Блок питания своими руками — как сделать простой универсальный регулируемый блок питания (100 фото)

Современная электротехника и электроника повально оснащена аккумуляторными батареями, которые необходимо время от времени заряжать. Без блока питания (БП), в некоторых устройствах даже встроенного, просто не обойтись. Его простую схему можно собрать своими руками при минимальных знаниях электроники, умении пользоваться паяльником.

Блок питания нужен, чтобы запитать электросхему различных устройств небольшим напряжением от 5 до 30 В.

Разновидности блоков питания

БП преобразует первичное переменное напряжение сети во вторичное, рабочее, на которое рассчитано электротехническое устройство. При этом они различаются между собой как по назначению, техническим характеристикам, так и конструктивными особенностями.

По характеру преобразования первичного напряжения во вторичное, блоки питания бывают:

  • Линейными (трансформаторными);
  • Инверторными (импульсными);
  • Стабилизированными;
  • Регулирующими.

Проще всего сделать импульсный блок питания своими руками. Его популярность обеспечена тем, что на вторичном напряжении 5 и 12 Вольт работает в основном большая часть электронной техники, такой как компьютеры, ноутбуки и смартфоны.

Добавить ссылку на обсуждение статьи на форуме

РадиоКот >Обучалка >Аналоговая техника >Собираем первые устройства >

Теги статьи:Добавить тег

Блок питания «Проще не бывает». Часть вторая

Автор: Опубликовано 01.01.1970

Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.

Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.

Стабилизатор

Схема стабилизатора показана на рисунке.

Это, так называемый параметрический

стабилизатор. Состоит он из двух частей: 1 — сам стабилизатор на стабилитроне D с балластным резистором Rб 2 — эмиттерный повторитель на транзисторе VT.

Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.

Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки. Назовем их: Uвых

— это напряжение и
Imax
— это ток.

Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.

Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых. Это напряжение определяется по формуле:

Uвх = Uвых + 3

Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.

Едем дальше.

Транзистор

Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.

Считаем:

Pmax=1.3(Uвх-Uвых)Imax

Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно. Смотри сам:

Если мы берем Uвых=14 вольтам, то получаем Pmax=1.3*(17-14)*1=3.9 Вт.

А если мы примем Uвых=1.5 вольта, то
Pmax=1.3*(17-1.5)*1=20,15 Вт
То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.

Ну вот, теперь лезем в справочник и выбираем себе транзистор. Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 — вполне приличный транзистор…

Фу, ну вроде с этим справились. Пошли дальше.

Считаем сам стабилизатор.

Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).

Iб max=Imax / h21Э min

h21Э min

— это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра — что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число — 25, с ним и будем считать, а что еще остается?

Iб max=1/25=0.04 А (или 40 мА). Не мало.

Ну давайте будем теперь искать стабилитрон. Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.

Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток — не менее 40 мА, то есть тому, что мы посчитали. Полезли опять в справочник…

По напряжению нам страшно подходит стабилитрон Д814Д

, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h21Э раз. h21Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h21Э равен 30, то есть мы можем уменьшить ток до
40/30=1.33 мА
, что нам вполне подходит.

Теперь посчитаем сопротивление и мощность балластного резистора Rб.

Rб=(Uвх-Uст)/(Iб max+Iст min)

где Uст — напряжение стабилизации стабилитрона, Iст min — ток стабилизации стабилитрона.

Rб = (17-14)/((1.33+5)/1000) = 470 Ом.

Теперь определим мощность этого резистора

Prб=(Uвх-Uст)2/Rб.

То есть

Prб=(17-14)2/470=0,02 Вт.

Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.

Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).

Выпрямитель

Итак, смотрим на схему выпрямителя.

Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.

Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт

. Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт. Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.

Едем дальше. Определим емкость конденсатора фильтра.

Cф=3200Iн/UнKн

где Iн — максимальный ток нагрузки, Uн — напряжение на нагрузке, Kн — коэффициент пульсаций.

В нашем случае Iн = 1 Ампер, Uн=17 вольтам, Kн=0,01.

Cф=3200*1/14*0,01=18823.

Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.

Осталось выбрать выпрямительные диоды или диодный мост.

Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.

Необходимое максимальное обратное напряжение считается так

Uобр max=2Uн, то есть Uобр max=2*17=34 Вольта.

А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.

Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы. Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.

<<—Часть 1—-Часть 3—>>

Как вам эта статья? Заработало ли это устройство у вас?
8117
29
71

Применение

Блок питания с регулировкой своими руками и без нее, со вторичкой на выходе в 5-12 Вольт используется для подключения различных электротехнических устройств к электрической бытовой сети 220 В.

Чаще всего это:

  • Различные персональные компьютеры (стационарные, со встроенным блоком, и ноутбуки, планшеты, нетбуки, карманные ПК);
  • Гаджеты (смартфоны, аудио и видеоплееры, сотовые телефоны, видеокамеры и прочие устройства, имеющие в своей конструкции аккумуляторную батарею);
  • Ручной портативный электроинструмент (шуруповерты, болгарки, дрели, воздуходувки и прочее);
  • Различные другие устройства, рассчитанные на низкое напряжение, способные работать без подключения напрямую к бытовой электросети (LED-светильники,бритвы, автомагнитолы, радиоприемники)

Сборка устройства

Подготовьте заранее все необходимые детали: микросхемы, трансформаторы, диодный мост, дроссель, блок защиты, конденсаторный фильтр, стабилизатор напряжения.

Обычно обмотка трансформаторов выдерживает напряжение до 250 Вт. Если делать вторичную обмотку – проводит напряжение до 50 Вт. Обмотку можно приобрести в специальном магазине либо снять со старого электроприбора.

Для того, чтобы сделать огромное количество электрических дорожек понадобится микросхема с маркировкой PDIP-8.

Чтобы получит диодный мост, понадобится четыре диода 0,2х0,5 мм. Блок защиты можно сделать из предохранителей (понадобится два) марки FU2.

  • Как починить ноутбук, который не заряжается
  • Отвертки изолированные-диэлектрические до 1000В — советы как выбрать лучшего производителя

  • Диэлектрический изолированный инструмент для работы — какой лучше выбрать? Обзор производителей, фото + видео

Как только сработают данные изделия, будет вырабатываться ток 0,16А. Чтобы сделать своими руками дроссели, возьмите магнитный феррит.

Для подключения всех запчастей, пользуйтесь специальной схемой и инструкцией, на которой все предельно доступно описывается.

Зачастую после сухих схем может быть фото самодельных устройств, где наглядно показана конструкция. Дополнительно можно найти и схемы, как отремонтировать блок питания, в случае если он сломался.

Комплектующие

Для сборки схемы БП на 12 Вольт нам понадобится:

  • Термистор;
  • Конденсаторы (2 шт.);
  • Диодный мост;
  • Драйвера;
  • Трансформатор;
  • Диоды для выхода;
  • Транзисторы полевые;

Проверка работы под нагрузкой

После монтажа и сборки блока питания необходимо убедиться, что всё сделано правильно. Для этого нужно:

  • Подключить нагрузку на выход блока питания. Подойдет любой гаджет;
  • Включить БП в электросеть.

Если подключенное к блоку питания устройство (гаджет) начал заряжаться, то схема собрана правильно и вполне работоспособна.

Необычный блок питания

Иногда нужен регулируемый БП в диапазоне от 0 до 30 В. Такой блок питания называется лабораторным. Собирается он в такой последовательности:

  • Устанавливаем на печатную плату детали, способные регулировать напряжение (предохранитель, стабилизатор и резисторы);
  • Монтируем фильтрующие конденсаторы. Для плавной регулировки напряжения.
  • Подключаем силовые транзисторы;
  • Подключаем питание для периферии и LM301;
  • Устанавливаем операционный усилитель и детали, способные стабилизировать ток (резисторы, конденсаторы, диоды);
  • Устанавливаем LM113 или LMV431 (нуль) и защитные диоды;
  • Настраиваем ограничитель максимального тока;
  • Подключаем вольтамперметр


Блок питания на 0-30 Вольт своими руками собран. Осталось лишь подключить его в сеть, проверить под нагрузкой. И если схема собрана правильно, не допущено каких-либо ошибок, то он обязательно заработает.

  • Вентилятор своими руками: как сделать самодельный мощный вентилятор. Основные параметры и свойства вентиляторов (130 фото)

  • Зачем нужна охранная сигнализация, какие функции она выполняет
  • Как выбрать зимнюю спецодежду, и не ошибиться — рекомендации от профи

Информация о приборе

В жизни очень часто возникают ситуации, когда нужен такой прибор, как блок питания. От этого изделия можно запитать многие электрические приборы. Конечно, в такой ситуации можно использовать различные аналоги, например, автомобильные аккумуляторы. Но у них есть большой недостаток, который заключается в подаче постоянного напряжения в 12 В. А этого не хватает для подпитки стандартной бытовой аппаратуры. Отличным решением в таких ситуациях будет использование импульсного преобразователя тока (регулируемого блока питания). Особенность такого прибора является возможность преобразовывать имеющееся напряжение, например 12 В, в то, которое нам нужно – 220 В. Это стало возможным благодаря особому принципу работы. Он заключается в конвертировании переменного напряжения, имеющегося в сети с частотой 50 Гц, в аналогичное прямоугольного типа. После этого напряжение подвергается трансформации с целью достижения требуемого значения, выпрямляется и отфильтровывается. Схема работы такого прибора имеет следующий вид.

Схема

БП обладает повышенной мощностью (благодаря транзистору) и может одновременно выполнять роль ключа и импульсного трансформатора, преобразуя напряжение тока. Обратите внимание! Эффективность работы блока питания (регулируемого типа) повышается входе нарастания частоты. Ее увеличение дает возможность значительно уменьшить вес и размеры используемого внутри изделия стального сердечника. Импульсный тип блока питания может быть двух типов:

  • управляемые извне. Такой блок питания используется в большинстве электрических приборов;
  • автогенераторы импульсного типа.

Заводская модель

Схема сборки для каждого типа блока питания будет отличаться. При этом выпускаемые серийные модели могут иметь разные показатели мощности и габариты. Все зависит от специфики их использования.

Заводские приборы такого типа функционируют в частотном диапазоне от 18 до 50 кГц. Но такую модель можно сделать при желании и своими руками. Некоторые любители радиоэлектроники могут даже переделать старый блок питания под новые потребности. Для новичков существует простая схема, которая позволит справиться с ней даже совсем неопытному человеку. Такая переделка ничем не будет уступать по качеству и техническим параметрам покупной модели.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]