В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.
Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.
Что такое электрический ток и напряжение
Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:
- сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
- мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
- частота, измеряемая в герцах (Гц).
Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.
Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.
Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).
Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.
Что такое переменный ток
Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.
Определение и свойства
Гальваническая батарея выдаёт стабильную разницу потенциалов на полюсах в течение длительного времени до момента завершения в ней химической реакции. Ток от подобного источника называют постоянным. Простое определение переменного тока, понятное для чайников и приемлемое для специалистов, можно построить от обратного: AC есть поток зарядов в проводнике, периодически меняющий свою величину и направление. В сетях энергоснабжения он регулярно изменяет амплитуду и полярность.
Эти изменения представляют собой бесконечные повторения последовательности идентичных циклов, формирующих на экране осциллографа синусоиду, в отличие от DC, который визуализируется как прямая.
Поскольку из определения переменного тока следует, что изменения параметров являются регулярными, переменное электричество обладает рядом свойств, связанных с качеством и формой его отражения на графике. Эти основные свойства можно представить следующим списком:
Частота. Одно из наиболее важных свойств любого регулярного сигнала. Определяет количество полных циклов за конкретный период. Измеряется в герцах (циклах в секунду). В Европе для сетей электроснабжения составляет 50 Гц, в США и Канаде — 60 Гц.
Период
Иногда важно знать количество времени, необходимое для завершения одного цикла электрического сигнала, а не числа циклов в секунду времени. Период — понятие логически обратное частоте, означающее длительность одного цикла в секунду. Длина волны
Характеристика, похожая на период, но может быть измерена из любой части одного цикла к эквивалентной точке в следующем. Амплитуда. В контексте электрического тока — это наибольшее значения АС относительно нейтрального. Математически амплитуда синусоиды есть значение этой синусоиды на пике. Однако если речь идёт о системах питания, то лучше обращаться к понятию эффективного тока. В качестве эквивалента используется количество работы, которую способен сделать постоянный ток при напряжении, равном амплитуде исследуемого переменного тока. Для синусоидальной волны эффективное напряжение составляет 0,707 от амплитуды.
В случае с АС наиболее важные свойства — частота и амплитуда, так как все виды оборудования разрабатываются с учётом соответствия этим параметрам в линии электропередачи. Период требует внимания при проектировании электронных источников питания.
Источники электрического тока
Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.
Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.
Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.
Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.
Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.
Краткая история электричества
Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.
Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.
Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.
В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».
Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.
Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.
Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.
Дальше пойдет перечисление важных для истории электричества открытий.
1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.
1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.
Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.
На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали – остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.
Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.
Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы
20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.
Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.
Преобразование переменного тока в постоянный
Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.
Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.
В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.
Война токов
Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.
Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.
В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.
Тесла и Эдисон
Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей – война токов.
Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.
Где используется и в чём преимущества переменного и постоянного тока
Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.
Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.
Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.
Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).
Используемые виды
В большинстве случаев под тем, какой ток называется переменным, подразумевают электричество из бытовой сети. Для многих далёких от электрики и электроники людей было бы неожиданностью узнать, что под АС подразумевается значительно более широкое понятие, чем электричество из розетки.
Краткий перечень переменных токов, используемых в сетях питания:
- Однофазный. Простой вид, переменный по направлению. Коммерческий его тип имеет синусоидальный вид на графике и передаётся по двум проводникам.
- Трёхфазный. Электричество для промышленных нужд обычно поставляется в виде трёх отдельных синусоид с пиками амплитуды в трети цикла друг от друга. Для передачи энергии таким способом требуется три (иногда четыре) проводника.
- Двухполупериодный выпрямленный однофазный. Полученный из переменного с помощью выпрямителя таким образом, чтобы обратная половина цикла сменила полярность. Его можно рассматривать как пульсирующий постоянный ток без интервала между импульсами.
- Полностью выпрямленное трёхфазное напряжение. Однополярный ток с небольшой пульсацией. Это свойство выгодно отличает его от DC.
- Полуволновой выпрямленный. Получается после выпрямления AC простейшим образом с обрезанием части с обратной полярностью. В результате получается пульсирующее напряжение с интервалами без разности потенциалов на клеммах.
- Импульсное напряжение. Широко применяется в современной цифровой технике и электронике. Во многих случаях волна не синусоидальной, а прямоугольной формы.
В современных приборах используются самые разнообразные формы тока и нередко одновременно. Даже освещение в XXI веке изменилось неузнаваемо со времён Эдисона. Традиционная лампа накаливания работала непосредственно от сети AC, а её светодиодный аналог предварительно выпрямляет синусоидальное напряжение, преобразуя затем его до нужных параметров без помощи дополнительных устройств.
Однако война токов может иметь своё продолжение в совсем недалёком будущем. Растущее количество источников DC, таких как солнечные батареи и ветряки, стало стимулом для разработки технологий транспортировки постоянного тока на большие расстояния при потерях, сопоставимыми с передачей AC. В мире уже построено несколько таких действующих объектов и, вполне возможно, через некоторое время они продемонстрируют на практике свои преимущества перед классическими энергосистемами.
https://youtube.com/watch?v=tl8o5uU5V3c
Обозначения на электроприборах и схемах
Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.
Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.
Эдисон и Тесла
Ипполит Пикси сумел создать первый генератор переменного тока в 1835 году. Это было устройство на постоянных магнитах, работающее при вращении рукоятки. Предприниматели того времени были заинтересованы в генерации DC и не совсем понимали, где может применяться изобретение и зачем нужно получать AC.
Настоящая конкуренция за стандарты электричества в линиях передач развернулась к концу 1880-х. годов, когда началась борьба между основными энергетическими компаниями за доминирование на рынке собственных запатентованных энергетических систем. Это было соперничество концепций электрификации двух великих изобретателей: Николы Теслы и Томаса Эдисона.
Эдисон изобрёл и усовершенствовал немало устройств, необходимых для первых систем генерации и транспортировки постоянного тока. В течение короткого времени его компания смогла открыть более 200 станций в Северной Америке. Предприятие росло, и изобретатель для выполнения работ по усовершенствованию оборудования нанял Николу Теслу — молодого инженера из Европы. Новый сотрудник предложил вниманию Эдисона революционные для того времени работы, основанные на технологиях переменного значения. Идеи Тесла были отвергнуты и пути изобретателей разошлись.
Джордж Вестингауз, наоборот, отнёсся к открытиям сербского инженера с большим интересом и выкупил все патенты Тесла. После предприятия Вестингауза пережило немало потрясений, в том числе и связанных с мощными пропагандистскими компаниями Эдисона. Финалом борьбы стал момент, когда система Теслы была выбрана для освещения выставки в Чикаго. Это событие познакомило мир с преимуществами многофазной генерации AC и его транспортировки. С тех пор большинство электрических устройств и сетей заказывались уже под новый стандарт. Основными датами войны токов были:
- 1870 г. — создание Эдисоном первого генератора DC;
- 1878 г. — основание Edison Electric Light Co в Нью-Йорке;
- 1882 г. — открытие Эдисоном генерирующей станции Pearl Street на 5 тыс. огней;
- 1883 г. — изобретение Теслой трансформатора;
- 1884 г. — изобретение Теслой генератора AC;
- 1888 г. — демонстрация Теслой многофазной электрической системы, Вестингауз выкупает его патенты;
- 1888 г. — казнь с помощью электрического стула, изобретённого Эдисоном как средство для пропагандистской компании, демонстрирующей опасность технологий Теслы.
- 1893 г. — триумф Westinghouse Electric Company на Чикагской ярмарке.
Переменный ток и его свойства
Переменный ток циклически меняет направление и силу, характеризуется следующими параметрами:
- частота. Число циклов (периодов) в секунду. Например, частота тока в сети составляет 50 Гц;
- амплитуда. Максимальное отклонение напряжения и силы тока от нуля. Так, сетевое напряжение 50 раз в секунду меняет значение от -311 В до 311 В;
- действующее значение. Это напряжение или сила эквивалентного постоянного тока, то есть такого, который вызывает в проводнике такое же тепловыделение, как и данный переменный. К действующему значению прибегают с целью упрощения расчетов: работать с постоянно изменяющимися величинами крайне неудобно. Например, если в формуле записать действительное значение переменного сетевого напряжения, изменяющегося от -311 В до 311 В по синусоидальному закону, получится уравнение с тригонометрическими функциями либо комплексными числами. Гораздо проще оперировать постоянным действующим значением в 220 В;
- форма. Сетевой ток, производимый механическими генераторами, имеет синусоидальную форму. На выходе инвертора она может быть остроугольной, ступенчатой и т. д.
Переменный ток уступает постоянному в следующем:
- он менее качественный. Так, сварной шов получается более прочным и надежным, если сварка осуществлялась постоянным током. Качественнее работает и электроника;
- при частоте в 50 Гц — более опасен. Нарушения в организме вызывает уже при силе в 50 мА, тогда как постоянный — при силе в 300 мА. Однако, с повышением частоты переменный ток становится уже не таким опасным. Так, выдающийся изобретатель Никола Тесла на публичных опытах пропускал через себя переменный ток большого напряжения (светилась зажатая в руке лампа), предварительно подняв его частоту до нескольких мегагерц;
- сопротивление проводников переменному току выше, чем постоянному. Разъяснение этому будет дано ниже.
Но есть у переменного тока и полезная особенность: создаваемое им магнитное поле также является переменным, а значит, оно способно наводить в проводниках ЭДС (закон электромагнитной индукции).
Переменный ток делает возможным работу таких устройств:
- трансформаторы. За счет повышения напряжения значительно сокращаются потери в линиях электропередач;
- индукционные нагреватели;
- дроссельные фильтры. Дроссель — катушка. Создаваемое ею переменное магнитное поле противодействует переменному току, то есть дроссель выступает в качестве сопротивления. От индуктивности катушки зависит частота тока, которому она сильнее всего противодействует. Эта особенность позволяет глушить дросселем высокочастотные помехи в сети.
Наличием переменного магнитного поля объясняется и упомянутое выше увеличение сопротивления проводника. В нем полем также наводится ЭДС, противодействующая данному переменному току. Эта ЭДС выше в центре проводника, где сконцентрированы силовые линии поля, соответственно, носители заряда вытесняются наружу (поверхностный или скин-эффект).
В итоге вместо всего сечения проводника ток пропускает только некоторая его часть, отчего и возрастает сопротивление. Еще отличие переменного тока от постоянного — способность протекать по цепи с последовательно включенным конденсатором. Для постоянного тока разрыв между обкладками непреодолим, тогда как переменный протекает почти свободно, заряжая обкладки то с одним, то с другим знаком.
Конденсатор, как и катушка, каждый раз накапливает энергию и затем возвращает ее в цепь, так что он тоже оказывает переменному току сопротивление, которое зависит от емкости конденсатора.
Различия токов
Незнание отличий приводит к неправильному подключению потребителей напряжения к источникам питания. Это вызывает повреждение приборов или, того хуже, опасные для жизни ситуации.
Смертельный ток для человека
Чтобы чётко разобраться, какой ток называется переменным, какой постоянным, нужно сопоставить параметры.
При сравнении характеристик этих двух видов электричества выделяют отличия:
- Физические – у переменного тока сила и направление состоят во временной зависимости. В бытовой сети частота пульсации – 50 Гц. Полярность изменяется по синусоиде 50 раз за секунду. Носители зарядов постоянного тока направленности не меняют.
- Конструктивные – на выводах или контактах у DC присутствуют « + » и «– », а у АС на электродах – «ноль» и «фаза». В случае трёхфазной сети 4 контакта: один «ноль» и три «фаза».
- Принцип вырабатывания – постоянный ток получают в результате электролитических и химических реакций окисления, работы генераторов постоянного тока и солнечных батарей. Переменный ток вырабатывается трёхфазными генераторами.
- В преобразовании – оба вида получают путём превращения одного в другой посредством полупроводниковых выпрямителей и инверторов.
Для информации. В мире действует два головных стандарта частоты и напряжения в потребительской сети переменного тока. Европейский стандарт – 50 герц, 220-240 вольт, и американский – 60 герц, 100-127 вольт.
Формула напряжения
В физике есть формула, хотя практического применения она не имеет. Официальная формула записывается так.
формула напряжения
где
A — это работа электрического поля по перемещению заряда по участку цепи, Джоули
q — заряд, Кулон
U — напряжение на участке электрической цепи, Вольты
На практике напряжение на участке цепи выводится через закон Ома.
Будет интересно➡ Слесарь КИПиА: профессиональные особенности и сложности
напряжение из закона Ома
где
I — сила тока, Амперы
R — сопротивление, Омы
Характеристики постоянного тока
Direct Current или DC так по-английски обозначают подобную разновидность, для которой присуще свойство на протяжении любого отрезка времени не менять свои параметры. Маленькая горизонтальная черточка или две параллельные со штриховым исполнением одной из них – графическое изображение постоянного тока.
Область применения – большинство моделей бытовых электроприборов и электронных устройств, включая компьютерную технику, телевизоры и гаджеты, использование в домашних сетях и автомобилях. Для преобразования переменного тока в постоянный в зоне розетки применяются трансформаторы напряжения с наличием выпрямителей или специализированные блоки питания.
В качестве широко распространенного примера потребления постоянного тока можно привести практически все электроинструменты, которые эксплуатируются с батареями. Аккумуляторное устройство остается в любом случае источником питания постоянного типа. Преобразование в переменный достигается в случае необходимости при помощи инверторов – специальных элементов.