Постоянный ток и его источники
У постоянного тока величина и направление не изменяются с течением времени. На современных приборах он обозначается буквами DC — сокращением от английского Direct Current (в дословном переводе – прямой ток). Его графическое обозначение:
Источниками постоянного тока являются батарейки и аккумуляторы. На нем работают все полупроводниковые электронные устройства: мобильные телефоны, компьютеры, телевизоры, спутниковые системы. Для питания этих устройств от сети переменного тока в их входят блоки питания. Они понижают напряжение сети до нужной величины и преобразуют переменный ток в постоянный. Зарядные устройства для аккумуляторов тоже питаются от сети переменного тока и выполняют те же функции, что и блоки питания.
Где используется ток?
Постоянный ток
, достаточно широко применяется в электрических схемах и устройствах. К примеру, дома, большинство приборов, таких как модем или зарядное устройство для мобильного, работают на постоянном токе. Генератор автомобиля, вырабатывает и преобразует постоянный
ток
, для зарядки аккумулятора.
Интересные материалы:
Когда у рубля убрали нули? Когда убрали нули с Белорусских рублей? Когда убрали три нуля у рубля? Когда умер Арагорн? Когда умер Деймон Сальваторе? Когда умер Шуйский? Когда умер Сво Раф? Когда умер Тайлер? Когда умерла Юлия Началова и почему? Когда умирает Бони?
Переменный ток и его параметры
У переменного тока направление и величина циклически изменяются во времени. Цикл одного полного изменения (колебания) называется периодом (T), а обратная ему величина – частотой (f). Буквенное обозначение переменного тока – АС, сокращение от Alternating Current (знакопеременный ток), а графически он обозначается отрезком синусоиды:
̴
После этого знака указывается напряжение, иногда – частота и количество фаз.
Переменный ток характеризуется параметрами:
Характеристика | Обозначение | Единица измерения | Описание |
Число фаз | Однофазный | ||
Трехфазный | |||
Напряжение | U | вольт | Мгновенное значение |
Амплитудное значение | |||
Действующее значение | |||
Фазное | |||
Линейное | |||
Период | Т | секунда | Время одного полного колебания |
Частота | f | герц | Число колебаний за 1 секунду |
Однофазный ток в чистом виде получается при помощи бензиновых и дизельных генераторов. В остальных случаях он – часть трехфазного, представляющего собой три изменяющихся по синусоидальному закону напряжения, равномерно сдвинутых друг относительно друга. Этот сдвиг по времени называется углом сдвига фаз и составляет 1/3Т.
Для передачи трехфазных напряжений используют четыре провода. Один является их общей точкой и называется нулевым (N), а три остальные называются фазами (L1, L2, L3).
Графики напряжений трехфазного переменного тока
Напряжение между фазами называется линейным, а между фазой и нулем – фазным, оно меньше линейного в √3 раз. В нашей сети фазное напряжение равно 220 В, а линейное – 380 В.
Под мгновенным значением напряжения переменного тока понимают его величину в определенный момент времени t. Она изменяется с частотой f. Мгновенное значение напряжения в точке максимума называется амплитудным значением. Но не его измеряют вольтметры и мультиметры. Они показывают величину, в √2 раз меньшую, называемую действующим или эффективным значением напряжения. Физически это означает, что напряжение постоянного тока этой величины совершит такую же работу, как и измеряемое переменное напряжение.
Характеристики трехфазного тока
1.3. Преобразование переменного тока
в постоянный и постоянного в переменный
Электроэнергия вырабатывается на электростанциях синхронными генераторами, т. е. генераторами переменного тока, который удобно преобразовывать трансформаторами и передавать на большие расстояния. Между тем имеется ряд технологических процессов, требующих постоянного тока: электролиз, зарядка аккумуляторов и т. д. Поэтому часто возникает необходимость преобразования переменного тока в постоянный и обратно.
Широко распространенные в начале XX в. электромашинные преобразователи (одноякорные преобразователи и мотор-генераторные установки) уступили свое место более компактным и бесшумным полупроводниковым выпрямителям. Благодаря высоким
Рис. 1.12. Двухтактный однофазный выпрямитель
эксплуатационным показателям и малым габаритам полупроводниковых выпрямителей появилась тенденция к замене генераторов постоянного тока синхронными генераторами, имеющими на выходе полупроводниковый выпрямитель. Таким образом, появились новые классы машин — трансформаторов и синхронных,— постоянно работающих с выпрямителями. Однако работа электрической машины на выпрямитель имеет особенности, которые надо учитывать при проектировании этих машин и анализе процессов, происходящих в них.
Преобразование переменного тока
в
постоянный
производится с помощью полупроводниковых вентилей, имеющих одностороннюю проводимость. На рис.
1.12
и 1.13 показаны наиболее распространенные схемы выпрямителей: однофазного (рис. 1.12, а) и трехфазного (рис. 1.13, а) и кривые напряжений и токов (рис. 1.12,5.
в,
рис. 1.13,6,
в
соответственно). Через полупроводниковые вентили (диоды) ток может проходить только тогда, когда положительный потенциал приложен к аноду (в направлении вершины треугольника на рис. 1.12, а), в связи с чем напряжение на нагрузке — пульсирующее.
Рис. 1.13. Трехфазный мостовой выпрямитель
При однофазном выпрямлении пульсации напряжения на на^-грузке весьма значительны, а частота переменной составляющей в 2 раза выше частоты переменного тока (рис. 1.12, б). При трехфазном мостовом выпрямлении схема получается шеститактной и пульсации напряжения невелики — менее 6% от постоянной составляющей (рис. 1.13, б).
Ток в цепи нагрузки обычно сглажен сильнее, чем напряжение, так как цепь нагрузки часто содержит индуктивность, представляющую большое сопротивление для переменной составляющей тока и малое — для постоянной.
Если считать ток в нагрузке /<* полностью сглаженным, то по обмоткам трансформатора проходит ток, имеющий вид прямоугольников (рис. 1.12,6 и 1.13, в),
содержащий высшие гармоники, повышающие нагрев обмоток. Кроме того, при использовании схем выпрямления с нулевой точкой имеется постоянная составляющая тока в обмотках (рис. 1.12,6). Из-за этого резко возрастает действующее значение тока и нужно принимать меры против создания постоянного подмагничивания стержня. Для предотвращения этого явления, например, в однофазных трансформаторах применяют либо
броневую
конструкцию (рис. 1.14), либо на каждом стержне располагают все обмотки трансформатора, деля их пополам.
Большое влияние на работу выпрямителя (рис. 1.15,
о) оказывает коммутация тока — процесс перехода с одного вентиля на другой.
Из-за наличия индуктивностей в токопроводящей цепи и индуктивности, обусловленной потоками рассеяния трансформатора, ток с одного вентиля переходит на другой не мгновенно, а за период коммутации Гк, которому соответствует угол коммутации у
(рис. 1.15, б).
Для простоты предположим, что ток в нагрузке Id
идеально сглажен. Тогда сумма токов через первый и второй вентили
ia\
и
iai
в процессе коммутации неизменна:
Рис. 1.14. Схематический чертеж броневого трансформатора
В момент начала коммутации, когда значение ЭДС проходит через нуль и меняет знак, обмотка трансформатора становится замкнутой накоротко и для ее контура можно написать уравнение
Во время коммутации напряжение на нагрузке СЛг=0,5(е2а+ +е2ь)
и в однофазном выпрямителе равно нулю (рис. 1.15,
б).
Следовательно, из-за коммутации уменьшается выпрямленное напряжение и увеличивается его пульсация. Поскольку угол коммутации у тем больше, чем больше ток нагрузки
Id
и индуктивное сопротивление
ха,
для повышения качества выпрямителя желательно, чтобы питающая его машина имела небольшое индуктивное сопротивление. В трансформаторе
ха
равно индуктивному сопротивлению, обусловленному потоками рассеяния, и определяется из опыта короткого замыкания В синхронном генераторе
где Ха»
и
xq»
— сверхпереходные индуктивности по продольной и поперечной осям соответственно, учитывающие наличие тока в демпферной обмотке.
Таким образом, синхронные генераторы, предназначенные для работы на выпрямитель, должны быть рассчитаны на работу с несинусоидальным током и иметь демпферную обмотку.
Коэффициент мощности генератора, работающего на нерегулируемый выпрямитель,
Рис. 1.16. Схема однофазного инвертора
где v«0,9 — коэффициент искажения; >ф«0,5у— угол сдвига тока относительно первой гармоники напряжения.
Преобразование постоянного тока в переменный
производится с помощью инверторов, в которых используются управляемые вентили: транзисторы, тиристоры и др.
Схема однофазного инвертора представлена на рис. 1.16. Включение вентилей инвертора производится поочередно каждый полупериод таким образом, чтобы направление тока во вторичной обмотке трансформатора было противоположно направлению ЭДС в этой обмотке, т. е. чтобы энергия передавалась от источника постоянного тока в сеть переменного тока.
Инверторы имеют сравнительно сложную систему автоматического управления, что ведет к повышению их стоимости и уменьшению надежности по сравнению с неуправляемыми выпрямителями.
Кроме того, в инверторе возможно появление режима сквозного горения,
когда ток в обмотке совпадает по фазе с ее ЭДС. Такой режим возможен либо при неисправности в системе управления, либо при слишком большом угле коммутации. При сквозном горении обычно ток возрастает до недопустимого значения и обычно полупроводниковые вентили выходят из строя. Большое число элементов в системе управления и возможность аварийного режима сквозного горения делают надежность инверторов значительно ниже, чем у неуправляемых выпрямителей: наработка на отказ уменьшается в 50… 100 раз.
Перспективна идея питания от инверторов асинхронных и синхронных двигателей. Изменяя частоту включения вентилей, можно менять частоту напряжения на выводах статора двигателя и тем самым экономично (без сопротивлений) регулировать угловую скорость. Такой способ регулирования скорости называется частотным. Однако низкая надежность систем с инверторами — преобразователями частоты препятствует их широкому применению.
В настоящее время частотное регулирование скорости применяется только в особых условиях, где не могут работать двигатели постоянного тока, погруженные в жидкость: двигатели судов, нефтепроводов, двигатели шаровых мельниц и т. д.
Рис. 1.17. Устройство машины постоянного тока
Имеются экспериментальные образцы с частотным регулированием в крановом и тяговом электрооборудовании.
В машине постоянного тока имеется своеобразный преобразователь— коллектор, который в генераторном режиме является выпрямителем, а в двигательном — преобразователем частоты.
Конструкция машины постоянного тока сходна с конструкцией обращенной синхронной машины, у которой обмотка якоря находится на роторе, а магнитные полюсы неподвижны. При вращении якоря (ротора) в проводниках обмотки индуцируется ЭДС, направленная так, как это показано на поперечном разрезе рис. 1.17, а.
В проводниках, расположенных по одну сторону линии симметрии, разделяющей полюсы, ЭДС направлена всегда в одну сторону, независимо от угловой скорости. При вращении одни проводники уходят под другой полюс, на их место приходят другие проводники, а в пространстве, под полюсом одной полярности, картина почти неподвижна, только одни проводники сменяются другими. Следовательно, возможно получить практически неизменную ЭДС от этой части обмотки.
Постоянная ЭДС получается с помощью скользящего контакта между обмоткой и внешней электрической цепью.
Проводники соединяются в витки с шагом ушт,
как в машинах переменного тока, а затем витки соединяются последовательно один за другим, образуется замкнутая обмотка.
В половине обмотки (в двухполюсной машине) наводится ЭДС одного знака, а в другой — противоположного, как показано на эквивалентной схеме обмотки (рис. 1.17, б).
По контуру обмотки ЭДС в ее частях направлены встречно и взаимно уравновешиваются. Вследствие этого при холостом ходе генератора, т. е. при отсутствии внешней нагрузки, по обмотке якоря ток не проходит.
Внешняя цепь соединяется с якорем через щетки, устанавливаемые на геометрической нейтрали.
Для улучшения контакта щетки выполняются в виде прямоугольных графитовых брусков, а скользят они по поверхности коллектора, который собирается из медных пластин, изолированных друг от друга.
В крупных машинах начало и конец каждого витка присоединяются к коллекторным пластинам; в малых машинах пластин
меньше, чем витков, и поэтому между двумя пластинами припаивается часть обмотки из нескольких витков — секция.
Под нагрузкой через проводники якоря проходит ток, направление которого определяется направлением ЭДС.
В связи с тем что ток нагрузки постоянен, в витках обмотки якоря ток имеет форму, близкую к прямоугольной (рис. 1.18, а).
При переходе витка из одной параллельной ветви в другую он замыкается накоротко щеткой на время, называемое периодом коммутации
(рис. 1.18, б)
TK=bJvKOn,
(1.66)
где Ьщ
— ширина щетки; иКол — линейная скорость точки, находящейся на поверхности коллектора.
В простейшем случае, когда щетка уже коллекторной пластины, для секции, замкнутой щеткой (рис. 1.18,0),
Рис. 1.18. Диаграммы токов при коммутации
где iiRi=AUi
и
i2R2=AU2
— падение напряжения в щеточном контакте соответственно с первой и второй коллекторной пластинами;
Rc
— активное сопротивление секции; Lpe3 — результирующая индуктивность секции;
ек
— ЭДС от внешнего поля. Пренебрегая
iRc
ввиду малости
Rc,
получим
Полученное основное уравнение коммутации
(1.68)
совпадает с уравнением коммутации в выпрямителе
(1.61). Решение этого уравнения легко получить, предположив, что Д£Л—Д£/2«0,
Чтобы при выходе из-под щетки первой пластины не происходил разрыв тока, в момент времени t = TK
ток через первую пластину должен быть равен нулю: 11(Гк)=0=21а-|-ек.ср71к/^рез, откуда
Это условие безыскровой коммутации сводится к тому, чтобы во всех режимах угол коммутации у
был неизменен:
y=*TK=2vJ>JDavKoll=2b’jDa,
(1.71)
где Da
— диаметр якоря;
va —
линейная скорость точки, находящейся на поверхности якоря;
Ь’щ=ЬщОа/ОКОл
— ширина щетки, приведенная к диаметру якоря.
Для выполнения этого условия ЭДС в зоне коммутации ЭДС ек
создается специальными добавочными полюсами, обмотка которых включена последовательно в цепь якоря, а их магнитная цепь делается ненасыщенной.
Процесс коммутации в выпрямителях, инверторах и в машинах постоянного тока сходен. И в том и в другом случаях процесс изменения тока в период коммутации определяется значением и формой ЭДС в короткозамкнутом контуре. Поэтому нельзя уподоблять коллектор механическому выпрямителю, как это иногда делается [3].
Наличие коллектора вносит и свои особенности: усложняется конструкция машины и более дорогой становится эксплуатация. Однако эти недостатки электрических машин искупаются их основным преимуществом: в двигательном режиме случайные нарушения коммутации обычно приводят к небольшому подгару коллектора и щеток, а не к аварийному режиму опрокидывания,
как в инверторах.
Вследствие этого надежность коллекторной машины постоянного тока значительно выше надежности системы «асинхронный двигатель— преобразователь частоты», ее КПД на 3…5% выше, машина значительно дешевле, имеет меньшие габариты и массу.
Эти преимущества и заставляют отдавать предпочтение машине постоянного тока, ограничивая применение асинхронного двигателя с частотным регулированием узкими рамками специфических устройств (двигатели, работающие в жидкости, и т. д.).
Содержание Предыдущий § Следующий
Достоинства и недостатки переменного напряжения
Так почему же для энергоснабжения выбрали переменный ток, а не постоянный?
При передаче электроэнергии ток проходит по проводам, длиной сотни километров, нагревая их и рассеивая в воздухе энергию. Это неизбежно как для постоянного, так и для переменного токов. Но мощность потерь зависит только от сопротивления проводов и тока в них:
Мощность, которую передается по линии, равна:
Отсюда следует, что при увеличении напряжения для передачи той же мощности нужен меньший ток, и мощность потерь при этом уменьшается. Вот поэтому протяженных ЛЭП напряжение повышают. Есть линии на 6кВ, 10кВ, 35кВ, 110кВ, 220кВ, 330кВ, 500кВ, 750кВ и даже 1150кВ.
Но в процессе передачи электроэнергии от источника к потребителю напряжение нужно неоднократно изменять. Проще это сделать на переменном токе, используя трансформаторы.
Недостатки переменного тока проявляются при передаче энергии по кабельным линиям. Кабели имеют емкостное сопротивление между фазами и относительно земли, а емкость проводит переменный ток. Появляется утечка, нагревающая изоляцию и выводящая со временем ее из строя.
Разновидности инверторов
Инверторы могут классифицироваться по нескольким признакам. Одним из них является форма получаемого сигнала. Инверторы способны вырабатывать:
- Сигналы прямоугольной формы.
- Ступенчатой формы. В этом случае постоянное напряжение обрабатывается в два этапа. Сначала происходит образование однополярных импульсов нужного вида и удвоенной частоты. Затем при помощи мостового преобразователя получают разнополярный сигнал с необходимыми характеристиками.
- Синусоидальной формы. В этом случае сначала получают высокочастотный сигнал одинаковой амплитуды. Затем при помощи мостового инвертора многократно выполняют специальную модуляцию.
Преобразование переменного тока в постоянный и наоборот
Процесс получения из переменного тока постоянного называется выпрямлением, а устройства – выпрямителями. Основная деталь выпрямителя – полупроводниковый диод, проводящий ток только в одном направлении. В результате выпрямления получается пульсирующий ток, меняющий со временем свою величину, но не изменяющий знак.
Затем пульсации устраняют при помощи фильтров, простейшим из них является конденсатор. Полностью пульсации устранить невозможно, а их конечный уровень зависит от схемы выпрямителя и качества фильтра. Сложность и стоимость выпрямителей зависит от величины пульсаций на выходе и от максимальной мощности на выходе.
Схема простейшего выпрямителя Графики работы выпрямителя
Для преобразования в переменный ток используются инверторы. Принцип их работы состоит в генерации переменного напряжения с формой, максимально приближенной к синусоидальной. Пример такого устройства – автомобильный инвертор для подключения к бортовой сети бытовых приборов или инструмента.
Чем качественнее и дороже инвертор, тем больше его мощность или точнее выдаваемое им напряжение приближается к синусоиде.
Оцените качество статьи:
Как сделать выпрямитель самостоятельно
Если самостоятельно создать устройство, которое преобразовывает переменное напряжение, можно не только выйти из положения в сложной ситуации, но и лучше понять принцип его действия. Для работы необходимо приготовить следующее:
- Прибор, с помощью которого можно измерять напряжение. Для этого, например, можно использовать вольтметр или мультиметр.
- Изолирующую ленту, киперную ленту.
- Медную проволоку.
- Паяльник.
- Трансформатор. Покупайте тот, первичная обмотка которого рассчитана на 220 В.
Подготовив всё необходимое, можно приступать к работе:
- Сначала нужно подключить трансформатор к сети и измерить напряжение на вторичной обмотке. Если, например, требуется после выпрямления получить 12 Вольт, то придётся убрать часть витков.
- Затем следует припаять диодный мост и конденсатор в соответствии с принципиальной схемой выпрямителя.
Нужно учитывать, что по сравнению с переменным напряжением на вторичной обмотке результат на выходных клеммах увеличится в 1.41 раз. То есть, для получения 12 В необходимо, чтобы переменное было равно 8.51 В (12/1.41 = 8.51).
Здесь рассказано, как сделать простейший выпрямитель, но на практике также применяются и другие варианты. Например, выпрямитель с удвоением напряжения. Принцип его работы основывается на поочередной зарядке-разрядке конденсаторов входным напряжением с полуволнами разной полярности. В результате получают напряжение вдвое выше входного.
Удвоитель используется, когда возникает необходимость увеличить в 2 раза напряжение, снимаемое со вторичной обмотки трансформатора. Этот вариант является более выгодным по сравнению с перематыванием обмотки.