Схема простого триггера на одном реле, схема включения и выключения одной кнопкой.

Название промежуточные реле возникло не от принципиального отличия рабочего механизма устройства от других реле, а скорее от функционального назначения этого вида. Переключение механических контактов производится электромагнитом, в полупроводниковых моделях через р-n-р переходы. Основным назначением промежуточных элементов является управление коммутацией цепей с большим напряжением и током, систем питания или отдельных установок, электродвигателей станков. Отличительным признаком промежуточных реле можно считать наличие нескольких групп с большим количеством контактов. Такая конструкция позволяет управлять целой сетью коммутаций при одном срабатывании.

Назначение и область применения промежуточных реле

Трудно перечислить отрасли промышленности, отдельные направления индустрии в которых используются промежуточные реле. Во всех отраслях промышленности, приборах для бытового применения, особенно в элементах систем с электронным, электротехническим оборудованием может быть установлено промежуточное реле.

Можно выделить несколько случаев как используют вспомогательные реле в сложных электротехнических комплексах:

  • Для коммутации участков в различных независимых друг от друга сетях;
  • Для увеличения задержки срабатывания защитных элементов в цепях большими токами нагрузки;
  • Во вторичных цепях, для контроля параметров и режимов работы отдельных элементов в цепях высокого напряжения;

Одно реле на производственной линии может выполнять одновременно или последовательно несколько коммутаций в цепях питания или управления. В системах подогрева и водоснабжения при включении глубинного насоса, подается питание на катушку реле, при замыкании группы контактов включается система контроля, за работой насоса. На дисплее оператора отображаются основные параметры наличие напряжения, на насосе, токи нагрузки на каждой фазе, температура и другие в зависимости от сложности схемы, по мере необходимости.

Другая пара одновременно замкнет контакты подачи питания на катушку магнитного пускателя, при срабатывании которого ток пройдет на все три фазы электродвигателя насоса. В случае если пускатель собран по реверсивной схеме, другая группа одновременно отключает реверсивную схему, исключая короткое замыкание.

В системе подогрева сигнал со слабыми токами не способен включать катушки мощных магнитных пускателей или реле. Поэтому промежуточное реле выступает как усилитель управляющего сигнала, сигнал с теплового датчика включает промежуточное реле, контакты которого подают напряжение на обмотки магнитного пускателя, контакты которого замыкаются и питание подается на тэны, кипятильники или другие мощные нагревательные приборы.

Схема реле с управлением одной кнопкой

Эта схема представляет собой аналог кнопки с фиксацией. Вся конструкция очень проста и реализована на самом реле и одном транзисторе. При первом нажатии на кнопку транзистор открывается током разряда конденсатора, реле замыкается и блокируется по базовой цепи транзистора своими же контактами. Конденсатор при этом отключается от питания и, если отпустить кнопку, быстро разряжается через диод и резистор. Если теперь нажать на кнопку вторично, то транзистор запрется и отключит реле. Естественно, реле должно иметь вторую пару контактов.

Правда если надо таким образом управлять включением сетевого питания, то возникает проблема, заключающаяся в том, что в начале схема обесточена. В телевизорах при включении их от пульта или в компьютерах с корпусами АТХ это решается тем, что при подключении шнура питания подобная схема сразу получает питание, а уж включать основное питание будем позже. Что касается твердотельных реле – информация по ним находится в этой статье.

Форум по автоматике

  • БИСТАБИЛЬНЫЙ ТРИГГЕРНЫЙ ПЕРЕКЛЮЧАТЕЛЬ
  • МОНОСТАБИЛЬНАЯ КНОПКА
  • КНОПКА С ДАТЧИКОМ СИЛЫ НАЖАТИЯ
  • ИМПУЛЬСНОЕ БИСТАБИЛЬНОЕ РЕЛЕ НА 12 В

Конструкция и принцип работы промежуточного реле

Это изделие можно сравнить с миниатюрным магнитным пускателем, количество групп контактов в котором определяется схемой, где он применяется его функциональным назначением.

Не во всех схемах они могут применяться для коммутации цепей электропитания основное их назначение, передача сигналов управления. Это связано с тонкими пластинами контактной группы, редкие модели способны пропускать длительное время рабочий ток выше 10 А.

Классическая конструкция малогабаритного промежуточного реле включает в себя следующие элементы:

  • Основание, на котором крепятся все составляющие;
  • Электромагнитная катушка с сердечником;
  • Подвижная пластина с рычагом для смещения подвижной группы контактов;
  • Пружина привода рычага в исходное состояние после снятия управляющего напряжения с обмотки катушки;
  • Панель с группой контактов;
  • Клеммы на основании для подключения проводов к контактам коммутации и катушки.

Как пример разновидности можно привести конструкции промежуточного реле в системе управления тепловозов.

Алгоритмы работы реле времени, функциональные диаграммы, условные обозначения

По каким алгоритмам могут работать реле времени

Выше уже упоминалось, что любые реле могут работать на замыкание, размыкание и переключение контактов при необходимом управляющем воздействии. А в реле времени предусматривается или пауза после такого воздействия, или даже соблюдение определенной цикличности срабатывания.

Различают немало алгоритмов работы реле времени. Ниже на схемах будут рассмотрены наиболее часто применяемые.

На схемах верхним графиком (голубого цвета) показывается напряжение питания, подаваемое на реле. Нижний график – выходное напряжение, идущее от реле на исполнительное устройство (на нагрузку). Красными стрелками показываются диапазоны установленной задержки срабатывания.

Еще одно замечание. Управляющие сигналы для реле могут подаваться по разному.

— Это может быть общее напряжение питание, подаваемое на прибор. Такие реле так и называется – с управлением по питанию.

— Для управления используется отдельная цепь подачи внешнего сигнала.

На приведенных ниже схемах, просто для более понятного восприятия, будут в основном показаны (за одним исключением) алгоритмы для реле с управлением по питанию. Но и для второго варианта они, в принципе, такие же.

Алгоритм 1


Схема алгоритма №1

Реле времени с задержкой включения. После включения питания выходной сигнал будет передан на нагрузку по истечении установленной паузы Т.

Алгоритм 2


Схема алгоритма №2

Выходной сигнал в данном варианте передается на нагрузку сразу после включения питания. Но через установленный интервал Т – прерывается.

Алгоритм 3


Схема алгоритма №3

Включение нагрузки происходит одновременно с подачей общего питания. Но выключение производится после выдержки паузы Т с момента снятия напряжения питания реле.

Алгоритм 4


Схема алгоритма №4

Цикличная работа реле времени, с паузой на старте. После подачи напряжения питания выходной сигнал на нагрузку появляется через интервал Т1. Этот сигнал выдерживается в течение определенного установленного интервала Т2. Затем происходит размыкание, с повторной паузой Т1, после чего вновь включение нагрузки на время Т2 и так далее до полного снятия напряжения питания.

Алгоритм 5


Схема алгоритма №5

Один из вариантов с постоянно подключенным питанием и управлением с помощью внешнего сигнала. При подаче управляющего импульса (или, наоборот, при его снятии – показано высветленным цветом и пунктиром) срабатывает реле и коммутирует питание на нагрузку. Питание подается в течение установленного периода Т1, после чего автоматически отключается, до поступления очередного управляющего импульса.

Эти алгоритмы можно назвать базовыми. А уже из них, как из «кирпичиков», могут выстраиваться куда более сложные схемы, реализованные в реле различных конструкций и моделей.

Одна из самых важных характеристик реле времени – функциональная диаграмма

Кстати, показанные выше графические схемы имеют название функциональных диаграмм реле, и обычно указываются на корпусе прибора или в его технической документации. То есть при выборе требуемого изделия для определенных нужд, умея читать такие диаграммы, можно отыскать подходящую модель.

Ниже на двух иллюстрациях будет продемонстрировано многообразие функциональных диаграмм реле времени, предлагаемых в продаже. Это показывается лишь в качестве примера, так как на самом деле выбор может быть намного шире. Обратите внимание и на то, что некоторые реле могут иметь несколько выходов на нагрузку, а также несколько каналов получения внешнего управляющего сигнала.

Примеры функциональных диаграмм реле времени с управлением по питанию.


Функциональные диаграммы реле времени – таблица А

Примеры функциональных диаграмм реле времени с управлением внешним сигналом.


Функциональные диаграммы реле времени – таблица Б

Значения временных интервалов Т, Т1, Т2 и т.д. чаще всего имеет возможность устанавливать пользователь. Правда, существуют модели реле времени, в которых время срабатывания уже предустановлено и изменению не подлежит. Но это приборы специального предназначения, обычно устанавливаемые в схемах защит электрических приборов и установок. Естественно, величина задержки в таком случае указывается в техническом описании изделия.


В одном реле времени может быть реализовано несколько алгоритмов его работы, с возможностью выбора. А функциональные диаграммы и схемы контактов обычно изображены на корпусе изделия.

Обозначения контактов реле времени на схемах

При выборе реле времени необходимо уметь разбираться не только в функциональной диаграмме, но и в схеме расположения контактов. Обычно встречаются вот такие принятые обозначения:

А. Контакты, работающие на размыкание цепи.


Условные обозначения контактор реле времени, работающих на размыкание

1 — дуга обращена вниз: задержка срабатывания после подачи управляющего напряжения;

2 — дуга обращена вниз: задержка срабатывания после снятия управляющего напряжения;

3 — две противоположно направленные дуги: задержки и при подаче управляющего напряжения, и при его снятии.

Б. Контакты, работающие на замыкание цепи.


Условные обозначения контактор реле времени, работающих на замыкание

Условия срабатывания, понятно, можно не расписывать – они такие же, как в предыдущем примере.

Классификация разновидностей промежуточных реле

Вариантов много, рассмотрим основные разновидности:

Реле разделяют по типу переключения

  • Минимальные — снижают определенный параметр до установленного порога;
  • Максимальные – повышают определенный параметр до установленного порога;

По функциональному назначению

  • Комбинированные – соединение группы реле для решения определенной логической задачи;
  • Логические – работают с одинаковыми параметрами в дискретных электрических цепях;
  • Измерительные – регулируются интервалы определенных параметров.

По способу управления нагрузкой

  • Прямого воздействия – контакты реле подключают непосредственно нагрузку;
  • Косвенного воздействия – нагрузка подключается через цепи вторичных элементов.

По способу подключения

  • Первичные – включаются контактами в цепь напрямую;
  • Вторичные – включаются через индуктивные или емкостные элементы.

Промежуточные реле в цепях защиты имеют свои конструктивные особенности и разделяются по следующим признакам:

  • Полупроводниковые – не имеют коммутационных контактов, цепи размыкаются и замыкаются р-n-р и n-р-n переходами под воздействием управляющего напряжения. В качестве полупроводниковых элементов используются, варисторы, тиристоры, симисторы и транзисторы.
  • Индукционные – управляющее напряжение в обмотке наводится от соседней катушки, не связанной прямым электрическим контактом;
  • Магнитоэлектрические – магнит занимает неподвижное положение в конструкции, катушка с контактами на каркасе вращается, замыкая или размыкая цепи;
  • Поляризационные – работают, как электромагнитные направление переключения контактов определят полярность подключения на катушке;

Назначение и принцип работы

Во многих отраслях промышленности, тем более энергетической, переключение источников электроэнергии и потребителей выполняется постоянно — как автоматикой и защитой, так и непосредственно персоналом. Каждое из таких переключений требует учета, контроля и тщательного анализа для предотвращения нештатных ситуаций и повышения эффективности управления работой системы.


Указательное реле РУ-21 в климатическом исполнении У4 выпускаются со времен СССР

Органы чувств оператора не способны уловить колебания алгоритмов в электрической схеме, которые требуется определить для принятия того или иного оперативного решения. От таких решений часто зависит надежность и бесперебойность электроснабжения.

Для улавливания отклонений в сети в цепях устанавливаются указательные реле, изменяющие начальное состояние при изменении определенной величины в подлежащем контролю приборе. Такие реле получили название указательных (сигнальных), существует и специальное обозначение — блинкер.

Блинкеры способны указать на происходящую внутри контролируемого прибора операцию. Контакты таких устройств используются в цепях связи и коммуникаций с ограничением по току, сила которого не должна превышать 2А.

Указательные приборы позволяют оператору либо диспетчеру следить за функционированием систем и входящих в них защитных схем и автоматических приборов по:

  • индикаторам;
  • аудиосигналам;
  • расположению указателей.

Элемент, служащий для сбора и подачи данных — указательное реле. Посредством него осуществляется контроль появления напряжения либо тока на конкретном интервале схемы. После прихода к вставке происходит срабатывание устройства, перевод контактов в определенную позицию и подача команды для перемещения указателя.

В такой позиции деталь будет располагаться до осмотра реле оператором и фиксации выполненной операции. Затем элемент возвращается в первоначальное положение.

Реле указательное выполняет такие функции:

  • включается при переключении в подлежащую контролю схему обмотки поднятием груза либо натяжкой возвратной пружины элемента сигнализации;
  • срабатывает при выявлении в подлежащей контролю системе каких-либо нарушений;
  • возвращается к нормальному рабочему положению вручную после обращения внимания на сработку контролирующего систему оператора.

Расшифровка аббревиатуры промежуточных реле

Для удобного определения функционального назначения, количества контактов и других параметров реле имеют буквенные и цифровые обозначения:

  • П – промежуточное;
  • Э – электромагнитное;
  • 46 или (ХХ) – серия изделия;
  • 1 – сигналы управления импульсные.

Дальнейшие обозначения, могут определять, для каких климатических условий адаптировано изделие и количество контактных групп.

Пример как расшифровываются обозначения

РЭП26-004А526042-40УХЛ4

  • РЭП – реле электромагнитное промежуточное
  • 26 – серия
  • ХХХ – функциональное назначение и количество контактов
назначениеКоличество
замыкающиеразмыкающиепереключающие.
001+
010+
100+
002++
020++
110++
200++
003+++
120+++
210+++
300+++
004++++
220++++
310++++
400++++
  • 001 – обозначает, что реле содержит 1 переключающий контакт, 010 – один размыкающий; 400 – четыре замыкающих контакта.
  • А….Д – класс износостойкости материалов, из которых сделаны контакты;
  • Х – вид тока в обмотке электромагнитной катушки, тип конструкции возврата механизма в исходное состояние,

1 – ~ ток;

5 – постоянный ток;

6 – постоянный ток в токовой катушке;

  • ХХ – двухзначный цифровой код показывающий конструкцию крепления корпуса реле на поверхность и метод подключения проводов к клеммам:
КодразъемСпособ подключения проводов
16—-Припой
18—-“фастон”
76—-печать
21+винтовые соединения
26+припой
78+печать
  • ХХ – код показывающий величину, вид напряжения, тока в обмотке катушки
Коды электрических параметров включающей катушки
постоянный~ ток 50 Гц
01… 6 В 02…12 В 03… 15 В 04…24 В 06…48 В 09…60 В 11…110 В 13…220В21…12 В 22…24 В 24…40 В 26…110 В 27…220 В 28…380В 34…230 В 35…240 В

Коды от 01 до 13 указывают, что катушки этих реле постоянного тока с различными напряжениями от 6 до 220в. Коды от 21 до 35 указывают что катушки рассчитаны на ~I с U = 12…. 240 В частота 50 Гц.

Последнее обозначение Х указывает о наличии специальных элементов в конструкции:

2 – ручной переключатель реле;

5 – с ручной манипуляцией и электронным индикатором положения реле для изделий на 24В;

6 – с ручным манипулятором и диодом для защиты реле на 24В и меньше;

7 – реле включает все три ранее перечисленные элемента,

40 – это степень защищенности от влаги и пыли IР- 40…56..68;

УХЛ4 – модель для соответствующих климатических условий, данная для севера и средних широт. Буква «О» – указывает, что изделие адаптировано для тропиков.

РЭП26-004А526042-40УХЛ4 – данная аббревиатура указывает что промежуточное реле имеет 4 переключающих контакта с классом А (по износостойкости), постоянного тока, контактное соединение с разъемами, провода крепятся пайкой, катушка 24 В, конструкция имеет ручной манипулятор. Класс защиты IР – 40 для северных и средних широт.

Совет №1. Некоторые пренебрегают степенью защиты изделия, реле имеют тонкие контакты и чувствительны к пыли и влажности. Поэтому степень защиты обязательно надо учитывать особенно на объектах с повышенной влажностью, запыленностью. На взрывоопасных участках рекомендуется применять полупроводниковые изделия, которые не искрят в момент коммутации.

Не смотря на различные конструкции и технические характеристики, все промежуточные реле имеют основные общие параметры, по которым определяется соответствие функциональному назначению.

Разновидности реле времени

Типы реле времени по общему конструктивному исполнению

Итак, выяснили, что переключение контактов в реле времени производится с определенной задержкой после подачи или снятия питающего или управляющего напряжения. Но прежде чем перейти к рассмотрению самих устройств, обеспечивающих работу по заданному алгоритму, заметим, что реле времени по своей компоновке или общему исполнению можно разделить на несколько типов.

  • Моноблочные реле времени. Это – совершенно независимые приборы с собственным корпусом, встроенным питанием или устройством для подключения питания, с выходом, к которому можно подключать стороннюю бытовую или иную технику. Такое реле можно устанавливать в практически в любом месте по необходимости, и подключать к нему тот прибор (систему) который требует подобного управления по времени. Классическим примером может служить реле времени, с которым хорошо знакомы те, кто занимался печатью фотографий.


Такое реле времени позволяло очень точно соблюдать выбранную экспозицию фотобумаги при печатании фотографий
К приборам более широкого использования можно отнести современные реле времени (таймеры) которые останавливаются в розетку и имеют гнездо для подключения сетевой вилки нагрузки. Самый простейший пример использования – можно с вечера запрограммировать, чтобы к утреннему подъему хозяев в электрическом чайнике была вскипячена вода.


Реле времени (или таймеры), подключаемые в розетку и сами становящиеся «управляемой розеткой» для подключенного к ним электрического прибора. Как видно, могут быть электромеханическими и электронными.

  • Встраиваемые реле времени. Они не имеют собственного корпуса, являются одним из узлов электрического прибора (или предназначены для такой установки), и автономно, как правило, не применяются. Классический пример такого реле времени – это механический или электронный таймер, руководящий режимами работы стиральной машины, микроволновки, электрической духовки и т.п.


Встраиваемое реле времени, как отдельный узел общего устройства крупного бытового прибора
Такие реле могут быть электромеханическими, имеющими блочное исполнение. Другой вариант – это реле электронного типа, собранное на печатной плате, которая коммутируется с общей схемой того или иного электрического прибора.


Электронное реле времени, выполненное в виде монтажной сборки на печатной плате

  • Модульные реле времени. Как понятно уже из названия, такие приборы имеют стандартизированные размеры и предназначаются для установки на DIN-рейку распределительного щита. Там же, в щите, производится и из стационарное подключение к источнику питания и нагрузке, работой которой они будут управлять. Например, таким образом можно подключить системы освещения, которые будут работать по определенному алгоритму времени, мощные приборы отопления, скажем, с тем расчетом, чтобы их основное функционирование приходилось на часы действия льготного тарифа, вентиляционные установки для обеспечения заданной периодичности проветривания и т.п. Возможно их использование и с другими крупными бытовыми приборами, если те в своей конструкции не имеют собственного встроенного таймера.


Модульные реле времени представлены в продаже широким разнообразием моделей различной степени сложности и функциональной оснащенности
Несмотря на единообразие размеров, модульные реле времени могут значительно различаться набором возможностей, количеством каналов и программируемых интервалов. В зависимости от степени сложности и, отчасти, от допустимой мощности подключаемого к ним оборудования, такие реле могут занимать одно, два, три и даже больше модуль-мест на DIN-рейке распределительного щита.


Такое электронное реле времени с возможностью настройки суточного цикла работы займет на DIN-рейке три модуль-места

Удобно – места такие приборы занимают совсем немного, находятся не на виду, детям недоступны. Многие позволяют задавать суточный, недельный месячный или даже годовой алгоритм работы, то есть не требуют частого вмешательства в управление. Но если и возникнет нужда внести корректировки, то удобное расположение реле времени на рейке, с расположением всех органов управления на фасадной панели, позволит это сделать безо всякого труда.

Типы реле времени по принципу работы

Теперь стоит разобраться, что за механизмы обеспечивают задание необходимого временного интервала. По этому критерию реле времени можно подразделить на несколько типов – это электромагнитные приборы, устройства с пневматическим или гидравлическим замедлителем, моторные, реле с механическим часовым механизмом и электронные.

Цены на реле времени CRM

реле времени CRM

Рассмотрим их вкратце в перечисленном порядке

Электромагнитные реле времени

Они обычно применяются в каскадах пуска и остановки мощного оборудования – позволяют несколько разнести по времени запуск отдельных узлов (механизмов) во избежание резких скачков нагрузки на линию питания.

Принцип работы узла замедления срабатывания заключается в следующем. Конструктивно реле представляет собой электромагнитную катушку. Перемещение притягиваемого к сердечнику катушки якоря передается на механизм замыкания-размыкания контактов. Но на общий сердечник с катушкой надета гильза (чаще всего – медная), которая становится дополнительным короткозамкнутым контуром.


Принцип устройства электромагнитного реле времени

При подаче напряжения питания на катушку в этой дополнительной «обмотке» наводится ЭДС, создающая ток с таким направлением, что он получается в «противоходе» току в основной катушке. То есть своеобразно «гасит» скорость нарастания напряженности электромагнитного поля, необходимого для притягивания якоря реле. И в итоге срабатывание контактной группы происходит не мгновенно при включении питания, а с задержкой, длительность которой можно регулировать уровнем пожатия пружины якоря. Диапазон задержки обычно лежит в пределах о 0,07 до 0,15 секунд.


«Классический» пример электромагнитного реле времени – используемая в цепях питания мощного оборудования модель РЭВ 812

При выключении питания происходит обратная картина – за свет наличия дополнительной обмотки-гильзы наблюдается своеобразный эффект «инерции», и размыкание контактов тоже происходит с задержкой. Она может составлять от 0,5 до 1,5÷2 секунд.

Пневматические или гидравлические реле времени.

Вряд ли с ними придется иметь дело в бытовых условиях – они тоже ставились только на мощное обрабатывающее оборудование. Но с механизмом замедления познакомиться все же будет интересно, потому как он имеет довольно оригинальную конструкцию.


Реле времени РВП 72-3221 с пневматическим замедлителем срабатывания

Конструктивно такие реле обязательно включают камеру с диафрагмой, в которую упирается подвижный узел (колодка), вызывающая переключение контактов. При снятии напряжения с обмотки катушки колодка освобождается и под действием пружины начинает перемещаться. Но движение колодки тормозится диафрагмой — до выхода воздуха из пневмокамеры. А скорость выпуска воздуха зависит от сечения отверстия, которое, в свою очередь, регулируется специальной иглой.

Регулировки интервала замедления срабатывания могут проводиться в достаточно широком диапазоне и с высокой степенью точности.

Помимо пневматических, существуют и гидравлические замедлители, в которых через регулируемое отверстие между камерами перепускается жидкость (например, трансформаторное масло). Но принцип срабатывания при этом не меняется.

Моторные реле времени

Такие устройства тоже, похоже, уже становятся пережитками прошлого, хотя могут еще встречаться на старых образцах примышленного оборудования.


Принцип работы моторного реле времени

Характерная особенность таких приборов – это наличие, кроме присущей большинству реле катушки, еще и собственного электропривода. При включении питания оно подается и на катушку, и на электродвигатель, с которого вращение передаётся по системе зубчатых передач рабочим колесам. На этих колесах (имеющих градуировку по времени) есть специальные выступы, которые в определённый момент вызовут замыкание или размыкание контактов цепи питания катушки. Ну а включение или выключение питания на обмотке катушки, в свою очередь, обеспечивает необходимую коммутацию подключенных к реле времени силовых линий.

Цены на реле времени Feron

реле времени Feron

Время срабатывания устанавливается начальным положением рабочего колеса. Кстати, в одном реле таких колес может быть и несколько, что позволяет организовывать довольно сложные алгоритмы управления подключенной нагрузкой.


Моторное реле времени ВС-33

Реле времени с анкерным (часовым) механизмом

Самый простой и очень наглядный пример аналога подобных реле времени – это обычные настольные часы с будильником, работающие от батарейки. Время срабатывания устанавливается отдельной специальной стрелкой. И когда часовая стрелка сравняется с ней – произойдет замыкание контакта, и питание будет подано на генератор звукового сигнала.

Безусловно, сами реле времени устроены несколько сложнее, да и нагрузка к ним подключается куда более мощная, чем миниатюрный биппер. Но принцип действия – очень схожий. Механизм отсчета времени – практически полная аналогия с обычными часами. В некоторых реле старых образцов – даже пружина заводится вручную, по мере необходимости. В других – завод осуществляется автоматически при включении питания за сет перемещения электромагнитного якоря.


Реле времени с часовым механизмом РВ 235 УХЛ4. С производства давно сняты, но у некоторых хозяев продолжают верно служить

Реле с часовым механизмом в продаже представлены в широком разнообразии. Большой популярностью у пользователей пользуются модели с циферблатом, разделенным на 24 часа, а каждый час делится еще обычно на четыре отрезка по 15 минут. Каждому такому минимальному интервалу соответствует подвижный сектор (штырек, рычажок, в зависимости от модели).

При подключении реле к сети циферблат начинает вращаться с угловой скоростью один оборот в сутки. На циферблате выставляется текущее астрономическое время. Ну а затем несложно запрограммировать алгоритм срабатывания реле – нажатием (откидыванием или иным перемещением) подвижных секторов, соответствующих тем периодам времени, когда питание на нагрузку должно быть включено.


Программирование алгоритма срабатывания такого реле времени – несложное и интуитивно понятное

Подобные реле времени выпускаются в модульном или моноблочном исполнении, то есть или устанавливаются в распределительном шкафу, или напрямую подключатся в розетку. Невысокая стоимость и простота в эксплуатации снискали им широкую популярность. Точность выставления диапазона и срабатывания реле, безусловно, нельзя назвать высокой (минимальная градация в 15 минут), но для большинства бытовых приборов этого бывает вполне достаточно.

Ну а если требуются более точные настройки, вплоть до секундной градации, то лучше всего сразу приобрести электронное реле времени.

Узнайте, как подключить розетку, а также ознакомьтесь с пошаговыми примерами правильного подключения провода к розетке.

Электронные реле времени

Электронные реле времени в настоящее время все активнее вытесняют своих электромеханических «собратьев». Это понятно – привлекает высокая точность срабатывания, возможности программирования на длительный период: на неделю месяц и даже более, с учетом чередования выходных и праздничных дней, смены сезона, других факторов, влияющих на предполагаемый режим работы подключенных к реле электроприборов.


Электронное реле времени с богатым набором возможностей программирования алгоритма управления подключенными электрическими приборами или системами

В этой категории тоже есть свое подразделение по технологии отсчета времени срабатывания. Углубляться в тему не будем – этот вопрос, скорее, интересен специалистам-электронщикам.

Можно лишь вкратце пояснить, что самые простые электронные реле отсчитывают время с помощью RC-цепочек (резистор + конденсатор). Время зарядки конденсатора зависит от номинала самого конденсатора и включенного с ним в цепь резистора. То есть это легко просчитывается, и плавным изменением номиналов элементов схемы или сменой цепочек (в некоторых реле их несколько) можно установить нужный интервал задержки срабатывания.

Более сложные реле времени оснащены специальными микросхемами или каскадом полупроводниковых приборов, обеспечивающих необходимую задержку по времени. Ну а самые современные на сегодняшний день имеют микропроцессорные блоки и кварцевые генераторы опорной частоты. Так что отсчёт времени в них происходит с максимальной точностью, а энергонезависимая память позволяет проводить программирование алгоритма работы.


Электронное реле времени модульного исполнения с аналоговой настройкой параметров работы. Сравнительно недорого и очень часто – вполне достаточно.

Ассортимент электронных реле времени – очень широк. Вполне можно приобрести относительно недорогую модель с аналоговой настройкой параметров и обеспечивающее простейшие операции включения-выключения силовой линии с требуемой задержкой или по определённому алгоритму. Часто для реализации задуманной автоматизации того или иного процесса и такого прибора бывает вполне достаточно. Более совершенные реле времени оснащаются цифровыми жидкокристаллическими дисплеями и кнопочной (сенсорной) системой управления с точностью выставления параметров буквально до долей секунды. Удобно, но и стоимость, безусловно, растет пропорционально.

Можно еще добавить, что электронные реле времени могут выпускаться в любом из исполнений – как отдельные приборы-моноблоки (например – опять же, вариант «розетка с таймером»), в виде плат или блоков для установки в оборудование, или в модульной компоновке для размещения на DIN-рейке.

Видео: Пример использования электронного реле времени KEMOT URZ2001-1

* * * * * * *

К слову, немало «ломается копий» по поводу, как же правильнее называть подобные устройства – реле времени или таймерами. Приводятся доводы, что работа реле увязывается с астрономическим временем, а таймер лишь производит обратный отсчет заданного интервала. Или наоборот, что реле должно лишь обеспечивать задержку включения и выключения, а все что касается возможностей программирования (задания алгоритма работы) – это таймеры. Таким образом, утверждения прямо противоречат друг другу.

По мнению автора этой статьи, «граница» между этими типами приборов, если она и есть – весьма условная. И морочить себе голову тонкостями терминологии – вряд ли в данном случае имеет смысл. Главное – разобраться и суметь сформулировать: для чего вам требуется устройство управления и какими функциями оно должно обладать. И можете не сомневаться, что грамотный продавец-консультант прекрасно вас поймет и предложит оптимальную модель. А в паспорте у нее, кстати может быть указано и таймер, и реле времени. А нередко – и оба термина сразу, через тире или в скобках.

Основные технические параметры промежуточных реле

Все реле, в том числе и промежуточные, оцениваются по следующим параметрам:

  • Величина коммутируемого напряжения;
  • Номинальное значение тока на коммутационных контактах;
  • Минимальный ток коммутации;
  • Допустимый кратковременный ток через контакты коммутации;
  • Интервал величины напряжения на катушке электромагнита;
  • Потребляемая мощность катушкой включения;
  • Время замыкания;
  • Время размыкания контактов;
  • Износостойкость контактов оценивается количеством срабатывания реле;
  • Предельно допустимая мощность нагрузки, которая подключается через контакты реле.

Это общие параметры технических характеристик, в зависимости от конструкций и назначения могут быть дополнительные. Рассмотрим конкретные технические характеристики на примере РЭП – 26 различных модификаций.

параметрывеличина
Интервал коммутируемых напряженийПеременное 5–381 В Постоянное 5-221 В
Номинальный ток на контактах10,1 А9,1 А8,1 А6А
Минимальный ток контактов0,06 А0,01А
Сквозной ток на контактах (А)161А
Интервал изменений напряжения в цепи управления+5,1 %-15,1%
мощность потребления катушкой— при пост. токе с 1-3 контактами — при пост. токе с 4 контактами — при переменном токе1,6 кВ2,1 кВ3,1 кА
Время срабатывания, не более.0,03 сек
Время отпускания, не более.0,03 сек
Механическая износостойкость.30 миллионов срабатываний
Отключаемая мощность— при переменном токе — при постоянном токе1,6кВт3кВт150 Вт250 Вт

Подключение промежуточного реле в схемы с нагрузкой различного назначения

Большая часть моделей промежуточных реле адаптированы к стандартным условиям монтажа, на плоскую поверхность или на дин-рейку в распределительном шкафу. После установки реле можно подключать в электрическую схему системы:

  • В первую очередь проверяется работоспособность реле, для этого подключают контакты катушки ( 13 и 14) к источнику питания, при этом слышен характерный щелчок переключения контактов.


На данной схеме контактора показано положение при отсутствии питания на катушке.
При подаче напряжения 220, 24 или 12в контакты 9 – 10 – 11 – 12 замкнутся на соответствующие пары 5 – 6 – 7 – 8.


В данной схеме подключения реле исполняет роль контактора распределяющего подачу питания на элементы нагрузки.

  • Нейтральный провод напрямую подключен к одному из контактов катушки;
  • Фаза подключается через нормально замкнутую кнопку «Стоп», работающую на размыкание цепи;
  • Последовательно кнопки «Стоп» включается кнопка пуск, разомкнутая в нормальном состоянии и работающая на замыкание цепи;
  • Второй контакт кнопки пуск подключается к фазе;
  • Фазы подключаются к нормально разомкнутым контактам;
  • Нагрузка к нормально замкнутым контактам;
  • Один из контактов выхода к нагрузки подключается между кнопкой пуск и стоп, после пуска схема обеспечит постоянную подачу напряжения на катушку, контакты будут замкнуты. Отключение реле и нагрузки произойдет при разрыве цепи кнопкой «Стоп».

В качестве нагрузки могут быть самые разные электромеханические элементы, для подключения нагрузки большой мощности промежуточные реле управляют работой магнитного пускателя с контактами способными пропускать большие токи. Промежуточные реле может управляться датчиками, освещенности, терморегулятором или датчиком движения в зависимости от функционального назначения схемы.


Схема управления электро-нагревающей системой через термостат и магнитный пускатель

Принцип работы этой схемы аналогичен предыдущей. Только пуск осуществляется автоматически термостатом, питание подается на катушку магнитного пускателя, после чего подключаются обогревательные элементы.

Простая автоматизация: программируемые реле Easy

Здравствуйте, уважаемое сообщество! На Хабре уже много сказано слов о различных устройствах автоматизации, начиная от простых Arduino, заканчивая промышленными многопроцессорными системами. Я же хочу закрасить очередное белое пятно на карте хабро-автоматики статьей о промежуточных устройствах — программируемых реле

, на примере микропроцессорных устройств Easy производства корпорации Eaton (Moeller). Прошло уже достаточно много времени с моего первого знакомства с данным типом устройств, но по-прежнему, эти «электронные малыши» остаются незаменимыми помощниками для реализации широкого спектра инженерных и бытовых задач.

Программируемое (интеллектуальное) реле
— разновидность программируемых логических контроллеров (ПЛК). Основное применение программируемые реле нашли в качестве средств автоматизации локальных контуров, отдельных агрегатов машин и механизмов, для бытового применения. На основе интеллектуальных реле интуитивно и понятно строятся различные системы автоматического управления, например, системы управления насосным оборудованием, сверлильными станками, системы автоматического ввода резерва (АВР). Компактные размеры и простота программирования позволяют разрабатывать на базе программируемых реле элементы системы «умный дом». Стандартными средствами описания и построения программ для данных устройств являются языки релейной логики () или функциональных блоков (FBD), разработанные специально для инженеров, занятых в области автоматизации промышленности и производства. Простота языка программирования, легкость перехода от морально устаревших систем автоматизации на базе релейно-контакторных схем к микропроцессорным устройствам, позволили программируемым реле занять надежную позицию на рынке устройств автоматизации.

Теория

Реле, как основной оператор программирования

Исходя из названия описываемого класса устройств, основным оперируемым элементом будет являться реле. Реле
— электромеханическое устройство, предназначенное для коммутации электрических цепей при заданных изменениях электрических или неэлектрических входных величинах. Классическое реле имеет катушку управления
x
, и группу контактов, реализующих выходную функцию
y=f(x)
. При подаче управляющего напряжения на вход катушки контакты изменяют свое первоначальное состояние на инверсное.

Группа контактов может содержать два основных типа контактов: нормально открытые контакты

и
нормально закрытые контакты
. Нормально открытый контакт — контакт, находящийся в разомкнутом состоянии при отсутствии напряжения на катушке управления. Нормально закрытый контакт — контакт, находящийся в замкнутом состоянии при отсутствии напряжения на катушке управления.

Таким образом можно записать два основных типа функций, реализуемых с помощью реле: y(x) = x

— для нормально-открытых контактов;
y(x) = x̅
— для нормально-закрытых контактов.

Остальные типы функций, реализуемых с помощью реле, основываются на придании контактной группе дополнительных свойств. Функции и типы контактов реле показаны на рисунке ниже.

1 — катушка реле (управляющая цепь), 2 — нормально открытый контакт, 3 — нормально закрытый контакт, 4 — нормально открытый контакт с замедлителем при срабатывании, 5 — нормально открытый контакт с замедлителем при возврате, 6 — нормально открытый контакт импульсный, 7 — нормально открытый контакт без самовозврата, 8 — нормально закрытый контакт без самовозврата, 9 — нормально закрытый контакт с замедлителем при срабатывании, 10 — нормально закрытый контакт с замедлителем при возврате.

Элементы теории дискретных автоматизированных устройств

Под дискретным автоматизированным устройством
понимают управляющее устройство, осуществляющее переработку априорной и текущей информации в управляющую, причем носителями всех перечисленных составляющих информации являются дискретные по уровню и во времени сигналы. Это означает, что состояние сигнала каждого входа (выхода) автоматизированного устройства характеризуется двумя уровнями: минимальным, условно обозначаемым «0», и максимальным, обозначаемым «1». Составление структурной схемы управления по заданным условиям ее работы называют
синтезом
. Определение условий работы схемы или ее отдельных элементов по имеющейся структуре называют анализом схем управления.

Схемы на релейных и бесконтактных элементах можно составлять двумя способами.

Первый способ

опытный, широко используемый в практике логического составления релейно-контакторных схем. Исходя из заданных условий работы отдельных частей рабочей машины, составляют принципиальную схему системы автоматики. Аналогично составляют бесконтактные аналоги релейно-контактных схем, в которых заданные условия работы схемы выражаются в виде функций алгебры логики. При этом целесообразно провести минимизацию любой контактной или бесконтактной схемы, построенной таким опытным способом. Минимизация схем проводится на основе законов алгебры логики.

Второй способ

построения (синтеза) схем основан на более полном использовании теории алгебры логики и принципов формализации реальных условий работы схемы автоматики. В этом случае исходят из заданных условий работы, составляя соответствующие таблицы состояний (карты функций), где отмечают комбинации аргументов и значений функций (выходных сигналов) в виде логических «1» и «0». Основная задача синтеза заключается в определении такой формы выражения искомой логической функции, которую можно реализовать с применением минимального числа возможно более простых элементов. Синтез релейных схем управления сводится к составлению структурной формулы (аналитического выражения), описывающей логические функции, которые должны выполняться данным устройством. Затем анализируют полученную алгебраическую формулу и составляют графическое начертание схемы.

Разбор полного курса теории логики и синтеза схем выходит за рамки данной статьи, все заинтересовавшиеся данной тематикой могут подробно ознакомиться с предметом, используя ссылки на литературу (в конце статьи).

Давайте рассмотрим процесс создания схемы управления на простом примере из жизни.

Синтез релейно-контакторной схемы управления на примере
Постановка задачи

Необходимо разработать систему управления освещением офисного помещения в соответствии со следующими условиями:
Дано

Офисное помещение с одной группой основного освещения (люминесцентные лампы) и одной группой дежурного и фонового освещения. Шторы-жалюзи с электроприводом.

Необходимо

  1. По окончанию рабочего дня (18:15) обеспечить отключение группы основного освещения и обеспечить включение дежурного освещения. Если жалюзи остались закрытыми — обеспечить их открытие.
  2. Перед началом рабочего дня (8:45) обеспечить отключение дежурного освещения.
  3. При недостаточном природном освещении, обеспечить включение основного освещения по сигналу с датчика затемнения, при условии, что жалюзи открыты.
  4. Обеспечить включение фонового освещения при закрытых жалюзи. Если было включено основное освещение — выключить его.
  5. При включении фонового освещения предусмотреть автоматическое опускание жалюзи.

Дополнительные условия

  1. Датчик освещенности имеет бинарный выход, настраиваемый на определенный порог освещенности. При недостаточной освещенности — контакт замыкается.
  2. Система привода жалюзи имеет контакты, информирующие о граничных положениях.
Решение

Давайте в первую очередь определим соответствия входных и выходных сигналов проектируемой системы переменным. Условимся обозначать все входные сигналы переменными I
с соотв. индексом, а все выходные сигналы – переменными
Q
с соотв. индексом.

Входные переменные

: I1 — сигнал датчика освещенности. I2 — сигнал верхнего положения жалюзи. I3 — сигнал нижнего положения жалюзи. I4 — сигнал включения фонового освещения.

Выходные переменные

: Q1 — включение/выключение основной группы освещения. Q2 — включение/выключение дежурного освещения. Q3 — включение/выключение фонового освещения. Q4 — поднятие жалюзи. Q5 — опускание жалюзи.

Переменные времени

: T1 — достижение времени окончания рабочего дня. T2 — достижение времени начала рабочего дня.

Далее —разобьем нашу задачу на условные части и составим логические функции для каждой из частей.

  1. Конец рабочего дня Выключаем основной свет: Q1=not(T1)
  2. Включаем дежурный свет: Q2=T1
  3. Открываем жалюзи, если закрыты: Q4=not(I2)⋅T1
  • Начало рабочего дня
    1. Выключаем дежурный свет: Q2=not(T2)
  • Контроль уровня освещенности
      Включение основного света по датчику освещенности, с проверкой, открыты ли жалюзи: Q1=I1⋅ I2⋅not(T1)⋅T2
  • Управляем фоновым освещением
      Включение фонового освещения при закрытых жалюзи: Q3=I3
  • Отключим основное освещение при закрытых жалюзи Q1=not(I3)
  • Управление жалюзи в зависимости от включенного фонового освещения
      При включении фонового освещения опустить жалюзи, если не конец рабочего дня: Q5=I4⋅not(I3) ⋅not(T1)⋅T2
  • Итак, мы получили логические функции, описывающие поведение элементов нашей системы в зависимости от условий и возмущающих воздействий. Далее необходимо осуществить переход к релейно-контакторной схеме, т.е., описать работу нашей системы на реальных физических устройствах.
    Переход от функций алгебры логики к релейно-контакторной схеме очень прост. Для этого достаточно представить все входные и промежуточные переменные в виде контактов реле, а выходные функции – в виде катушек реле. Отдельное слово нужно сказать о переменных, зависящих от времени. В нашем примере это переменные, описывающие временной промежуток рабочего дня, T1 и T2. Для представления переменных, зависящих от времени, существуют специальные типы реле — реле времени и таймеры.

    Железо

    Для перехода к практической части нашей задачи нужно разобраться, на каком «железе» выгодней и удобней выполнять поставленное решение. Производители представляют достаточно широкую линейку программируемых реле для оптимального по затратам и функциональности решения определенных типов инженерных задач. Давайте попробуем разобраться в этом многообразии. Программируемое реле представляет собой, обычно, моноблочную конструкцию, имеющую клеммы подключения питания, входов, выходов, жидкокристаллический экран и органы управления.


    Вверху устройства расположены:

    • клеммы для подключения питания;
    • клеммы цифровых входов устройства;
    • клеммы аналоговых входов (0..10 В).

    Внизу устройства расположены:

    • клеммы релейных (или транзисторных) выходов устройства.

    На фронтальной панели расположены:

    • жидкокристаллический экран — для отображения информационных сообщений, редактирования программы, изменения параметров;
    • клавиатура — для навигации по меню устройства;
    • разъем для подключения кабеля программирования.
    Питание устройств

    По напряжению и типу питания программируемые реле делятся на:

    • устройства с питанием 12, 24 В (DC);
    • устройства с питанием 24, 110-220 В (AC).
    Цифровые входы

    Питание и тип питающего напряжения программируемых реле определяют значение логической единицы на цифровых входах устройства. Т.е., для того, что бы подать логическую единицу на вход устройства, необходимо приложить напряжение, соответствующее по своему значению и типу напряжению питания устройства. Таким образом, по входному напряжению существуют:

    • устройства с входами 12, 24 В (DC);
    • устройства с входами 24, 110-220 В (AC).

    В зависимости от типа программируемого реле Easy, один и более цифровых входов могут быть использованы как «быстрые счетчики» — для подсчета импульсов с частотой до 3 кГц.

    Аналоговые входы

    Для обработки аналоговых сигналов, таких как, сигналы температурных датчиков, датчиков скорости ветра, внешних потенциометров, программируемые реле Easy имеют на борту два и более аналоговых входа 0..10 В (DC). Нужно заметить, что аналоговые входы предусмотрены только на устройствах с питанием 12 В (DC), 24 В (AC, DC).

    Релейные и транзисторные выходы

    Для коммутации выходных сигналов в программируемых реле Easy предусмотрены 4 и более выходов. Выходы устройств бывают двух типов:

    • транзисторные выходы, обеспечивающие возможность коммутации небольших нагрузок до 0,5 А;
    • релейные выходы, обеспечивающие коммутацию нагрузок до 8 А (AC1).

    Устройства с транзисторными выходами преимущественно используются там, где необходима коммутация малыми токами, или стоит задача передачи сигналов выходных функций реле в другие части системы автоматики. К устройствам с релейными выходами возможно прямое подключение источников освещения, маломощных двигателей и других потребителей с активной нагрузкой не превышающей 8 А.

    Аналоговые выходы

    Программируемые реле серии Easy800
    имеют на борту аналоговый выход (0..10 В).

    Экран

    Встроенный экран предназначен для отображения текстовой (в устройствах серии Easy500, 700, 800) и графической (в устройствах серии MFD-Titan) информации.

    Коммуникации и масштабируемость системы

    Ethernet
    – возможность подключения посредством модуля расширения, реализующего функции OPC-сервера. Для всей линейки устройств.

    Profibus, CANopen, DeviceNet, As-i

    – возможность подключения посредством модулей расширения. Для устройств серии Easy700, Easy800.

    Easy-net

    – возможность соединения программируемых реле в сеть. Для устройств Easy800, MFD-Titan.

    Для устройств серии Easy700, Easy800 доступны модули расширения, позволяющие увеличить количество входов и выходов устройств. Модули расширения могут иметь крепление встык, посредством переходника, либо, устанавливаться удаленно (до 100 м). Удаленная установка удобна в том случае, если, например, вы реализуете систему управления двумя помещениями.

    К одному программируемому реле Easy может быть подключен только один модуль расширения. Программируемые реле серии Easy800 имеют на борту интерфейс Easy-net, позволяющий объединить до 8-ми устройств в единую сеть, при этом к каждому из устройств может быть подключен модуль расширения. Таким образом возможна организация системы с количеством входов/выходов до 328.

    Линейка программируемых реле Easy

    Программируемые реле Easy представлены устройствами серий Easy500, Easy700, Easy800 и MFD-Titan.

    Программируемые реле серии Easy500

    Начальная серия программируемых реле, предназначенная для решения простых задач автоматизации, таких как: управление освещением небольшого помещения, систем обогрева, контроля присутствия, управления пуском двигателей, управления компрессором или насосом.


    Основные характеристики программируемых реле серии Easy500

    • Напряжение питания и напряжение цифровых входов: 24 В и 100 – 240 В AC, 12 В и 24 В DC.
    • 8 цифровых входов.
    • 2 аналоговых входа: 0 — 10 V (0 – 1023 bit), в версиях с питанием 12 В, 24 В DC и 24 В AC.
    • 4 релейных выхода: 8 A, или 4 транзисторных выхода: 24 В DC/0.5 A.
    • 128 «строк программы» с 3-мя контактами и 1-й катушкой.
    • Реле серии Easy500 не имеют возможности подключения модулей расширения.
    Программируемые реле серии Easy700

    Устройства, сочетающие в себе все преимущества устройств Easy500-й серии, с возможностью подключения дополнительных блоков расширения: аналоговых и цифровых входов/выходов, коммуникационных модулей и тп. Данная серия программируемых реле Easy оптимальна для решения достаточно сложных задач автоматизации, с возможностью управления большим количеством сигналов (линий). Также, устройства идеальны для применения в проектах, предполагающих дальнейшее расширение возможностей системы управления с минимальными затратами.


    Основные характеристики программируемых реле серии Easy700

    • Напряжение питания и напряжение цифровых входов: 24 В и 100 – 240 В AC, 12 В и 24 В DC.
    • 12 цифровых входов.
    • 4 аналоговых входа: 0 — 10 V (0 – 1023 bit), в версиях с питанием 12 В, 24 В DC и 24 В AC.
    • 6 релейных выхода: 8 A, или 8 транзисторных выходов: 24 В DC/0.5 A.
    • 128 «строк программы» с 3-мя контактами и 1-й катушкой.
    • Возможность подключения блоков расширения.
    Программируемые реле серии Easy800

    Продвинутая, и наиболее функциональная серия устройств Easy, позволяющая реализовать гибкое решение практически любой задачи бытовой и промышленной автоматизации. Устройства серии Easy800 могут быть расширены дополнительными модулями расширения функционала и коммуникаций.
    Наряду со стандартными функциями, представленными в easy500/700, такими как многофункциональные реле, импульсные реле, счетчики, аналоговые компараторы, таймеры, часы реального времени и энергонезависимая память, easy800 дополнительно содержит ПИД-регуляторы, арифметические блоки, блоки масштабирования значений и многие другие функции. Также возможность объединения в сеть до 8 устройств, делает easy800 самым мощным программируемым реле на электротехническом рынке. При решении комплексных задач, программируемые реле Easy800 могут быть объединены в одну общую сеть устройств EasyNet. Основные характеристики программируемых реле серии Easy800:

    • Напряжение питания и напряжение цифровых входов: 24 В и 100 – 240 В AC, 12 В и 24 В DC.
    • 12 цифровых входов.
    • 4 аналоговых входа: 0 — 10 V (0 – 1023 bit), в версиях с питанием 12 В, 24 В DC и 24 В AC.
    • 6 релейных выхода: 8 A, или 8 транзисторных выходов: 24 В DC/0.5 A.
    • 256 «строк программы» с 4-мя контактами и 1-й катушкой.
    • Интегрированный интерфейс EasyNet для соединения устройств в сеть (до 8-ми устройств).
    • Возможность подключения блоков расширения.

    Практика

    Выбор устройства

    И так, мы рассмотрели практически всю линейку устройств, знаем их основные характеристики. Осталось подобрать необходимое программируемое реле для решения нашей задачи. Так как наша задача достаточно тривиальна, не требующая дополнительных коммуникационных и других возможностей устройств, воспользуемся простым алгоритмом для выбора подходящего программируемого реле Easy.

    1. Определим количество цифровых входов
      . Мы имеем 4 входные переменные I1..I4, поэтому достаточно наличие в устройстве 4-х входов.
    2. Определим напряжение питания и тип цифровых входов
      . Так как мы планируем применять программируемое реле для бытовых нужд, с питанием внутридомовой сети 220 В, 50 Гц, то наиболее подходящее устройство будет с аналогичными требованиями к питанию и значениям напряжения цифровых входов – 220 В, 50 Гц.
    3. Определим типы и количество выходных контактов
      . Для управления 5-ю выходными переменными нам необходимо выбрать устройство с соответствующим количеством выходов. Так выходы программируемого реле должны обеспечивать коммутацию внутриофисных источников света и других силовых устройств, то нам необходимо наличие релейных выходов.

    Воспользовавшись каталогом программируемых реле, выбираем тип устройства, наиболее подходящий для наших целей: EASY719-AC-RC10
    . Выбранное реле имеет на борту:

    • 12 цифровых входов (220 В, 50 Гц);
    • 6 релейных выходов (коммутация нагрузки до 8 А);
    • часы реального времени;
    • питание устройства – 110-220 В, 50 Гц.
    Среда разработки

    Для разработки систем автоматизации на основе программируемых реле Easy производитель устройств предлагает достаточно удобную и практичную в использовании среду разработки Easy-Soft
    . Программное обеспечение позволяет легко «нарисовать» вашу релейно-контакторную схему используя удобную графическую среду разработки. При необходимости, возможно выбрать один из нескольких типов отображения релейно-контакторных схем:

    • контакты и катушки отображаются в соответствии со стандартами МЭК;
    • контакты и катушки отображаются в соответствии со стандартами ГОСТ;
    • контакты и катушки отображаются согласно стандарту ANSI.

    Easy-Soft имеет в эмулятор, позволяющий произвести отладку программы без подключения физического устройства. Документация к программному обеспечению доступна на нескольких языках, включая русский. Скачать демонстрационную версию Easy-Soft вы можете по ссылке.

    Программирование

    Процесс написания программы для программируемого реле Easy сводится к «отрисовке» релейно-контакторной схемы соединения в соответствии с полученными логическими функциями и определения необходимых параметров, таких как, постоянные времени, значения таймеров и т.п. Запустим Easy-Soft и создадим новый проект. Выберем необходимый тип устройства из списка слева и перетащим его в окно проекта. При этом появится меню выбора версии устройства. Из выпадающего списка следует выбрать версию 10-хххххххх – это соответствует устройствам с поддержкой кириллицы.

    Далее следует перейти в раздел редактирования схемы соединений

    выбрав соответствующий пункт в меню слева внизу. Настройте удобный для вас вариант отображения схемы соединения с помощью соответствующего меню. Для меня удобнее первый вариант отображения, так он дает возможность просмотра программы в привычном виде – сверху вниз. Для электриков-инженеров, возможно, второй вариант будет удобнее, поскольку он максимально близко соответствует стандартным релейно-контакторным схемам.

    Перейдем от синтезированных нами логических функций системы управления освещением в разделе «теория» к релейно-контакторной схеме. Для этого достаточно представить все входные и промежуточные переменные в виде контактов реле, а выходные функции – в виде катушек реле. Так как одна строка программы может содержать только 3 контакта и одну катушку, при необходимости, следует вводить промежуточные переменные для разбивки длинных логических функций. Промежуточные переменные называются маркерами

    в идеологии релейно-контакторных схем.

    Для определения конца и начала рабочего дня удобно использовать недельный таймер

    (H), имеющий гибкие настройки по дням недели. Так же, применение недельного таймера позволяет использовать только одну переменную для определения границ рабочего дня.

    Для «отрисовки» релейно-контакторной схемы просто перетащите необходимые элементы из меню слева на рабочую область проекта. Соединение элементов выполняется с помощью инструмента карандаш. После добавления элементов на схему требуется определить их доступные параметры. Давайте посмотрим, как это сделать на примере недельного таймера.

    Недельный таймер предназначен для инициации каких-либо действий на протяжении недели, в зависимости от установленных временных границ. Таймер имеет 4 независимых канала A, B, C, D. Каждый из каналов может быть сконфигурирован на определенные временные промежутки. Например, в нашем случае, конфигурация недельного таймера обеспечивает его срабатывание с понедельника по воскресенье, с 18-45 до 8-45.

    Вы будете правы, если заметите, что в нашем примере используется офисное помещение, рабочие дни которого, обычно, с понедельника по пятницу.

    Итоговая релейно-контакторная схема нашего примера

    Отладка

    После построения релейно-контакторной схемы удобно воспользоваться режимом отладки программы. Для этого достаточно перейти в меню Имитация
    . Для имитации доступны все входные и выходные сигналы устройства, а так же, все переменные программируемого реле. Для удобства отладки — есть возможность настройки типа входных сигналов. Например, имитируя положения жалюзи, удобно настроить соответствующий входной сигнал, как кнопку с самоблокировкой. Что позволит единожды нажав на нее, зафиксировать ее положение. При использовании режима отладки текущим временем имитируемого устройства является системное время вашего компьютера.

    Прошивка

    При наличии реального физического устройства, после отладки работы релейно-контакторной схемы — необходимо прошить ее в программируемое реле. Для этого воспользуйтесь пунктом меню Коммуникация
    . Думаю, нет необходимости комментировать отдельные пункты меню, так как они интуитивно-понятны.

    Подключение и сборка системы управления

    При реализации реальных задач, следующим этапом было бы физическое подключение программируемого реле к исполнительным органам и механизмам, в нашем случае, подключение к внутриофисной сети.
    Справедливо сказать, что как и при любой разработке с нуля, системы, построенные на программируемых реле, желательно предварительно отладить в виде макетной сборки. Это достаточно просто, учитывая особенности устройсва и удобство подключения управляющих, и испольнительных органов.

    При проектировании реальных систем управления, следует руководствоваться общими правилами подключения программируемых реле. Подробную информацию о подключениях вы сможете найти в документации к устройствам (в конце статьи).

    Основным требованием при подключении нагрузки (ламп накаливания, двигателей и т.п.) — не превышать допустимых токов на группе контактов выхода устройства:

    • 8 А активной нагрузки (AC1) для устройств с релейными выходами;
    • 0,5 А — для устройств с транзисторными выходами.

    В случае превышения допустимых нагрузок, например, при управлении электрическим теплым полом, следует использовать промежуточные контакторы

    . В этом случае, нагрузка будет ограничена только мощьностью промежуточного контактора.

    Заключение

    Надеюсь, что многие, кто не знал про описываемый класс устройств, теперь имеют информацию и начальные знания, что бы приступить к реализации своих идей, возможно возникших, при прочтении данной статьи.
    Хочется верить, что мой труд не прошел даром и изложенная информация пригодится людям для практической реализации своих инженерных идей в промышленности и дома. С программируемыми реле Easy это действительно просто и увлекательно!

    Если Хабросообщество сочтет информацию интересной, на будущее планирую подготовить ряд статей по практическому применению описываемых устройств в автоматизации и промышленности. Расскажу про некоторые недокументированные возможности программируемых реле Easy, например, про то, как сделать графический интерфейс с возможностью мониторинга всех внутренних переменных. Да, вы абсолютно правы, на реле Easy можно построить систему диспетчеризации с графическим интерфейсом.

    Полезная информация

    [1] Wikipedia – алгебра логики. [2] Wikipedia – карты Карно – методы минимизации булевых функций. [3] Wikipedia – реле. [4] Документация на программируемые реле серии Easy500, Easy700. [5] Документация на программируемые реле серии Easy800. [6] Центр обучения по реле Easy – множество примеров по применению программируемых реле Easy (на русском языке). [7] Программное обеспечение для реле Easy (в т.ч., на русском языке). [8] Сайт производителя. [9] Каталог программируемых реле Easy. [10] Easy — это просто. Учебное пособие. О.А. Андрющенко, В.А. Водичев.
    Некоторые ссылки на документацию приведены не с сайта производителя, а с сайта моей компании, так как после слияния корпораций Eaton и Moeller ведется реконструкторизация внутренних ресурсов, и ссылки на документацию бывают недоступными.

    UPD 1. Добавлена литература [10] — учебное пособие для студентов ВУЗов. Примеры, лабораторные работы. UPD 2. Да, эти устройства можно программировать непосредственно с встроенной клавиатуры. Большие программы, конечно, не очень удобно набирать, но для оперативного редактирования схем — вполне можно использовать эту возможность. UPD 3. Хаброюзер ShadowHacker подсказывает, что корректнее в терминах электротехники/электроники употреблять выражение «нормально разомкнутый контакт» и «нормально замкнутый контакт». В статье оставлю первоначальную терминологию по причине того, что в русскоязычной документации и каталогах к устройству употребляются термины «нормально закрытый контакт» и «нормально открытый контакт».

    Спрос потребителей на реле различных производителей

    Производителей реле большое количество, среди отечественных часто используется продукция ФГУП «НПП «СТАРТ» в Великом Новгороде, реле РЭП-26 004. РЭП-26 002, РЭП-26 003.

    РП-21М, РП-21МН производятся на московском и в Чебоксарах ООО «ПКФ Опытный завод энергооборудования» г.Чебоксары. Это продукция пользуется хорошим спросом и даже подделывается китайскими конкурентами.

    Совет №2 При установке китайских моделей обязательно прозвоните контакты мультиметром или другими приборами, в исходном состоянии и после сработки реле. Бывает так, что контакты залипают, не замыкаются или не размыкаются.


    С правой стороны вариант китайской подделки
    Профессионалы рекомендуют использовать импортные модели от производителей

    ABB, Schneider Finder, Siemens, Electric , Relрol.

    Износостойкость контактов этих изделий намного выше, сбои в системе управления сложного оборудования могут привести к остановке производства и дорогостоящему ремонту. Поэтому рациональнее использовать более дорогие реле, но надежные.

    Ошибки при монтаже и эксплуатации

    • Одной из распространенных ошибок считается не правильный выбор технических параметров промежуточных реле. Внимательно смотрите в каких сетях используется реле, постоянного или переменного тока, какое напряжение или ток необходимо подать на управляющую катушку.
    • Обязательно учитывайте допустимые токовые нагрузки на коммутационные контакты, особенно когда реле включается напрямую для питания приборов большой мощности.
    • Старайтесь использовать реле с необходимым количеством контактов, модели с большим количеством потребляют больше электроэнергии на электромагнитной катушке.

    Часто задаваемые вопросы

    1. Можно поставить реле для управления уличным освещением, чтобы от датчик на движение одна группа осветительных приборов включалась, а другая отключалась?


    Один из вариантов схемы с использованием датчика движения
    Конечно можно, подробное описание такой схемы требует детального рассмотрения, но одно можно сказать точно, потребуется использовать реле с группой контактов для переключения.

    1. Можно использовать реле с большим количеством контактов для включения нескольких нагрузок без магнитного пускателя?

    Магнитный пускатель в электромагнитном реле однозначно присутствует, если не использовать дополнительный пускатель с контактами большой мощности, которым управляет промежуточное реле. То это можно при условии, что контакты реле длительное время смогут выдерживать ток нагрузки.

    Схема управления питанием одной кнопкой | Мастер Винтик. Всё своими руками!

    Почему такая странная схема

    Почему такая странная схема включения биполярного транзистора для примера приведена?

    Ведь в данном случае, если нет сигнала управляющего, транзистор по умолчанию закрыт и нагрузка по умолчанию под напряжением! Для того что бы этого избежать, придётся дополнительно ставить подтяжку базы транзистора, и только тогда при включении напряжения нагрузка не окажется автоматически подключенной.

    Какое освещение Вы предпочитаете

    ВстроенноеЛюстра

    Кроме того, придётся считаться с током нагрузки и выбирать сопротивление подходящей мощности, а мощные резисторы маленькими не бывают. Да и радиатор на них сложновато ставить в отличие от транзисторов.

    И наконец, резистор даёт падение напряжения, т.е. придётся учитывать, что на нагрузку у нас пойдёт меньшее напряжение, нежели даёт источник питания.

    Помимо вышесказанного, не перечислены преимущества биполярных транзисторов и недостатки полевых. Из текста на данный момент следует, что полевые транзисторы однозначно лучше, а биполярные почему то используют, но почему неясно, ведь есть же полевые, без недостатков.

    Первый вариант видео

    Для того чтобы исключить случайное включение или выключение, чаще используется задержка при нажатии. Это тоже легко реализуется в данной схеме, код ниже немного изменен и теперь включение и выключение происходит с трехсекундной задержкой:

    dim

    flag
    asByte
    ‘переменная для выполнения основной программы
    dim
    a
    asByte
    ‘для организации задержки
    config
    PORTB . 0 =
    OUTPUT
    ‘выход светодиода led
    alias
    portb . 0

    config

    portd . 3 =
    OUTPUT
    ‘управление питанием pwr
    alias
    portd . 3

    config

    INT0 =
    low
    level ‘кнопка включения/выключения
    On
    Int0 Zapusk :

    enable

    int0 ‘разрешаем прерывания
    enableinterrupts
    if

    flag = 1
    then
    ‘выполнение основной программы ‘…. ‘….
    endif
    if

    a = 3
    then
    ‘если прошло 3 секунды
    toggle
    pwr ‘включение / выключение
    toggle
    led
    goto
    ext ‘выход из цикла
    endif
    loop
    until
    pind . 2 = 1 ‘пока нажата кнопка крутимся здесь ext : a = 0
    waitms
    100 Gifr = 64

    Мнение эксперта

    It-Technology, Cпециалист по электроэнергетике и электронике

    Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

    Timer для радио Научить вас пользоваться EAGLE в этом топике не входит в мои планы в конце статьи есть ссылка на замечательный и очень простой для освоения учебник по пользованию EAGLE , я лишь расскажу, некоторые свои хитрости при создании платы. Спрашивайте, я на связи!

    Рейтинг
    ( 2 оценки, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]