральные микросхемы счетчиков (суммирующий, вычитающий).
Триггеры. Основные определения и виды триггеров, условное схематическое обозначение, принцип построения. Асинхронный RS-триггер: схема, временная диаграмма, таблица истинности.
Интегральные микросхемы триггеров и их функциональное обозначение. Синхронный JK-триггер: временная диаграмма, статические и динамические параметры.
Основные понятия и виды запоминающих устройств (ЗУ). Техническая классификация запоминающих устройств (оперативные ЗУ, постоянные ЗУ). Статические и динамические ЗУ. Основные параметры ЗУ.
Структурная схема статического и динамического оперативного запоминающего устройства (ОЗУ). Принцип работы и основные свойства.
Постоянные запоминающие устройства (ПЗУ), структурная схема ПЗУ. Репрограммируемые ПЗУ (РПЗУ), их устройство и принцип работы. Интегральные микросхемы запоминающих устройств (ЗУ). Условное схематическое изображение оперативных ЗУ(ОЗУ) и постоянных ЗУ (ПЗУ) и их краткая характеристика.

Биполярный СВЧ-транзистор [ править | править код ]

Биполярные СВЧ-транзисторы (БТ СВЧ) служат для усиления колебаний с частотой свыше 0,3 ГГЦ [7] . Верхняя граница частот БТ СВЧ с выходной мощностью более 1 Вт составляет около 10 ГГц. Большинство мощных БТ СВЧ по структуре относится к n-p-n типу [8] . По методу формирования переходов БТ СВЧ являются эпитаксиально-планарными. Все БТ СВЧ, кроме самых маломощных, имеют многоэмиттерную структуру (гребёнчатую, сетчатую) [9] . По мощности БТ СВЧ разделяются на маломощные (рассеиваемая мощность до 0,3 Вт), средней мощности (от 0,3 до 1,5 Вт) и мощные (свыше 1,5 Вт) [10] . Выпускается большое число узкоспециализированных типов БТ СВЧ [10] .

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

Расчет входного тока базы Ib

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

Расчет выходного тока коллектора IС

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).

Расчет выходного напряжения Vout

Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Читать также: Как определить межвитковое замыкание трансформатора

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]