Ренессанс постоянного тока: как HVDC спасли переменный ток

В мире, казалось бы, победившего переменного тока назревает — нет, не революция, но органичная эволюция: постоянный ток не просто возвращается, а претендует на лавры победителя. Инвестиции в возобновляемые источники энергии и трансграничная передача электричества сделали высоковольтные сети постоянного тока как никогда актуальными. В этом посте мы рассказываем, почему постоянный ток уступил току переменному и как спустя век после «Войны токов» постоянный ток взял реванш.


Источник: Shutterstock

Постоянный ток — это основа современного технологического общества: вся полупроводниковая электроника, работающая от сети или аккумуляторов, использует постоянный ток, с его помощью добывают чистый алюминий, магний, медь и другие вещества. В бортовой сети автомобиля тоже постоянный ток, как и в электрической передаче дизельных судов. Ну и конечно электропоезда: трамваи, метро и некоторые электровозы питаются постоянным током. И космос: все рукотворные космические объекты функционируют исключительно благодаря постоянному току от батарей или РИТЭГов.

Помимо всего этого, есть еще одна область, где постоянный ток если не незаменим, то по крайней мере значительно эффективнее переменнее тока, — высоковольтные линии для передачи высокой мощности. Линии постоянного тока (HVDC, High-voltage direct current) еще век назад стали спасением высоковольтных линий переменного тока (HVAC, High-voltage alternating current). Если бы не постоянный ток, электричество в наших розетках было бы куда дороже и исчезало чаще, чем это происходит сейчас. Давайте разберемся в этой интересной истории «взаимовыручки».

Ирония судьбы постоянного тока

Чтобы оценить всю иронию ситуации с возвращением постоянного тока в высоковольтные линии электропередач, нужно вспомнить о событиях «Войны токов» — сражения апологетов постоянного тока в лице изобретателя и бизнесмена Томаса Эдисона и тока переменного, преимущества которого осознавал предприниматель Джордж Вестингауз. Вкратце напомним о том, как постоянный ток проиграл битву за то, чтобы стать основой мирового энергоснабжения.

После того, как человечество подчинило себе электричество и научилось извлекать из него пользу в промышленности, дальновидные бизнесмены смекнули, что на электрификации городов в перспективе можно сколотить не просто капитал, а фантастическое состояние. Изобретатель Томас Эдисон отлично умел монетизировать свой талант инноватора и зарабатывал не столько на собственных изобретениях, сколько на усовершенствовании чужих идей. Одним из примеров такой успешной «доводки» стало создание лампы накаливания, которая появилась благодаря попавшем в руки Эдисона дуговым лампам с угольными электродами. Такие лампы хоть и давали свет, но в качестве постоянных источников освещения не годились — в те времена угольные дуговые лампы работали от силы несколько часов, а включить их можно было только один раз.


Первая серийная лампа Эдисона — еще с угольной нитью и временем работы в несколько десятков часов. Источник: Terren / Wikimedia Commons

Усовершенствовав конструкцию и создав свою знаменитую лампу накаливания, которая могла работать 40 часов, а после доработки 1200 часов, Эдисон осознал, что его лампочка может стать основой систем освещения городов и помещений — давая более яркий свет по сравнению со свечами и газовыми фонарями, лампы накаливания имели меньшую стоимость, не чадили, не жгли кислород в помещениях, а замены требовали реже, чем те же свечи. Производством ламп занялось предприятие Edison Electric Light, а генераторов постоянного тока — Edison General Electric. Продавая лампы ниже себестоимости, Эдисон завоевал рынок освещения, а для первых потребителей начал строить энергосети в Лондоне и Нью-Йорке.

Лампа накаливания может работать и с переменным, и с постоянным током, но Эдисон сделал выбор в пользу постоянного тока. Причина этого решения очень тривиальна и далека от физики. Как мы говорили, Эдисон был не только изобретателем, но и очень предприимчивым бизнесменом. В электричестве он видел не только способ дешевого освещения городов, но и возможность для модернизации промышленности за счет внедрения электрической тяги. Существовавшие в то время электромоторы работали только на постоянном токе.

К тому же для заработка на поставках электричества надо было как-то измерять потребление каждого абонента. Эдисон создал индивидуальный счетчик, представлявший собой резервуар с электролитом и пластиной, на которой под действием проходящего тока оседала медь — каждый месяц пластину взвешивали и по разнице массы вычисляли потребление электроэнергии. Такой счетчик работал только с постоянным током.


Счетчик постоянного тока конструкции Томаса Эдисона. «Передача показаний» заключалась в передаче банки с пластинами представителям энергетической компании. Источник: Thomas A. Edison Papers / edison.rutgers.edu

Но были у постоянного тока и нерешенные проблемы, главная из которых — невозможность передачи высокой мощности на большие (более 2 км) расстояния. Чтобы передать высокую мощность, которая необходима для электроснабжения предприятия или системы освещения города, в электросети нужно повысить либо ток, либо напряжение (мощность, напомним, равна произведению напряжения и силы тока). Но в конце XIX века не было способов менять напряжение постоянного тока. Выпускаемые в США электроприборы работали от напряжения 110 В, поэтому электростанции Эдисона, работавшие на паровых генераторах, должны были посылать в сеть именно 110 В.

Оставалось управлять силой тока. При повышении тока часть энергии уходит на нагрев проводов (с высоким напряжением такой проблемы нет). Для снижения потерь и нагрева нужно уменьшать сопротивление, увеличивая диаметр проводника или применяя материалы с хорошей электропроводностью, например, медь. И всё равно потери будут расти в зависимости от длины кабеля.

Чтобы сократить длину проводника до допустимой, потребители должны были располагаться не далее, чем в 1,5-2 км от электростанции, иначе мощность в сети падала до неприемлемых значений. Например, на 56-километровой линии между французскими городами Крей и Париж потери достигали 45%. Как Эдисон ни бился с проблемой потерь в сетях постоянного тока, решить ему ее так и не удалось. Единственным выходом было только строительство маломощных электростанций рядом с потребителями. Тогда это не казалось надругательством над экологией и жителями — именно такие станции и строила компания Эдисона. Первая из них была построена на Пёрл-стрит на Манхэттене в Нью-Йорке в 1882 году, в том же году началась прокладка подземных кабелей сети постоянного тока с напряжением 110 В.


Эдисон прокладывал под землей линии электропередач уличного освещения еще до того, как это стало модным в Москве. На иллюстрации укладка линии постоянного тока в Нью-Йорке в 1882 году. Источник: W. P. Snyder / Wikimedia Commons

Ошибочность своего выбора Томас Эдисон осознал, хотя и не признал публично, когда его конкурент по электрическому бизнесу — Джордж Вестингауз, — начал вкладываться в строительство электростанций и сетей переменного тока, имевших серьезные преимущества перед сетями тока постоянного. Благодаря уже изобретенным к тому моменту трансформаторам напряжение переменного тока можно было без труда повышать и понижать. Трансформаторы решали проблему передачи высокой мощности, ведь вместо силы тока можно было просто увеличить напряжение, для передачи которого не требовались толстые провода из дорогой меди.

Таким образом сети Вестингауза могли передавать очень высокую мощность по дешевым кабелям меньшего диаметра и при этом практически без потерь. Это доказывает пример 175-километровой сети переменного тока между немецким городом Лауффен-ам-Неккар и Франкфуртом — ее КПД составил 80,9% после запуска в 1891 году и 96% после модернизации — несравнимо выше 45% на втрое меньшей дистанции у сети постоянного тока.


Трехфазный генератор переменного тока в Лауффен-ам-Неккар, Германия. Источник: Historisches Museum, Frankfurt

У сетей переменного тока не было жесткого ограничения на длину. Благодаря этому стало возможным строительство гидроэлектростанций, электричество с которых могло передаваться в крупные города, расположенные за десятки и даже сотни километров от места выработки. А гидроэлектростанция — это куда более значимый и прибыльный проект, чем маломощная угольная станция внутри города.

«Война токов» продолжилась некрасивой пиар-кампанией Эдисона против переменного тока (показана, в частности в художественном фильме 2022 года «Война токов», или The Current War, режиссёра А. Гомес-Рехона), судебной и законотворческой волокитой против Вестингауза и постепенной потерей позиций бизнеса Эдисона под давлением всё более популярных сетей переменного тока. Последняя эдисоновская электростанция постоянного тока прекратила свою работу в 1981 году, что же до потребителей, в Сан-Франциско до сих пор сотни объектов (в основном старинные лифты) используют постоянный ток через выпрямители переменного тока. Но для нас это уже не так важно.

Выбор аккумуляторной батареи

В основу выбора АБ положены два основных условия: батарея должна поддерживать питание в течение всего времени работы в аварийном режиме; напряжение на выводах батареи в момент пиковой аварийной нагрузки должно быть больше минимального допустимого по условиям работы электроприемников.

В моменты пиковой аварийной нагрузки напряжение АБ может значительно снизиться, но, в отличие от длительного разряда, кратковременно. В таких режимах следует отдельно рассматривать ВАХ батареи для определения минимального напряжения и, в случае недопустимости такого режима, выбирать другую АБ или изменять параметры схемы с целью уменьшить потери напряжения. Причем для принятия верного решения необходимо многократное проведение расчетов установившегося режима сети, что требует применения автоматизированных программных средств.

По ГОСТ 26881–86 аккумуляторы открытого исполнения (электродные пластины) должны обеспечивать кратковременный (не более пяти секунд) разряд током не более 1,25С10 А (где С10 — ток десятичасового разряда), при этом напряжение полностью заряженных аккумуляторов (электродных пластин) не должно снижаться более чем на 0,4 В от напряжения в момент, предшествующий разряду.

Продолжительность аварийного режима зависит от типа станции (подстанции), ее положения в системе и ряда других условий. При проектировании аккумуляторной установки эта величина обычно принимается равной 30 мин.

Оценка времени работы от аккумуляторной батареи выполняется на основе определенной расчетной нагрузки с использованием разрядных характеристик, поставляемых в качестве каталожных или паспортных данных аккумуляторных батарей (пример — на рис. 2).


Рис. 2. Разрядные характеристики АБ GroE

Такая характеристика обычно приводится для работы новой батареи при 25 °C. Поскольку условия работы могут быть другими, появляется необходимость пересчета разрядной характеристики с учетом старения и температуры эксплуатации АБ.

По ГОСТ 26881–86 емкость аккумуляторов в конце срока службы (наработки) должна составлять не менее 80% от номинальной.

В новой версии ПК EnergyCS Электрика реализован мощный инструмент автоматизированного выбора аккумуляторной батареи. Он позволяет автоматически подбирать количество АБ каждого типа по заданному времени нагрузки и допустимому напряжению в конце разряда. В расчетах могут быть учтены толчковые нагрузки в конце режима разряда, в том числе и при использовании стабилизаторов напряжения.

В программе предусмотрен также режим калькулятора АБ (рис. 3), позволяющий моментально вычислить время работы или ток АБ с использованием разрядных характеристик, рассчитанных посредством уравнения Пекерта с учетом температуры окружающей среды.


Рис. 3. Автоматизированный подбор АБ в ПК EnergyCS Электрика

Помимо этого программа позволяет произвести уточненную проверку выбранной АБ с учетом ВАХ и конкретной введенной модели, в том числе с учетом элементного коммутатора.

Постоянный ток спасает переменный

Всего через несколько лет после начала масштабного строительства электростанций и сетей переменного тока выяснилось, что переменный ток имеет проблемы при передаче энергии… на большие расстояния! Коронный разряд в высоковольтных воздушных линиях, на который может приходиться до половины потерь, поверхностный эффект, при котором переменный ток протекает по проводнику неравномерно и из-за этого требует проводники бо́льшего диаметра, реактивная мощность из-за высокого емкостного сопротивление подводных кабелей, «съедавшая» почти 100% переменного тока уже через 50 км — всё это вызывало потери процентов и десятков процентов мощности в первых магистральных сетях переменного тока.

Утечки на больших расстояниях — это во-первых. А во-вторых, объединение энергосетей переменного тока требовало идеальной синхронизации генераторов, расположенных в разных частях страны. При отсутствии синхронизации генератор в лучшем случае не будет подавать ток в сеть, в худшем — произойдет короткое замыкание.

Спасением высоковольтных сетей переменного тока стали высоковольтные сети постоянного тока, избавленные от некоторых недостатков конкурента. Постоянный ток не создает поверхностный эффект в проводнике и потому использует всю площадь сечения проводника с максимальной эффективностью (это уменьшает диаметр и стоимость проводов). В цепях постоянного тока нет реактивной мощности, поэтому в подводных кабелях с высокой емкостью потерь не происходит.


В высоковольтных сетях переменного тока толщина скин-слоя (отмечен буквой δ) определяется точкой падения плотности тока на 63%.В сетях с частотой 50 Гц скин-слой достигает 9,34 мм — часть объема дорогостоящего проводника просто не работает. Источник: biezl / Wikimedia Commons

Вырисовывалась замечательная синергия: электростанции и потребители используют переменный ток, но для его транспортировки на сотни километров применяются сети постоянного тока. Оставалась лишь одна «пустяковая» проблема — как превратить переменный ток в постоянный и обратно?

В конце XIX века швейцарский инженер Рене Тюри предложил использовать для соединения сетей с разным типом тока систему «мотор-генератор», в которой на одном конце сети переменный ток вращал мотор, приводящий в действие генератор постоянного тока, а на другом конце постоянный ток в свою очередь вращал мотор с генератором переменного тока. Идея, гениальная в своей простоте, но с невысоким КПД — двойное преобразование за счет моторов и генераторов «съедало» часть мощности. Тем не менее, других решений, кроме системы Тюри, не было, поэтому с 1883 года началось строительство магистральных сетей постоянного тока с машинами Тюри, связывающих крупные электростанции и города в Европе.


Одна из машин Тюри. Самая крупная из них, весом 4500 кг, генерировала 66 кВт. Источник: Wikimedia Commons

В 1902 году американец Питер Купер-Хьюитт изобрел ртутно-дуговой выпрямитель — несложное устройство для превращения переменного тока в постоянный. Оригинальный выпрямитель Купера-Хьюитта представлял собой замысловатую стеклянную колбу с выходящими из нее электродами, дно которой было заполнено ртутью. В работе выпрямитель выглядит очень эффектно. Впрочем, из-за хрупкости колбы стекло в выпрямителе вскоре заменили на металл.

Работа ртутно-дуговых выпрямителей завораживает. Увы, но сейчас полюбоваться такой красотой можно разве что в музеях — ртутные выпрямители давно не используются, да и те, что остались, сделаны из металла.

Ртутные выпрямители дали толчок к развитию высоковольтных сетей постоянного тока — вместо громоздких и ненадежных машин системы Тюри достаточно было установить выпрямители, в числе недостатков которых была только потенциальная токсичность при разгерметизации и необходимость в хорошем охлаждении из-за тепловых потерь. КПД устройства достигал 98-99%.

На смену ртутным выпрямителям были созданы газотроны и тиратроны (1940-е), полевые транзисторы с изолированным затвором MOSFET и полярные транзисторы с изолированным затвором IGBT (1959 год), запираемые тиристоры GTO (1962 год) — более совершенные, компактные и надежные преобразователи.


Современный тиристорный конвертер AC/DC. Источник Toshiba Energy Systems & Solutions Corporation

Справочник аккумуляторных батарей

В справочнике аккумуляторных батарей комплекса EnergyCS Электрика хранится минимально необходимый набор данных для проведения всех видов расчетов. Разрядные характеристики представляются в виде таблицы, где указываются только нижние граничные точки разряда. Температурные характеристики, коэффициенты разряда и старения батарей собраны в отдельном справочнике. Эти данные хранятся в относительных единицах отдельно от конкретных типов АБ, что дает возможность применять их к целой группе батарей.

Во время ввода предусмотрена автоматическая конвертация единиц, что делает его еще более быстрым и удобным.

Общий вид справочника представлен на рис. 4.


Рис. 4. Справочник аккумуляторных батарей и их характеристик программного комплекса EnergyCS Электрика

При расчете времени работы от АБ используется уравнение Пекерта, заключающееся в том, что отношение между разрядным током I и временем разряда аккумулятора T (от полностью заряженного к полностью разряженному) представляет собой константное отношение и может быть описано формулой

— емкость Пекерта (константное отношение для данного аккумулятора), n — экспонента Пекерта.

Когда каждый процент на счету

Несмотря на заметный прогресс в области выпрямления тока, оборудование для преобразования переменного тока в постоянный и обратно до сих пор стоит очень больших денег. Настолько больших, что строительство сетей переменного тока, даже с учетом повышенного расхода материала для проводов, выходит сильно дешевле. Вне зависимости от длины линии, стартовая цена высоковольтной магистрали постоянного тока обязательно включает стоимость двух преобразователей в начале и конце линии — габаритных и очень дорогих устройств, производимых всего несколькими компаниями в мире, в числе которых и Toshiba. На это оборудование приходится до половины стоимости сети.

Но по мере увеличения длины магистрали стоимость линии на переменном токе растет быстрее, чем на токе постоянном. Виной тому сложность магистрали HVAC — для передачи аналогичной мощности HVDC нужно вдвое меньше проводников меньшего диаметра, а значит, вдвое меньше опор, которые и сами стоят немало, и требуют крайне дорогостоящего монтажа. При длине линии около 600 км стоимость HVDC и HVAC равна, но на больших расстояниях, порядка 2000 км, HVDC выходит сильно дешевле, чем HVAC, примерно на 30-40%, а это сотни миллионов долларов экономии.


Стоимости HVDC и HVAC пересекаются на линии, длинной около 600 км. Далее HVDC становится заметно выгодней. Источник: wdwd / Wikimedia Commons

На каждые 1000 км линии потери в HVDC составляют 2-3%, а самое современное оборудование позволяет снизить этот параметр до 1%. Потери в HVAC могут достигать 6%. Даже в самых эффективных сетях переменного тока с самым лучшим оборудованием потери будут на 30-40% больше, чем в HVDC Несколько процентов от полной мощности — вроде бы терпимая ерунда? Когда речь идет о сетях, передающих несколько гигаватт, каждый процент превращается в десятки потраченных впустую мегаватт, которые можно было бы использовать для электроснабжения маленького города. Не говоря уже о потерянной прибыли.

Что это такое

Аббревиатура расшифруется как линии электропередач. Эта установка необходима для передачи электрической энергии по кабелям, находящимся на открытой местности (воздухе) и установленными при помощи изоляторов и арматуры к стойкам или опорам. За точку начала и конца линий электропередач принимают линейные входы или линейные выходы РУ, а для ветвления — специальная опора и линейный вход.


Как выглядит станция ЛЭП

Опоры можно разделить на:

Линии электропередач можно условно разделить на воздушные и подземные. Последние все больше набирают популярность из-за удобства прокладки, высокой надежности и снижения потерь напряжения.

Обратите внимание! Эти линии различаются методом прокладки, особенностью конструкции. В каждой есть свои плюсы и минусы.

При работе с ЛЭП необходимо соблюдать все правила безопасности, потому что во время монтажа можно получить не только травмы, но и погибнуть.


Типы используемых опор

Какое напряжение ЛЭП

По определенных характеристикам, можно узнать напряжение линий электропередач по внешнему виду. Первое на что стоит обратить внимание — это изолятор. Чем больше их находится на установке, тем она будет мощнее.

Самые популярные изоляторы воздушных линий 0,4кВ. Их обычного изготавливают из прочного стекла. По их количеству можно определяться в мощности.

ВЛ-6 и ВЛ-10 по форме такой же, но намного крупнее. Кроме штыревого фиксирования, иногда применяют такие изоляторы по аналогу гирлянд по одному/двум образцам.

Обратите внимание! На воздушной линии 35кВ чаще всего устанавливают навесные изоляторы, хотя иногда можно увидеть штыревого вида. Гирлянда складывается из трех-пяти видов.

Число роликов в гирлянде может быть таким:

Также напряжение можно узнать по числу кабелей:

В заключении необходимо отметить, что в современном мире невозможно обойтись без линий электропередач. Именно они снабжают всю страну электричеством. В настоящее время применяют воздушные и кабельные ЛЭП повсеместно.

Источник

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]