Перед началом проверки полевых транзисторов рассмотрим, какие бывают виды полевых транзисторов.
На рисунке 1 вы видите классификацию полевых транзисторов.
Из этого рисунку видно, что полевые транзисторы подразделяются на транзисторы с управляющим p-n переходом и полевые транзисторы с изолированным затвором.
В зарубежной литературе полевой транзистор с управляющим p-n переходом обозначается как JFET
(junction gate field-effect transistor), а транзистор с изолированным затвором —
MOSFET
(Metall-Oxid-Semiconductor FET).
Сегодня я вам расскажу, как проверить полевой транзистор с управляющим p-n переходом
, а в следующем выпуске журнал перейдем к проверке MOSFET транзистора, так что не забываем подписываться на журнал. Форма подписки после статьи.
Для начала кратко рассмотрим структуру транзистора и принцип его работы.
Полевые транзисторы бывают n-канальные и p-канальные. В виду того, что широкое распространение получили n-канальные полевые транзисторы, на их примере и рассмотрим принцип работы полевого транзисторы с управляющим p-n переходом.
Итак, транзистор состоит из n-полупроводника с внедренными в него высоколегированными n-областями с большой концентрацией носителей заряда – электронов. Сам полупроводник находится на подложке p-типа, которая соединена с еще одной p-областью. Вместе эти области называются затвором
(gate). Таким образом, каждая высоколегированная n-область создает с p-подложкой свой p-n переход.
Та часть n-полупроводника, которая находится между p-областями (затворами) называется каналом (в частности каналом n-типа).
Если к высоколегированным n-областям подключить источник напряжение, то в канале создастся электрическое поле, под воздействием этого поля электроны из n-области, к которой подключен «минус» источника будут перемещаться в n-область, к которой подключен «плюс» источника напряжения. Таким образом, через канал потечет электрический ток. Величина этого тока будет напрямую зависеть от электропроводности канала, которая в свою очередь зависит от площади поперечного сечения канала. Нетрудно догадаться, что площадь поперечного сечения канала зависит от ширины p-n переходов.
Та область, от которой движутся носители заряда, а в случае n-канала это электроны, называется истоком
(source), а к которой движутся –
стоком
(drain).
Если на затвор относительно истока подать отрицательное напряжение, то p-n переход, образованный между затвором и истоком будет смещаться в обратном направлении, при этом ширина запирающего слоя будет увеличиваться, тем самым сужая размеры канала и уменьшая электропроводность.
Таким образом, изменяя напряжение между затвором и истоком, мы можем управлять током через канал полевого транзистора.
На этом об устройстве полевого транзистора все, далее в подробности углубляться я не буду, так как этого будет достаточно, что бы понять, как проверить полевой транзистор с управляющим p-n переходом.
Исходя из вышеизложенного можно составить эквивалентную схему полевого транзистора с управляющим p-n переходом, как мы делали при проверке биполярного транзистора .
При составлении схемы будем руководствоваться следующими принципами:
1. В транзисторе имеются два p-n перехода, первый между затвором и истоком, второй между затвором и стоком.
2. Канал между истоком и стоком при отсутствии отрицательного запирающего напряжения на затворе не закрыт и электропроводен, то есть имеет определенное значение сопротивления.
3. Теперь p-n переходы обозначим диодами, а электропроводность канала резистором.
Составляем эквивалентную схему полевого транзистора с управляющим p-n переходом.
Теперь зная эквивалентную схему полевого транзистора с управляющим p-n переходом можно построить алгоритм или схему проверки полевого транзистора.
История появления транзисторов
На заре прошлых веков конца 19 века ученые физики и практики (Гутри, Браун, Эдисон, Боус, Пикард, Флеминг) разных стран совершили принципиальное открытие и получили патенты на «детектор», «выпрямитель» — так тогда называли диод. Вслед за диодом последовало эпохальное открытие транзистора. Перечисление имен ученых разных стран, приложивших голову и руки к открытию транзистора, заняло бы много строк.
Основными теоретиками считаются Шокли, работавший в Bell Telephone Laboratories, а также его коллеги Бардин и Браттейн.
Слева направо: Шокли, Бардин и Браттейн
В итоге их работ, в 1947 году, получен первый образец работающего точечного германиевого транзистора, и на его основе, в том же году, был разработан первый усилитель, имевший коэффициент усиления 20 дБ (в 10 раз) на частоте 10 Мгц.
Серийный выпуск точечных транзисторов фирмой Western Electric начался в 1951 году и достиг около 10 000 штук в месяц в 1952 году. В СССР первый точечный транзистор был создан в 1949 г. Серийный выпуск точечных транзисторов был налажен в 1952 году, а плоскостных — в 1955 году. Затем последовали следующие открытия в теории и технологиях: транзисторы на выращенных переходах (1950 г.), сплавные транзисторы (1952 г.), диффузные мета-транзисторы (1958 г.), планарные транзисторы (1960 г.), эпитаксиальные транзисторы (1963 г.), многоэмиттерные транзисторы (1965 г.) и т. д.
Как же появился среди них наш герой — транзистор Дарлингтона (далее по тексту ТД)? Дарлингтон (англ. Darlingtone) — город в в Великобритании. Однако и люди могут иметь фамилии по имени городов или наоборот. Таким является сотрудник все той же фирмы Bell — Сидни Дарлингтон
Сидни Дарлингтон
Зачем же потребовалась эта «сладкая парочка»? Дело в том, что первые транзисторы имели весьма посредственные характеристики, если смотреть на сегодняшние успехи. Прежде всего — невысокий коэффициент усиления. Сейчас это кажется странным — подумаешь, каскадное соединение — это элементарно! Но тогда, в 1953 году — это были пионерские работы.
Электроника для всех
Кроме транзисторов
и сборок
Дарлингтона
есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые
МОП транзисторы. Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.
МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.
Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана. Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.
Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.
МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.
Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет. Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к. он образуется сам собой в силу особенности техпроцесса производства).
У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида. Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома. Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.
Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5. Тут вариантов три:
- На более мелких транзисторах сорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением
- применить специальную микросхему драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117.
Надо только не забывать, что есть драйверы верхнего и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и комутирующего транзистора. Если обратишь внимание, то увидишь что с драйвером и в верхнем и нижнем плече используются N канальные транзисторы. Просто у них лучше характеристики чем у P канальных. Но тут возникает другая проблема. Для того, чтобы открыть N канальный транзистор в верхнем плече надо ему на затвор подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Чем собственно и отличается драйвер нижнего плеча от драйвера верхнего плеча.
- Применить транзистор с малым отпирающим напряжением. Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.
Но вообще, правильней все же ставить драйвер, ведь кроме основных функций формирования управляющих сигналов он в качестве дополнительной фенечки обеспечивает и токовую защиту, защиту от пробоя, перенапряжения, оптимизирует скорость открытия на максимум, в общем, жрет свой ток не напрасно.
Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или ID выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10. Следующий важный для тебя параметр это VGS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение. Иногда его пишут, но чаще приходится выглядывать из графиков. Ищешь график выходной характеристики Зависимость ID от VDS при разных значениях VGS. И прикидыываешь какой у тебя будет режим.
Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:
Видишь, на 5 вольтах на затворе и токе в 8А падение напряжения на транзисторе составит около 4.5В По закону Ома тогда выходит, что сопротивление этого транзистора в данный момент 4.5/8=0.56Ом. А теперь посчитаем потери мощности — твой движок жрет 5А. P=I*U или, если применить тот же закон Ома, P=I2R. При 8 амперах и 0.56Оме потери составят 35Вт. Больно дофига, не кажется? Вот и мне тоже кажется что слишком. Посмотрим тогда на IRL630.
При 8 амперах и 5 вольтах на Gate напряжение на транзисторе составит около 3 вольт. Что даст нам 0.37Ом и 23Вт потерь, что заметно меньше.
Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или ton,toff, в общем, как то так. Ну, а частота это 1/t. Также не лишней будет посмотреть на емкость затвора Ciss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие. Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.
При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО. Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги :).
А в процессе проектирования схемы запомни еще одно простое правило — ни в коем случае нельзя оставлять висеть затвор полевика просто так — иначе он нажрет помех из воздуха и сам откроется. Поэтому обязательно надо поставить резистор килоом на 10 от Gate до GND для N канального или на +V для P канального, чтобы паразитный заряд стекал. Вот вроде бы все, в следующий раз накатаю про мостовые схемы для управления движков.
Что такое NPN транзистор?
Транзисторы вытеснили электролампы, позволили уменьшить количество реле, переключателей в устройствах. Это полупроводниковые триоды — радиоэлектронные компоненты из полупроводников, стандартно имеют 3 вывода.
Транзисторы, предназначенные для управления током, то есть основным силовым фактором электросхем, именно его удар (не напряжения) несет опасность для человека.
Элемент способен контролировать чрезвычайно высокие величины в выходных цепях при подаче слабого входного сигнала. Транзисторы повышают, генерируют, коммутируют, преобразовывают электросигналы, это основа микроэлектроники, электроустройств.
Разновидности по принципу действия:
- биполярный транзистор из 2 типов проводников, в основе функционирования – взаимодействие на кристалле соседних p-n участков. Состоят из эмиттера/коллектора/базы (далее, эти термины будем сокращать): на последнюю идет слабый ток, вызывающий модификацию сопротивления (дальше по тексту «сопр.») в линии, состоящей из первых 2 элементов. Таким образом, протекающая величина меняется, сторона ее однонаправленности (n-p-n или p-n-p) определяется характеристиками переходов (участков) в соответствии с полярностью подключения (обратно, прямо). Управление осуществляется модулированием тока на сегменте база/эмит., вывод последнего всегда общий для сигналов управления и выхода;
- полевой. Тип проводника один — узкий канал, подпадающий под электрополе обособленного затворного прохода. Контроль основывается на модуляции количества Вольт между ним и истоком. А между последним и стоком течет электроток (2 рабочие контакты). Величина имеет силу, зависящую от сигналов, формируемых между затвором (контакт контроля) и одной из указанных частей. Есть изделия с p-n участком управления (рабочие контакты подключаются к p- или n-полупроводнику) или с обособленными затворами.
У полевиков есть варианты полярности, для управления требуется низкий вольтаж, из-за экономичности их ставят в радиосхемы с маломощными БП. Биполярные варианты активируются токами. В аналоговых сборках превалируют вторые (БТ, BJT), в цифровых (процессоры, компьютеры) — первые. Есть также гибриды — IGBT, применяются в силовых схемах.
Проверка полевого транзистора с управляющим p-n переходом и каналом p-типа.
Проверка полевого транзистора с управляющим p-n переходом и каналом p-типа осуществляется по вышеизложенному алгоритму, за исключением того, что при проверке p-n переходов полярность подключения щупов мультиметра меняется на противоположную.
Для наглядности и простоты понимания процесса я записал для вас видео как проверить полевой транзистор с управляющим p-n переходом, где я проверяю транзистор с каналом p-типа.
В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.
Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.
Транзистор n-канального типа состоит из кремниевой подложки с p-проводимостью, n-областей, получаемых путем добавления в подложку примесей, диэлектрика, изолирующего затвор от канала, расположенного между n-областями. К n-областям подсоединяются выводы (исток и сток). Под действием источника питания из истока в сток по транзистору может протекать ток. Величиной этого тока управляет изолированный затвор прибора.
При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.
Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора.
Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток.
При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.
Конструкция NPN транзистора
Конструктивная схема транзистора NPN транзистора состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.
Стрелка определяет эмиттер и общепринятое направление его тока (“внутрь” для транзистора PNP).
PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.
Видео о том, как проверить полевой транзистор
Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.
Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.
Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.
Рисунок 2. Фрагмент спецификации на 2SD2499
Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.
Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.
Схема NPN транзистора
Когда NPN транзистор связан с ресурсами напряжения, базовый ток будет проходить через транзистор. Даже небольшое количество базы контролирует циркуляцию большого количества тока через эмиттер к коллектору. Напряжение базы выше, чем напряжение на эмиттере.
Будет интересно➡ Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части. Заземление в частном доме
Когда VB базовое напряжение не -ve по сравнению с VE напряжение эмиттера, ток не может проходить в цепи. Таким образом, необходимо обеспечить подачу напряжения обратного смещения> 0.72 Вольт.
Резисторы RL и RB включены в цепь. Это ограничивает ток, проходящий через максимально возможную высоту транзистора.
Напряжение эмиттера VEB как входная сторона. Здесь ток эмиттера (IE) течет со стороны входа и течет в двух направлениях; один яB а другое это яC.
IE= ЯB+ ЯC
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.
Критерии выбора микросхемы драйвера
Рассмотрим пример выбора драйвера для транзистора CoolSiC IMW120R045M1 производства компании Infineon. В таблице 2 приведена информация из спецификации на транзистор, необходимая для выбора драйвера.
Таблица 2. Фрагмент спецификации транзистора IMW120R045M1
Предельные значения | |||
Параметр | Символ | Величина | |
Напряжение «сток-исток», В | VDSS | 1200 | |
Ток стока для Rth(j-c,max) ограничен Tvjmax, VGS = 15 В, А | TC = 25°C | ID | 52 |
TC = 100°C | 36 | ||
Напряжение «затвор-исток» | VGSS | -10/+20* | |
* – Может быть использован биполярный драйвер затвора. |
Выбор положительного и отрицательного напряжений на затворе влияет на срок службы устройства. Для обеспечения необходимого срока службы следует учитывать рекомендации, описанные в документе AN 2018-19.
Для выбора отрицательного напряжения на затворе воспользуемся графиком (рисунок 13) из AN 2018-19 для положительного напряжения на затворе VCC2 = 15 В, хотя транзистор IMW120R045M1 может работать и при напряжении VCC2 = 18 В.
Рис. 13. Выбор отрицательного напряжения на затворе по AN 2018-19
Нормализованная частота переключения зависит от срока службы устройства и рассчитывается по формуле 8:
$$Nf_{SW}=\frac{Af_{SW}\times T_{S}\times OT}{10},\qquad{\mathrm{(}}{8}{\mathrm{)}}$$
где:
- NfSW – нормализованная частота переключения, кГц;
- AfSW – фактическая частота переключения, кГц;
- Ts – срок службы устройства, лет
- OT – процент рабочего времени от общего, %
Таким образом, чем больше отрицательное напряжение, тем меньше нормализованная частота и, соответственно, срок службы устройства.
Согласно рисунку 13, для нормализованной частоты 100 кГц получается отрицательное напряжение VEE2 = -2,8 В. Однако допускается использовать более низкие напряжения. Минимальное напряжение VEE2 должно быть таким, чтобы сопротивление RDS(on) увеличивалось не более чем на 15% при номинальном токе и Tj = 125°C. В данном примере для обеспечения некоторого запаса прочности примем VEE2 = -2 В.
Внешний резистор RG,ext рассчитывается на основании формулы 9:
$$R_{G,ext}=\frac{V_{Drive}\times (t_{r}+t_{d(on)})}{Q_{Gate}},\qquad{\mathrm{(}}{9}{\mathrm{)}}$$
где:
QGate определяется по рисунку 4;
- tr = 24‧10-9 c и td(on) = 9‧10-9 c (значения берутся из спецификации на транзистор IMW120R045M1;
- VDrive = VCC2 – VEE2 = 17 В;
- QGate, согласно рисунку 4, принимаем равным примерно 60‧10-9 Кл.
Таким образом получаем RG,ext = 9,35 Ом ≈ 10 Ом.
Рассчитаем максимальный ток затвора по формуле 10 при RG,int = 4 Ом, RG,ext = 10 Ом, RDS(on) = 0 Ом:
$$R_{G\_Total}=R_{DS(on)}+R_{G,ext}+R_{G,int};\\V_{Drive}=VCC2-VEE2;\:I_{Gmax}=\frac{V_{Drive}}{R_{G\_Total}}\qquad{\mathrm{(}}{10}{\mathrm{)}}$$
Так как расчет проводится в первый раз и величина RDS(on) неизвестна, она приравнивается к нулю.
Получаем IGmax ≈ 1,21 А.
Рассчитаем максимальную рассеиваемую мощность в цепи управления драйвера по формуле 11:
$$P_{vtot}=Q_{G}\times dV_{Drive}\times f_{SW},\qquad{\mathrm{(}}{11}{\mathrm{)}}$$
Pvtot = 0,102 Вт.
Важно выполнение условия:
Pvtot ≤ PDOUT,
где PDOUT – максимальная выходная мощность драйвера согласно спецификации.
На основании проведенных вычислений выбираем подходящий драйвер производства Infineon из таблицы 3.
Таблица 3. Рекомендуемый список драйверов для SiC MOSFET
Наименование, корпус | Типовой пиковый управляющий ток, А | VCC2-VEE2, В | Типовая задержка распространения, нс | Активное подавление эффекта Миллера | Защита от короткого замыкания |
1EDI20I12MF | 3,5 | 20 | ≤300 | + | – |
DSO-8 150mil | |||||
1EDC20H12AH | 3,5 | 40 | ≤125 | – | – |
DSO-8 300mil | |||||
1EDC60H12AH | 9,4 | 40 | ≤125 | – | – |
DSO-8 300mil | |||||
1EDC20I12MH | 3,5 | 20 | ≤300 | + | – |
DSO-8 300mil | |||||
1ED020I12-F2 | 2 | 28 | ≤170 | + | + |
DSO-16 300mil | |||||
2ED020I12-F2 | 2 | 28 | ≤170 | + | + |
DSO-36 |
Наиболее подходящим драйвером для примера, рассмотренного в этом разделе, является микросхема 1ED020I12-F2.
Как работает NPN транзистор
Когда мы с вами, друзья мои, разобрались в том, что вообще такое этот транзистор, давайте узнаем, как он работает. Устроен он довольно просто, нужно просто понять принцип. Для этого введем два очень важных понятия: эмиттер и коллектор. Эмиттер (как и в слове эмиссия) выпускает заряды и они двигаются в сторону коллектора. Так вот, в состоянии покоя, когда, грубо говоря, все выключено, ток в транзисторе не протекает, потому что между эмиттером и коллектором есть полупроводниковый переход. Однако, когда подается незначительное напряжение на базу транзистора, ток начинает течь и при этом даже можно его усиливать. Как? Колебания небольшого тока в точности повторяются, но уже с большей амплитудой. Вот схема простого транзистора:
В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.
Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.
В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.
NPT-устройства
В отличие от PT IGBT, NPT-транзисторы, например 4-го поколения от компании IR, имеют легированную зону p+ на нижней стороне подложки n-типа. Поскольку эта зона сравнительно небольшой толщины, обработка подложки обходится дешевле. Буферный слой n+ отсутствует. Несмотря на внешнее сходство, разница между этими двумя структурами устройств значительная. Состояния включения и выключения реализуются схожим образом, но в NPT-транзисторах отсутствует эффект смыкания, что позволяет сократить время накопления заряда и побуждает рекомбинировать носители в переходе «база–эмиттер» собственной p-n-p-структуры. В результате «хвост» коллекторного тока при выключении NPT-транзисторов немного длиннее, чем у PT-устройств, а остальные характеристики идентичны.
Из-за меньшего коэффициента усиления по току в собственной p-n-p-структуре напряжение VCE(SAT) PT-транзисторов несколько выше, чем у NPT, благодаря чему легче управлять максимальным током p-n-p-транзистора с меньшим коэффициентом усиления с помощью собственного n-канального MOSFET. Это значит, что длительность короткого замыкания NPT-устройства хорошо определяется и контролируется. Значение этого параметра у NPT IGBT находится в диапазоне до 10 мкс.
Наконец, характеристики n-канального MOSFET превалируют над NPT IGBT. Это значит, что напряжение VCE(SAT)увеличивается с ростом температуры, позволяя соединять эти устройства параллельно друг другу.
Проверка биполярных типов
Ниже схема проверки npn, pnp транзисторов тестером, после нее распишем процедуру по пунктам.
Биполярный транзистор снабжен p-n линиями — условно, это диоды, а точнее, 2 таковых расположенных встречно, точка их пересечения — «база».
Один условный диод сконструирован контактами базы/коллект., иной — базы/эмит. Для анализа хватит посмотреть сопр. (прямо и обратно) указанных участков: если там нет неполадок, то деталь без изъянов.
Проверка своими руками без выпаивания биполярного pnp, npn транзистора предполагает прозвонку 3 комбинаций ножек:
Вариант p-n-p
Структуры (типы) показывает стрелка эмит. участка: p-n-p/n-p-n (к базе/от нее). Начнем с проверки первого варианта. Раскрываем p-n-p деталь подачей на базу минусового напряжения. На мультиметре селектор ставим на замеры Ом на о, допускается также выставлять на «прозвонку».
Жила «−» (черная) — на ножку базы. Плюс (красная) — поочередно к коллект., эмит. Если участки не поврежденные, то отобразят около 500–1200 Ом.
Дальше опишем, как прозвонить обратное сопр.: «+» – на базу, «−» — на колл. и эмит. Должно отобразиться высокое сопр. на обоих p-n участках. У нас появилась «1», то есть для выставленной рамки в «2000» значение превышает 2000. Значит, 2 перехода без обрывов, изделие исправное.
Будет интересно➡ Реактивное сопротивление
Аналогично, как описано, можно прозвонить на исправность транзистор, не выпаивая из схемы. Реже есть сборки, где к переходам применено основательное шунтирование, например, резисторами. Тогда, если отобразится слишком низкое сопр., потребуется выпаивать деталь.
Структура n-p-n
Элементы n-p-n проверяются аналогично, только на базу от тестера идет щуп «+».
Признаки неисправности
Если сопр. (прямое и обратное) одного из участков (p-n) стремится к бесконечности, то есть на о и выше на дисплее «1», значит, данный участок имеет обрыв, транзистор не годный. Если же «0» — изделие также с изъяном, пробит участок. Прямое сопр. там должно быть 500–1200 Ом.
Небольшое отступление от темы
Возникает вполне разумный вопрос. Если новые изделия имеют лучшие параметры и дешевле, то в чем смысл тех изделий, с которыми мы их сравнивали? Какова их ниша?
Заметим, эти изделия были разработаны пять и более лет назад и их характеристики соответствовали тому моменту времени. Кроме того, компания IR проводит политику фокусирования усилий на тех направлениях, где она имеет преимущества перед другими производителями компонентов силовой электроники. Именно массированное внедрение технологии TrenchFET в новых изделиях позволило скачкообразно улучшить технические характеристики и снизить себестоимость.
Что касается ниши ранее разработанных транзисторов, необходимо определить, идет ли речь о новых разработках или о прямой замене на Benchmark MOSFET в серийно выпускаемых потребителем изделиях.
Причин использовать ранее выпущенные транзисторы в новых разработках, вероятно, нет, кроме каких-то очень специфичных изделий и очень специфичных параметров.
Что касается прямой замены, для серьезного конечного производителя это связано, как минимум, с корректировкой конструкторской документации. Если заменяемая позиция в изделии не является ценообразующей, то овчинка может не стоить выделки. Для ответственных применений (военная техника и не только) подобная замена может повлечь за собой проведение повторных испытаний, подтверждающих выполнение требований технического задания, или подтверждение тактико-технических характеристик. А это — затраты, и серьезные. Собственно, в этом и заключается ответ на вопрос о нише «ранних» изделий.
Вывод: целесообразность применения «эталонных» изделий в новых разработках сомнения не вызывает. Возможность использования их прямой замены не вызывает сомнений с технической точки зрения, но требует вдумчивого анализа с точки зрения финансовой.
Проверка простой схемой включения транзистора
Соберите схему с транзистором, как показано на рисунке. В этой схеме транзистор работает как “ключ”. Такая схема может быть быстро собрана на монтажной печатной плате, например. Обратите внимание на 10Ком резистор, который включается в базу транзистора.
Это очень важно, иначе транзистор “сгорит” во время проверки. Если транзистор исправен, то при нажатии на кнопку светодиод должен загораться и при отпускании – гаснуть. Эта схема для проверки npn-транзисторов. Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания. Проверка транзистора мультиметром более проста и удобна. К тому же, существуют мультиметры с функцией проверки транзисторов. Они показывают ток базы, ток коллектора и даже коэффициент усиления транзистора.
Схема проверки полевого транзистора n-канального типа мультиметром
Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.
Общие правила в том, гласят начать процедуру с определения работоспособности самого измерительного прибора. Убедившись, что тот работает безошибочно, переходят к дальнейшим измерениям.
Выводы:
- Полевые транзисторы типа MOSFET широко используются в технике и радиолюбительской практике.
- Проверку работоспособности таких транзисторов можно осуществить с помощью мультиметра, следуя определенной методике.
- Проверка p-канального полевого транзистора мультиметром осуществляется таким же образом, что и n-канального транзистора, за исключением того, что следует изменить полярность подключения проводов мультиметра на обратную.
Пошаговая инструкция проверки мультимером
Перед началом проверки, прежде всего определяется структура триодного устройства, которая обозначается стрелкой эмиттерного перехода. Когда направление стрелки указывает на базу, то это вариант PNP, направление в сторону, противоположную базе, обозначает NPN проводимость.
Проверка мультимером NPN транзистора состоит из таких последовательных операций:
- Проверяем обратное сопротивление, для этого присоединяем «плюсовой» щуп прибора к его базе.
- Тестируется эмиттерный переход, для этого «минусовой» щуп подключаем к эмиттеру.
- Для проверки коллектора перемещаем на него «минусовой» щуп.
Результаты этих измерений должны показать сопротивление в пределах значения «1».
Для проверки прямого сопротивления меняем щупы местами:
- «Минусовой» щуп прибора присоединяем к базе.
- «Плюсовой» щуп поочередно перемещаем от эмиттера к коллектору.
- На экране мультиметра показатели сопротивления должны составить от 500 до 1200 Ом.
Данные показания свидетельствуют о том, что переходы не нарушены, транзистор технически исправен.
Многие любители имеют сложности с определением базы, и соответственно коллектора или эмиттера. Некоторые советуют начинать определение базы независимо от типа структуры таким способом: попеременно подключая черный щуп мультиметра к первому электроду, а красный – поочередно ко второму и третьему.
База обнаружится тогда, когда на приборе начнет падать напряжение. Это означает, что найдена одна из пар транзистора – «база – эмиттер» или «база – коллектор». Далее необходимо определить расположение второй пары таким же образом. Общий электрод у этих пар и будет база.
Литература
1. В.Башкиров, Новые семейства высокоэфективных низковольтных MOSFET, Новости электроники, №18, 2008
2. Шевченко В. Транзисторы в корпусах DirectFET компании International Rectifier// Chip News Украина, 2006, №1.
3. Benchmark MOFSETs. Product Selection Guide// материал компании International Rectifier.
Получение технической информации, заказ образцов, поставка — e-mail
•••
Основные причины неисправности
Наиболее часто встречающиеся причины выхода из рабочего состояния триодного элемента в электронной схеме следующие:
- Обрыв перехода между составными частями.
- Пробой одного из переходов.
- Пробой участка коллектора или эмиттера.
- Утечка мощности под напряжением цепи.
- Видимое повреждение выводов.
Характерными внешними признаками такой поломки являются почернение детали, вспучивание, появление черного пятна. Поскольку эти изменения оболочки происходят только с мощными транзисторами, то вопрос диагностики маломощных остается актуальным.
Советы
- Существует множество способов определения неисправности, но для начала нужно разобраться в строении самого элемента, и четко понимать конструкционные особенности.
- Выбор прибора для проверки – это важный момент, касающийся качества результата. Поэтому при недостатке опыта не стоит ограничиваться подручными средствами.
- Проводя проверку, следует четко понимать причины выхода из строя тестируемой детали, чтобы не вернуться со временем к тому же состоянию неисправности бытовой электротехники.
Как работает транзисторный ключ
В данной статье мы рассмотрим, как работает транзисторный ключ на биполярном транзисторе. Такие полупроводниковые элементы производятся двух типов – n-p-n и p-n-p структуры, которые различаются типом применяемого полупроводника (в p-полупроводнике преобладают положительные заряды – «дырки»; в n-полупроводнике – отрицательные заряды – электроны).
Выводы БТ называются база, коллектор и эмиттер, которые имеет графическое обозначение на чертежах электрических схем, как показано на рисунке.
С целью понимания принципа работы и отдельных процессов, протекающих в биполярных транзисторах, их изображают в виде двух последовательно и встречно соединенных диодов.
Наиболее распространенная схема БТ, работающего в ключевом режиме, приведена ниже.
Чтобы открыть транзисторный ключ нужно подвести потенциалы определенного знака к обеим pn-переходам. Переход коллектор-база должен быть смещен в обратном направлении, а переход база-эмиттер – в прямом. Для этого электроды источника питания UКЭ подсоединяют к выводам базы и коллектора через нагрузочный резистор RК. Обратите внимание, положительный потенциал UКЭ посредством RК подается на коллектор, а отрицательный потенциал – на эмиттер. Для полупроводника p-n-p структуры полярность подключения источника питания UКЭ изменяется на противоположную.
Будет интересно➡ Источник питания постоянного тока
Резистор в цепи коллектора RК служит нагрузкой, которая одновременно защищает биполярный транзистор от короткого замыкания.
Команда на открытие БТ подается управляющим напряжением UБЭ, которое подается на выводы базы и эмиттера через токоограничивающий резистор RБ. Величина UБЭ должна быть не меньше 0,6 В, иначе эмиттерный переход полностью не откроется, что вызовет дополнительные потери энергии в полупроводниковом элементе.
Чтобы не спутать полярность подключения напряжения питания UКЭ и управляющего сигнала UБЭ БТ разной полупроводниковой структуры, обратите внимание на направление эмиттерной стрелки. Стрелка обращена в сторону протекания электрического тока. Ориентируясь на направление стрелки достаточно просто расположить правильным образом источники напряжения.
Применение транзисторного ключа в связке с МК
Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:
В резистор RБЭ нет необходимости, потому как выходы МК “подтягивается” к нулю еще при программировании.
Условия для работы транзисторного ключа
Итак, давайте вспомним, какие требования должны быть, чтобы полностью “открыть” транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:
1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.
2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется “режимом насыщения“.
Этот рисунок – воображение моего разума. Здесь я нарисовал тот самый режим насыщения.
Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.
Проверка работоспособности полевого транзистора
Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.
Рис 4. Полевые транзисторы (N- и P-канальный)
Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):
- Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
- Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
- Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
- Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
- Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.
Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.
Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.
Рис 5. IGBT транзистор SC12850
Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.
В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.
Практика работы составного транзистора
На рис. 3 показаны три варианта построения выходного каскада (эмиттерный повторитель). При подборе транзисторов надо стремится к b1~b2 и b3~b4 . Различие можно компенсировать за счёт подбора пар по равенству коэффициентов усиления СТ b13~b24 (см. табл. 1).
- Схема на рис. 3а имеет наибольшее входное сопротивление, но это худшая из приведённых схем: требует изоляцию фланцев мощных транзисторов (или раздельные радиаторы) и обеспечивает наименьший размах напряжения, поскольку между базами СТ должно падать ~2 В, в противном случае сильно проявятся искажения типа «ступенька».
- Схема на рис. 3б досталась в наследство с тех времён, когда ещё не выпускались комплементарные пары мощных транзисторов. Единственный плюс по сравнению с предыдущим вариантом – меньшее падение напряжения ~1,8 В и больше размах без искажений.
- Схема на рис. 3в наглядно демонстрирует преимущества СТШ: между базами СТ падает минимум напряжения, а мощные транзисторы можно посадить на общий радиатор без изоляционных прокладок.
На рис. 4 показаны два параметрических стабилизатора. Выходное напряжение для варианта с СТД равно:
Поскольку Uбэ гуляет в зависимости от температуры и коллекторного тока, то у схемы с СТД разброс выходного напряжения будет больше, а потому вариант с СТШ предпочтительней.
Рис. 3. Варианты выходных эмиттерных повторителей на СТ
Рис. 4. Применение СТ в качестве регулятора в линейном стабилизаторе
В линейных цепях можно использовать любые подходящие комбинации транзисторов. Автору встречалась бытовая советская техника, в которой использовались СТШ на парах КТ315+КТ814 и КТ3107+КТ815 (хотя принято /КТ361 и КТ3102/КТ3107). В качестве комплементарной пары можно взять C945 и A733, часто встречающиеся в старых компьютерных БП.
Для коммутации электромеханических приводов и, тем более, в импульсных схемах следует использовать готовые СТ с нормированными параметрами включения и выключения, паразитными ёмкостями. Типичный пример – широко распространённые импортные комплементарные СТД серии TIP12х.
Новые «эталонные» 150- и 200-вольтовые MOSFET-транзисторы
Также в августе 2009 года компания International Rectifier анонсировала новые 150- и 200-вольтовые MOSFET-транзисторы: IRx4615 и IRx4620, соответственно. Транзисторы выпускаются в корпусе D2-Pak для поверхностного монтажа (префикс IRFS) и корпусах для пайки в отверстие TO-220AB и TO-262 (префиксы IRFB и IRFSB, соответственно). Они коммутируют ток до 35 и 25 А, характеризуются крайним низким значением заряда затвора и предназначаются для индустриальных приложений, таких как импульсные источники питания, источники бесперебойного питания, инверторы, приводы двигателей постоянного тока.
Кроме того, International Rectifier выпустила транзисторы IRx5615 и IRx5620, основные параметры которых аналогичны IRx4615 и IRx4620. Транзисторы IRx56xx специально разработаны для приложений цифрового звуковоспроизведения, в частности, для усилителей звуковой частоты класса D. Их параметры оптимизированы с целью повышения КПД усилителя, снижения уровеня электромагнитных помех и нелинейных искажений.
Рассмотрим линейки 150- и 200-вольтовых транзисторов IR (технические характеристики которых приведены в таблице 2) и сравним параметры новых и ранее выпущенных приборов.
Таблица 2. Линейка 150- и 200-вольтовых MOSFET-транзисторов (корпус TO-220AB)
Модель | VBRD, max, В | VGS, max, В | RDS(ON), max, мОм | ID, А | QG, typ, нК | RxQ, мОм х нК |
IRL3215 | 150 | 16 | 166 | 12 | 21 | 3436 |
IRFB4019 | 150 | 20 | 95 | 17 | 13 | 1235 |
IRF3315 | 150 | 20 | 70 | 21 | 63 | 4431 |
IRFB23N15D | 150 | 30 | 90 | 23 | 37 | 3330 |
IRFB33N15D | 150 | 30 | 56 | 33 | 60 | 3360 |
IRFB4615 | 150 | 20 | 39 | 35 | 26 | 1014 |
IRFB5615 | 150 | 20 | 39 | 35 | 26 | 1014 |
IRFB41N15D | 150 | 30 | 45 | 41 | 72 | 3240 |
IRF3415 | 150 | 20 | 42 | 43 | 133 | 5599 |
IRFB52N15D | 150 | 30 | 32 | 60 | 60 | 1920 |
IRFB61N15D | 150 | 30 | 32 | 60 | 95 | 3040 |
IRFB4321 | 150 | 30 | 15 | 83 | 71 | 1065 |
IRFB4115 | 150 | 20 | 11 | 104 | 77 | 847 |
IRF630N | 200 | 20 | 300 | 9 | 23 | 6990 |
IRFB17N20D | 200 | 30 | 170 | 16 | 33 | 5610 |
IRFB4103 | 200 | 30 | 165 | 17 | 25 | 4125 |
IRFB4020 | 200 | 20 | 100 | 18 | 18 | 1800 |
IRF640N | 200 | 20 | 150 | 18 | 45 | 6705 |
IRFB23N20D | 200 | 30 | 100 | 24 | 57 | 5700 |
IRFB4620 | 200 | 20 | 73 | 25 | 25 | 1813 |
IRFB5620 | 200 | 20 | 73 | 25 | 25 | 1813 |
IRFB31N20D | 200 | 30 | 82 | 31 | 70 | 5740 |
IRFB42N20D | 200 | 30 | 55 | 43 | 91 | 5005 |
IRFB38N20D | 200 | 30 | 54 | 44 | 60 | 3240 |
IRFB260N | 200 | 20 | 40 | 56 | 150 | 6000 |
IRFB4227 | 200 | 30 | 26 | 65 | 70 | 1820 |
IRFB4127 | 200 | 20 | 20 | 76 | 100 | 2000 |
Анализ таблицы показывает, что новые приборы IRFB4615 и IRFB5615 могут быть предложены в качестве замены таким изделиям, как IRFB33N15D и IRFB41N15D, а IRFB4620 и IRFB5620 — для замены транзистора IRFB23N20D. Однако отметим, что максимально допустимое значение управляющего напряжения VGS у новых приборов равно 20 В (вместо 30 В у ранее выпускавшихся). Следовательно, анализ электрической схемы все же необходимо провести. Вывод: комплексный показатель потерь снижен в три и более раз. Цена IRFB46xx незначительно, но — ниже, чем у предыдущих изделий. Для IRFB56xx экономия составляет 30…40%.