Лампы дневного света несмотря на всю их «живучесть», по сравнению с обычными лампочками накаливания, в один прекрасный момент также выходят из строя и перестают светить.
Конечно, срок их службы не сравнить со светодиодными моделями, но как оказывается, даже при серьезной поломке, все эти ЛБ или ЛД светильники опять можно восстановить без каких либо серьезных капитальных затрат.
В первую очередь вам нужно выяснить, что же именно сгорело:
- сама люминесцентная лампочка
- стартер
- или дроссель
Как это сделать и быстро проверить все эти элементы, читайте в отдельной статье.
Если сгорела сама лампочка и вам надоел такой свет, то вы легко можете перейти на светодиодное освещение, без какой-либо серьезной модернизации светильника. Причем делается это несколькими способами.
Одна из наиболее серьезных проблем — это вышедший из строя дроссель.
Большинство при этом считают такой люминесцентный светильник полностью негодным и выбрасывают его, либо перемещают в кладовку на запчасти для остальных.
Сразу оговоримся, что запустить ЛБ светильник без дросселя, просто выкинув его из схемы и не поставив туда чего-нибудь другого, у вас не получится. В статье пойдет речь об альтернативных вариантах, когда этот самый дроссель можно заменить другим элементом, имеющимся у вас под рукой дома.
Как устроена и работает ЛДС
Конструктивно прибор представляет собой герметичную колбу, заполненную инертным газом и парами ртути. Внутренняя поверхность колбы покрыта люминофором, а в торцы ее впаяны электроды. При подаче напряжения на электроды, между ними возникает тлеющий разряд, создающий невидимое ультрафиолетовое излучение. Это излучение воздействует на люминофор, заставляя его светиться.
Схема люминесцентной лампы
Все это ЛДС, работающие на одном принципе.
Для нормальной работы люминесцентного светильника необходимо выполнить два условия:
- Обеспечить начальный пробой межэлектродного промежутка (запуск).
- Стабилизировать ток через лампочку, чтобы тлеющий разряд не перешел в дуговой (работа).
Пуск лампы
В обычных условиях питающего напряжения недостаточно для электрического пробоя межэлектродного промежутка, поэтому пуск ЛДС возможет только с помощью дополнительных мер – разогрева электродов для начала термоэлектронной эмиссии или повышения напряжения питания до значений, достаточных для создания разряда.
До недавнего времени преимущественно использовался первый метод, для чего электроды делались (и делаются) в виде спиралей, наподобие тех, что стоят в обычных лампочках накаливания. В момент включения на спирали при помощи автоматических устройств (стартеров) подается напряжение, электроды разогреваются, обеспечивая зажигание светильника. После пуска системы стартер отключается и в процессе дальнейшей работы не участвует.
Стартеры для пуска ЛДС на различные напряжения
Позже начали появляться схемотехнические решения, не разогревающие электроды, а подающие на них повышенное напряжение. После пробоя межэлектродного промежутка напряжение автоматически снижается до номинального, и светильник переходит в рабочий режим. Для того чтобы ЛДС можно было использовать с любыми типами пусковых устройств, все они и по сей день выполняются с электродами в виде спиралей накаливания, имеющих по два вывода.
Поддержание рабочего режима
Если ЛДС напрямую включить в розетку, то начавшийся после поджига тлеющий разряд тут же перейдет в дуговой, поскольку ионизированный межэлектродный промежуток имеет очень малое сопротивление. Чтобы избежать этой ситуации, ток через прибор ограничивается специальными устройствами – балластами. Разделяются балласты на два типа:
- Электромагнитные (дроссельные).
- Электронные.
Работа электромагнитных пускорегулирующих аппаратов (ЭмПРА) основана на принципе электромагнитной индукции, а сами они представляют собой дроссели – катушки, намотанные на незамкнутом железном сердечнике. Такая конструкция обладает индуктивным сопротивлением переменному току, которое тем больше, чем выше индуктивность катушки. Дроссели различаются по мощности и рабочему напряжению, которые должны равняться мощности и напряжению используемой лампы.
Электромагнитные дроссели (балласты) для ЛДС мощностью 58 (вверху) и 18 Вт.
Электронные пускорегулирующие аппараты (ЭПРА) выполняют ту же функцию, что и электромагнитные, но ограничивают ток при помощи электронной схемы:
Электронное пускорегулирующее устройство для люминесцентной лампы
Кратко об особенностях работы ламп
Строение люминесцентной лампы
Каждый из таких приборов является герметичной колбой, наполненной специальной смесью газов. При этом смесь рассчитана таким образом, чтобы на ионизацию газов уходило гораздо меньшее по сравнению с обыкновенными лампами накаливания количество энергии, что позволяет заметно экономить на освещении.
Чтобы люминесцентная лампа постоянно давала свет, в ней должен поддерживаться тлеющий разряд. Для обеспечения такового осуществляется подача требуемого напряжения на электроды лампочки. Главная проблема заключается в том, что разряд может появиться только при подаче напряжения, существенно превышающего рабочее. Однако и эту проблему производители ламп с успехом решили.
Люминесцентные лампы
Электроды установлены по обеим сторонам люминесцентной лампы. Они принимают напряжение, благодаря которому и поддерживается разряд. У каждого электрода есть по два контакта. С ними соединяется источник тока, благодаря чему обеспечивается прогревание окружающего электроды пространства.
Таким образом, люминесцентная лампа зажигается после прогрева ее электродов. Для этого они подвергаются воздействию высоковольтного импульса, и лишь затем в действие вступает рабочее напряжение, величина которого должна быть достаточной для поддержания разряда.
Сравнение ламп
Световой поток, лм | Светодиодная лампа, Вт | Контактная люминисцентная лампа, Вт | Лампа накаливания, Вт |
50 | 1 | 4 | 20 |
100 | 5 | 25 | |
100-200 | 6/7 | 30/35 | |
300 | 4 | 8/9 | 40 |
400 | 10 | 50 | |
500 | 6 | 11 | 60 |
600 | 7/8 | 14 | 65 |
Под воздействием разряда газ в колбе начинает излучать ультрафиолетовый свет, невосприимчивый человеческим глазом. Чтобы свет стал видимым человеку, внутренняя поверхность колбы покрывается люминофором. Это вещество обеспечивает смещение частотного диапазона света в видимый спектр. Путем изменения состава люминофора, меняется и гамма цветовых температур, благодаря чему обеспечивается широкий ассортимент люминесцентных ламп.
Как подключить люминесцентную лампу
Лампы люминесцентного типа, в отличие от простых ламп накаливания, не могут просто включаться в электрическую сеть. Для появления дуги, как отмечалось, должны прогреться электроды и появиться импульсное напряжение. Эти условия обеспечиваются при помощи специальных балластов. Наибольшее распространение получили балласты электромагнитного и электронного типа.
Неисправности и ремонт
Сгоревшие детали в схеме часто видно. Как проверить электронный балласт? Чаще всего из строя выходят транзисторы. Перегоревшую деталь можно обнаружить визуально. Когда производится ремонт своими руками, рекомендуется проверить парный с ним транзистор и расположенные рядом резисторы. По ним не всегда видно сгоревшие. Вздутый конденсатор обязательно меняется. Если сгоревших деталей несколько, ремонт балласта не делается.
Иногда после выключения ЭПРА лампа продолжает слабо мерцать. Одной из причин может быть наличие потенциала на входе при отключении нуля. Схему надо проверить и сделать подсоединения своими руками, чтобы выключатель был установлен на фазу. Возможно, что остается заряд на конденсаторе фильтра. Тогда к нему следует подключить параллельно сопротивление для разрядки на 200-300 кОм.
Из-за скачков напряжения в сети часто необходим ремонт светильников с электронным балластом. При неустойчивом электроснабжении лучше применять электромагнитный дроссель.
Компактная лампа (КЛЛ) содержит ЭПРА, встроенный в цоколь. Ремонт ЛЛ низкой цены и качества производится по следующим причинам: сгорание нити накала, пробой транзисторов или резонансного конденсатора. Если сгорела спираль, ремонт своими руками ненадолго продлит срок службы и лампу лучше заменить. Ремонт ЛЛ, у которых обгорел слой люминофора (почернение колбы в области электродов), также производить нецелесообразно. При этом исправный балласт можно использовать как запасной.
Обгорание люминофора на люминесцентной лампе
Ремонт электронного балласта долго не потребуется, если модернизировать КЛЛ, установив своими руками NTS-термистор (5-15 Ом) последовательно с резонансным конденсатором. Деталь ограничивает пусковой ток и надолго защищает нити накала. Целесообразно также сделать вентиляционные отверстия в цоколе.
Устройство вентиляции своими руками для отвода тепла от балласта
Аккуратно сверлятся отверстия рядом с трубкой для ее лучшего охлаждения, а также около металлической части цоколя, чтобы отвести тепло от деталей балласта. Подобный ремонт возможен только в сухих помещениях. Посередине можно сделать третий ряд отверстий сверлом большего диаметра.
Ремонт с установкой термистора производится с выпаиванием проводника на нижней площадке с припоем. Затем отгибается выпуклая часть цоколя от стеклянной колбы и освобождается второй провод. После цоколь снимается и обеспечивается доступ к печатной плате. После того как ремонт будет закончен, цоколь устанавливается в обратной последовательности.
Характеристики и маркировка
Необходимо выделить несколько основных характеристик прибора:
Срок службы. Филипс, например, утверждает, что его устройства способны выдержать 6 тысяч включений. Недалеко от него и Осрам. Но это при условии нормальных параметров напряжения в сети и многих других факторов.
Нормальный температурный режим. ГОСТ предусматривает необходимый разброс температур от +5 до 55. Если нужно использовать лампу в иных условиях, то потребуется поиск специального пускателя (есть такие, но дороже).
Время подогрева катодов. Другими словами, продолжительность периода, когда электроды замкнуты
Разброс по этой характеристике у производителей большой, так что нужно обращать внимание на рекомендации изготовителя осветительной части устройства.
Тип конденсатора в стартере. Наш производитель использует изделие из фольги, что является пережитком, но дешевле
Стартер может работать без конденсатора (или с вышедшим из строя), однако, срок службы прибора будет уменьшаться.
Номинальное напряжение. Подключив в 220 Вольт пускатель на 127, можно испортить всю систему в один момент.
Отечественная маркировка несколько отличается от западной, но можно объединить их в единое целое.
Наш ГОСТ:
- С большая – стартер.
- Цифры перед ней определяют мощность лампы (60, 90, 120).
- Цифры после говорят о напряжении (127 и 220).
Например, 90С – 220. Маркировка утверждает, что устройство рассчитано на лампу, мощностью 90 Ватт и напряжение 220 Вольт.
Западная маркировка:
- Лампы от 4 до 80 Вт с напряжением 220 Вольт – S10, FS-U, ST111.
- Напряжение 127 и мощность до 22 ватт – S2, FS-2, ST151.
Как выбрать мощность энергосберегающей лампы
Запускается такой светильник моментально, в отличие от долгих морганий и мерцаний привычных ЛБ и ЛД моделей.
Какие есть недостатки у такой схемы подключения? Во-первых, рабочий ток в энергосберегайках при равной мощности, меньше чем у линейных ламп дневного света. Чем это чревато?
А тем, что выбрав экономку равной или меньшей по мощности с ЛБ, ваша плата будет работать с перегрузкой и в один прекрасный момент бабахнет. Чтобы этого не случилось, мощности плат от экономок в идеале должны быть на 20% больше, чем у ламп дневного света.
То есть, для модели ЛДС на 36Вт, берите плату от лапочки на 40Вт и выше. Ну и так далее, в зависимости от пропорций.
Если вы переделываете светильник с одним дросселем на две лампочки, то учитывайте мощности обеих.
Почему еще нужно брать именно с запасом, а не подбирать мощность КЛЛ равную мощности ламп дневного света? Дело в том, что в безымянных и недорогих лампочках КЛЛ, реальная мощность всегда на порядок меньше заявленной.
Поэтому не удивляйтесь, когда подключив к старому советскому светильнику ЛБ-40, плату от китайской экономки на те же самые 40Вт, вы в итоге получите негативный результат. Это не схема не работает – это качество товаров из поднебесной не соответствует “железобетонным” советским гостам.
Применение тестера
Один из вариантов прикладного использования мультиметра – проверка лампочек. Для этой процедуры достаточно использовать простейший вариант прибора.
Какую же информацию можно получить с помощью мультиметра? Существует несколько показателей работы лампочек, отображаемых на этом приборе:
- пригодность лампочки – нарушение целостности электрического соединения приводит к прекращению прохождения тока;
- определение сопротивления лампочки;
- расчет ее мощности по показанному мультиметром сопротивлению.
Таким образом, можно проверить основные характеристики осветительного прибора, и понять, пригоден ли он к дальнейшему применению.
ЭПРА Электронный пуско — регулирующий аппарат (балласт)
Всё о ПРА
Электромагнитныe ПРА для трубчатых люминесцентных и компактных люминесцентных ламп внутреннего применения. Иногда их называют: дроссель для ламп дневного света. Класс защиты от поражения электрическим током — I, степень защиты от воздействия от окружающей среды — IP 20.
Светодиодное освещение
Светодиодные светильники разработаны давно , но только не давно ряд новейших диодов стал максимально эффективно распределять точный спектр света , который так нужен растениям.
Какой фитосветильник выбрать?
Мы вам поможем определиться! Что вы хотите? Разбить целый огород в квартире — низкорослы томаты, сладкий и острый перец, огурцы, множество лечебных трав, петрушку, укроп, кинзу, салат и даже клубнику! Или просто досветить рассаду?
Освещение теплицы 7х42м LED светильниками EasyGrow.
занимается внедрением светодиодного освещения для растений с 2011 г. Наработанный опыт позволяет нам предлагать качественные и проверенные решения для любых областей растениеводства.
Фитосветильники для выращивания рассады
Освещение рассады — это важнейшее условие эффективного выращивания молодых растений. В этом деле важно выбрать правильные лампы для подсветки растений, что вполне реально учитывая довольно таки широкий ассортимент.
Промгидропоника © 2010 — 2022 Копирование материалов сайта разрешается только при условии указания активной ссылки на источник.
Время работы интернет-отдела: 8:00 — 17:00 по Московскому времени с понедельника по пятницу
Время работы розничного магазина: 10:00 — 20:00 по времени Екатеринбурга без выходных
Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!
Еще народными умельцами применяется способ пуска ламп этого вида с использованием набора конденсаторов, но в этом случае надо точно знать величину получаемого тока. Если же вам что-то непонятно, пишите мне!
Замена лампы
Если отсутствует свет и причина проблемы лишь в том, чтобы заменить перегоревшую лампочку, действовать нужно следующим образом:
Разбираем светильник
Делаем это осторожно, чтобы не повредить прибор. Поворачиваем трубку по оси
Направление движения указано на держателях в виде стрелочек. Когда трубка повернута на 90 градусов, опускаем ее вниз. Контакты должны выйти через отверстия в держателях. Контакты новой лампочки должны находиться в вертикальной плоскости и попадать в отверстие. Когда лампа установлена, поворачиваем трубку в обратную сторону. Остается лишь включить электропитание и проверить систему на работоспособность. Завершающее действие — монтаж рассеивающего плафона.
Проверка дросселей
В случае если лампа вдруг перестала работать. Сначала необходимо убедиться в исправности балласта. Для этого дроссель извлекается из корпуса устройства для проведения диагностики.
Неисправности дросселей
Наиболее часто возникают такие поломки:
- Обрыв обмотки. Нередко такое случается с низкокачественными катушками, выполненными из недостаточно очищенной меди или алюминия;
- Замыкание витков. Данная поломка возможна, если изоляция проводников выполнена с использованием некачественного лака;
- Повреждение контактных клемм. Если контакты неплотно прикручены к площадкам, на них может появиться нагар, который будет препятствовать прохождению тока.
Если позволяет конструкция светильника, его рекомендуется демонтировать целиком для последующей диагностики, а не извлекать отдельные неисправные элементы
Проверка дросселей
Обрыв легко определяется с помощью тестера. Для этого щупами измерительного прибора, включенного в режим теста целостности цепи, касаются клемм балласта в режиме. Звуковой сигнал сигнализирует о том, что катушка исправна.
Межвитковое замыкание диагностировать труднее. Необходимо знать индуктивность исправной катушки. Данную информацию можно получить, изучив надписи на балласте, посетив сайт изготовителя или измерив данную величину у заведомо исправного устройства.
Также следует проверить, не пробивает ли обмотка на корпус, что также будет сигнализировать о неисправности катушки. Для этого одним щупом тестера в режиме теста целостности цепи прикасаются к корпусу катушки, а другим – последовательно к обоим контактам катушки. Звуковая индикация должна отсутствовать.
Замена
Чтобы заменить вышедший из строя балласт, его демонтируют из светильника. Для демонтажа необходимо снять декоративную панель и отражатель. Для того чтобы не повредить лампы, их рекомендуется тоже извлечь. Делать это следует аккуратно, чтобы не повредить хрупкие колбы.
Сам балласт закреплен с помощью винтов в корпусе светильника. Работать под потолком не всегда удобно. Если позволяет конструкция светильника, его рекомендуется демонтировать целиком для последующей диагностики, а не извлекать отдельные неисправные элементы.
Принцип работы
Рассмотрим принцип работы электромагнитного дросселя на примере типичной схемы подключения для ламп газоразрядного типа .
Типичная схема подключения
На схеме обозначены:
- EL – лампа газоразрядного (люминесцентного) типа;
- SF – стартер, он представляет собой устройство состоящее из колбы, наполненной инертным газом, внутри нее находятся контакты из биметалла. Параллельно к колбе установлен конденсатор;
- LL –дроссель (электромагнитный);
- спирали лампы (1 и 2);
- C – конденсатор (компенсирует реактивную мощность), его емкость зависит от мощности лампы, ниже показана таблица соответствия.
Мощность газоразрядного источника (Вт) | Емкость конденсатора (мкФ) |
15 | 4,50 |
18 | 4,50 |
30 | 4,50 |
36 | 4,50 |
58 | 7,00 |
Встречаются устройства, в схемах которых отсутствует компенсирующий конденсатор, это недопустимо, поскольку реактивная нагрузка приводит к следующим негативным последствиям:
- происходит увеличение потребляемой мощности, что приводит к повышенному расходу электроэнергии;
- существенно сокращается ресурс оборудования.
Теперь перейдем непосредственно к принципу работы, приведенной выше типовой схемы. Условно ее можно разделить на следующие этапы:
- при подключении к электросети, через цепь дроссель «LL» – спираль « 1» – стартер «SF» – спираль «2» начинает проходить ток, сила которого от 40 до 50 мА;
- под воздействием этого процесса в колбе стартера ионизируется инертный газ, что приводит к повышению силы тока и разогреву биметаллических контактов;
- нагревшиеся электроды в стартере замыкаются, это вызывает резкое повышение силы тока, примерно до 600 мА. Дальнейший его рост ограничивает индуктивность дросселя;
- за счет увеличившейся силы тока в цепи происходит разогрев спиралей (1 и 2), в результате чего ими излучаются электроны, разогревается газовая смесь, что приводит к разряду ;
- под воздействием разряда возникает ультрафиолетовое излучение, которое попадает на покрытие из люминофора. В результате он светится в видимом спектре;
- когда источник света «зажигается», его сопротивление уменьшается, соответственно, понижается напряжение на дросселе (до 110 В);
- контакты стартера остывают и размыкаются.
Использование умножителей напряжения
Умножители напряжения для запуска люминесцентных ламп не получили широкого распространения. Такие схемы применяют любители, собирая их кустарным способом.
Они просты, дешевы и достаточно стабильны. Состоят из четырех конденсаторов и четырех диодов. Иногда дополняются конденсаторами.
Принцип работы заключается в ступенчатом увеличении величины напряжения на контактах лампы. Высокое напряжение вызывает пробой газовой среды без ее разогрева, и позволяет запустить даже вышедшие из строя лампы.
Но, умножитель напряжения имеет один большой минус.
Мнение эксперта
Изосимов Владимир Николаевич
Электрик высшей категории. Специалист по осветительным приборам.
Напряжение на контактах ламп может быть очень высоким, доходить до 1 тыс. вольт и выше. Такие схемы опасны для окружающих.
Учитывая опасность поражения электрическим током, умножители напряжения не используются в промышленных разработках.
Люминесцентные светильники постепенно уступают свои позиции более современным LED приборам освещения. Но пока еще достаточно популярны благодаря своей экономичности, простоте эксплуатации, надежности и приемлемой стоимости. Простота схем подключения, позволяет самостоятельно устанавливать люминесцентные приборы либо выполнять их замену в случае выхода из строя.
Предыдущая
ЛюминесцентныеДроссели и их назначение при использовании люминесцентных ламп
Следующая
ЛюминесцентныеКуда сдавать: пункты приема энергосберегающих ламп
Схемы включения люминесцентных ламп
Наиболее распространенные схемы включения люминесцентных конструкций:
- схема подключения с использованием электромагнитного балласта;
- схема включения люминесцентных приборов освещения с применением электронного балласта.
Теперь давайте рассмотрим обе схемы более подробно.
Схема подключения люминесцентной лампы посредством электромагнитного балласта (ЭмПРА)
Сокращение ЭмПРА означает электронный пускорегулирующий аппарат, который еще известен как балласт либо же его называют дросселем.
Мощность ЭмПРА обязана соответствовать суммарной мощности ламп, которые подключены к нему. Данная стартерная схема достаточно старая и активно используется уже далеко не первое десятилетие. Стартером в этой схеме называют небольшую лампу, оснащенную неоновым наполнением, также в нее входят два биметаллических электрода.
Принцип включения люминесцентной конструкции согласно этой схеме следующий:
- во время включения электропитания в стартере происходит разряд;
- биметаллические электроды замыкаются накоротко;
- ток в цепи стартера и электродов сводится только к внутреннему сопротивлению дросселя, что повышает рабочий ток почти втрое и разогревает ламповые электроды буквально за мгновение;
- в это же время биметаллические контакты остывают и размыкается цепь;
- в момент разрыва цепи дроссель создает запускающий импульс до 1 кВт, что происходит благодаря его самоиндукции;
- происходит разряд в газовой среде прибора и он включается.
Помните, что стартеры на 127 Вольт не смогут работать в одноламповой системе и для нее потребуется стартер на 220 Вольт.
ЭмПРА, используемое при данной схеме, имеет свои преимущества:
- удобство конструкции;
- относительная надежность;
- доступная цена.
Однако такой балласт имеет и свои недостатки, в числе которых следующие:
- расход электроэнергии выше более чем на 15 процентов по сравнению со схемой подключения на основании электронного балласта;
- время запуска зависит от износа конструкции и колеблется до 3 секунд;
- со временем усиливается звук от гудения дроссельных пластин;
- часто возникает стробоскопический эффект мерцания люминесцентной лампы, что негативно может сказаться на зрении человека;
- система дает сбои при низких температурах. Так, ничего не будет работать в сильные холода в неотапливаемых помещениях при включении посредством данной схемы.
Схема подключения люминесцентной лампы при помощи электронного балласта (ЭПРА)?
ЭПРА расшифровывается как электронный пускорегулирующий аппарат (он же балласт). В отличие от электромагнитного балласта он подает на лампу напряжение не сетевой частоты, а высокочастотное (25-133 кГц). Такая схема исключает появление мигания, которое так часто нас раздражает и негативно влияет на зрение. В данном аппарате применена автогенераторная схема, которая включает трансформатор и выходной каскад с транзисторами.
Схемы подключения люминесцентных ламп при помощи электронного балласта есть разные, чаще всего они нанесены на блок конструкции и подключить их тем или иным способом не составляет труда.
Схемы с применением электронного пускорегулирующего балласта тоже имеют свои преимущества и недостатки.
Преимущества их такие:
- специальный режим работы и запуска ЭПРА позволяет увеличить срок эксплуатации люминесцентной лампы;
- до 20 процентов экономии электроэнергии по сравнению с электромагнитным балластом;
- отсутствие шумов и мерцаний при работе лампы;
- отсутствие часто ломающегося стартера;
- наличие моделей, где есть возможность диммирования (регулировки яркости света).
Недостатков у данного балласта не так уж и много и они не слишком существенны:
- сложная схема подключения;
- высокие требования к качеству комплектующих и их установке.
Люминесцентные осветительные конструкции привыкли покупать те люди, которые хотят оптимизировать потребление электричества дома и на работе, а также желают сократить траты на приобретение новых осветительных приборов, приходящих со временем в негодность. Благодаря балластам, люминесцентные конструкции работают корректно. Естественно, больше преимуществ у схем включения люминесцентных ламп при помощи современного электронного балласта ЭПРА.
Как правильно подключить
Подключение люминесцентных ламп проводится с помощью различных вариантов. С использованием дросселя, с балластом, со стартером или без него. Далее в статье приведено подробное описание каждого способа.
С дросселем и без него
Люминесцентную установку нельзя просто зажечь — ей необходимо наличие зажигателя и токоотвод. В небольших изделиях фабрики все эти нюансы учитывают и встраивают в корпус и покупателю нужно только лишь вкрутить лампочку в подходящий плафон светильника/торшера и нажать выключатель.
А для более крупных лампочек необходима пускорегулирующая установка, которая может быть как электромеханическая, так и электронная.
Для правильного подсоединения и бесперебойной работы лампочки нужно знать схему.
Здесь рассматривается поэтапное подключение двух трубчатых люминесцентных ламп к сети с применением стартерной установки. Для работы необходимо иметь два стартера, дроссель, вид которого должен непременно соответствовать виду лампы.
А также необходимо помнить о суммарной мощности пускового аппарата, она не должна быть выше, чем у дросселя.
При включении питающего кабеля к лампочке необходимо помнить, что в роли ограничителя тока будет дроссель.
Поэтому, фазную жилу нужно подключать через него, а на изделие подключить нулевой кабель.
Данная схема подключения подходит для крупных осветительных ламп. А более меньшие модели оснащены вмонтированным устройством запуска и регулировки — портативным ЭПРА, который расположен в корпусе.
Подключение без использования дросселя
Такой вариант подключения будет более тяжелым, и не подойдет для новичка.
Для работы можно использовать диодный мост с несколькими конденсаторами и подсоединенная последовательно в цепь в роли балласта, лампа накаливания.
Основной плюс этого подключения в том, что можно включить не только обычную лампу без дросселя, но и испорченную, в которой нет спиралей.
Для изделий мощностью 18 ватт необходимо брать следующие элементы:
- диодный мост GBU405;
- конденсатор 2NF (до 1 кв)
- конденсатор 3NF (до 1 кв)
- люминесцентная лампа 50 Вт
Для трубок большей мощности нужно увеличить объем конденсатора. После всего схема подключается к дневному освещению.
С электронным балластом
Провести работу по подключению с применением ЭПРА для люминесцентных изделий легко произвести, если человек имеет базовые навыки работы с электрикой. Фактически, в изделии будет находиться сам блок, элемент проводов и лампы дневного освещения.
Для начала необходимо выбрать в корпусе лампы удобное место для подключения электронного блока управления, полагаясь на практичную расстановку клемм, которые находятся на корпусе.
Зафиксировать его с корпусом с помощью саморезов простым шуруповёртом. Соединить блок управления с изделием и клеммой подключения.
Программа подключения двух люминесцентных изделий такая же, только они включаются последовательно, поэтому мощность блока управления должна быть больше. По такой же схеме можно подключить три и более лампочки.
После завершения работы, необходимо убедиться в верности подключения всех проводов, и только потом крепить светильник на место. Проверив вольтметром отсутствие напряжения в электросети, подсоединить светильник к электрической проводке.
В завершении нужно включить напряжение, чтобы проверить работы люминесцентной лампы. Если все было произведено правильно, то это будет заметно сразу.
Лампы сразу включатся, не нужно ждать пока они разогреются, а также они перестанут издавать шум, исчезнет мерцание, а яркость будет гораздо выше.
Если человек не уверен в своей способности, то лучше вызвать специалиста для этой работы.
Со стартером
Схему подключения люминесцентной лампы со стартером будет выполнить проще всего. Здесь для примера будет взята лампочка на 40 Вт. Дроссель должен быть с такой же мощностью, а для стартера будет достаточно 60 Вт.
Пошаговое подключение по схеме:
- параллельно установить стартер к выступающим боковым контактам на краях люминесцентной лампочки. Эти контакты похожи на куски нитей накаливания вакуумной колбы;
- теперь на контакты необходимо начать подсоединять дроссель;
- к этим контактам подсоединить конденсатор, непоследовательно, а параллельно. Из-за этого конденсатору будет возмещаться реактивная мощность и уменьшаться помехи в электросети.
Такую простую схему может осуществить любой человек, но перед тем, как включаться лампочку, нужно замерить напряжение в сети. Включать светильник только после теста мультиметром.
Схема подключения люминесцентных ламп без стартера
Питание от В без дросселя и стартера Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают.
Для работы больше никаких устройств не надо.
Следующая схема позволяет запустить лампу дневного света с перегоревшими пусковыми спиралями мощностью до 40 Вт при использовании лампы меньшей мощности дроссель L1 придется заменить на соответствующий используемой лампе. Это можно заметить по наличию темных пятен люминофора с одной из сторон колбы. На вход подают электропитание.
Индуктивности дросселя должно хватать на оба источника света. Как видно из рисунка ниже, кроме дросселя и стартера в схеме присутствует обычный диоднй мост. Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам.
Читайте дополнительно: Сроки измерения сопротивления заземляющих устройств
Принцип работы газоразрядных люминесцентных ламп
Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска. Для работы больше никаких устройств не надо. При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора.
Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.
Схема подключения люминесцентных ламп с дросселем
Во всех используется принцип создания высокого напряжения запуска при помощи умножителя напряжения. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Как только контакты соединились, ток в цепи мгновенно вырастает в раза.
В схеме, приведенной ниже, роль токоограничивающего дросселя выполняет обычная лампа накаливания, мощность которой равна мощности используемой ЛДС. Правильно собранная схема при исправных элементах начинает работать сразу же. Схема ее подключения есть справа. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне. Проверка стартера люминесцентной лампы
Основные функции
При появлении устойчивого разряда сопротивление между электродами на противоположных концах колбы падает и ток протекает по цепи дроссель-электроды.
Работа ЭПРА может осуществляться в двух режимах: с предварительным подогревом электродов; с холодным запуском.
Автор: Engineer Схемы подключения люминесцентных ламп без дросселя и стартера Люминесцентные трубчатые лампы долгое время были популярны в освещении помещений любой площади. Пока лампа погашена, напряжения на удвоителе VD1, VD2, С2, С3 достаточно для открывания стабилитронов, поэтому на электродах лампы присутствует удвоенное напряжение сети. В таких случаях только вам решать стоит ли продлевать жизнь умершим светильникам дневного света или бежать в магазин за новыми. Лампу накаливания использовать на Вт, как показано на фото: Альтернативой описанным способам является использование платы от энергосберегающих ламп. ЭПРА, размещенный в цоколе В качестве примера приведем схему простого электронного балласта, типичную для большинства недорогих устройств. Указывается мощность ламп и их количество, а также технические характеристики устройства. Для её работы также не нужен дроссель и стартер. Как правило, первой наматывают первичную обмотку, затем главную вторичную на схеме обозначена, как III. Схема ее подключения есть справа. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами с перегоревшими нитями накала. Он наступает после того, как испарилась вся ртуть.
Классическая схема включения люминесцентных ламп
Возможно вам понравится одна из вариаций рассмотренной схемы. Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков. Наиболее дорогостоящий элемент схемы — дросселя.
Соответственно это может привести к несчастным случаям. Также можно с легкостью обыгрывать стандартные схемы подключения и избавляться от компонентов, которые неисправны. При включении более мощных трубок емкость конденсаторов стоит увеличить. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов.
Это аналогичный осветительный прибор, только сильно видоизмененный. По ней сразу понятно, сколько ламп к нему подключается. В данном случае используется не сетевая частота 50 Гц , а высокие частоты 20 — 60 кГц. Лампа работает. СПОСОБ ПОДКЛЮЧЕНИЯ ЛАМПЫ ДНЕВНОГО СВЕТА БЕЗ ДРОССЕЛЯ
Электронный балласт
Электронный запуск и поддержание горения люминесцентных ламп разработали еще в восьмидесятые и начали применять в начале девяностых годов ХХ века. Использование электронного балласта позволило сделать люминесцентное освещение на 20% экономичнее.
При этом сохранились и улучшились все характеристики светового потока. Равномерное, без характерного мерцания освещение стабильно даже при колебаниях напряжения в сети.
Этого удалось достичь благодаря повышенной частоте тока, подаваемого на лампы и большим коэффициентом полезного действия электронных устройств.
Плавный запуск и мягкий рабочий режим позволили почти вдвое увеличить срок эксплуатации ламп. Дополнительно появилась возможность плавного управления яркостью светильника. Необходимость использования стартеров исчезла. С ними пропали и радиопомехи.
Принцип работы электронного балласта отличается от электромагнитного. При этом, выполняет те же функции: разогрев газа, розжиг и поддержание горения. Но, делает это точнее и мягче. В различных схемах используются полупроводники, конденсаторы, сопротивления и трансформатор.
Электронные балласты могут иметь разные схематические исполнения в зависимости от применяемых компонентов. Упрощенно, прохождение тока по схеме можно описать следующим алгоритмом:
- Напряжение поступает на выпрямитель.
- Выпрямленный ток обрабатывается электронным преобразователем, посредством микросхемы или автогенератора.
- Далее напряжение регулируется тиристорными ключами.
- Впоследствии один канал фильтруется дросселем, другой конденсатором.
- И по двум проводам напряжение поступает на пару контактов лампы.
- Другая пара контактов лампы замкнута через конденсатор.
Выгодным отличием электронных систем является то, что напряжение, поступающее на контакты ламп имеет большую, чем у электромагнитных, частоту. Она варьируется от 25 до 140 кГц. Именно поэтому в системах ЭПРА мерцание светильников сведено к минимуму и их свет менее утомителен для человеческих глаз.
Схемы подключения ламп к ЭПРА и их мощность, большинство производителей указывают на верхней стороне устройства. Поэтому потребители имеют наглядный пример, как правильно собрать и подключить прибор в сеть.
В электронных балластах предусмотрено различное количество подключаемых ламп разной мощности, например:
- К дросселям Philips серии HF-P можно подключить от 1 до 4 трубок, мощностью от 14 до 40 Вт.
- Дроссели Helvar серии EL предусмотрены для одной – четырех ламп, мощностью от 14 до 58 Вт.
- QUICKTRONIC торговой марки Osram типа QTР5 также имеют возможность управлять одной – четырьмя лампами, мощностью 14 – 58 Вт.
Электронные приборы имеют массу достоинств, из которых можно выделить следующие:
- небольшой вес и малую величину устройства;
- быстрое и сберегающее люминесцентную лампу, плавное включение;
- отсутствует видимое глазу мерцание света;
- большой коэффициент мощности, примерно 0,95;
- прибор не греется;
- экономия электроэнергии в размере 20%;
- высокий уровень пожарной безопасности и отсутствие рисков в процессе работы;
- большой срок службы люминесцентов;
- отсутствие высоких требований к температуре окружающей среды;
- способность автоматической подстройки к параметрам колбы;
- отсутствие шумов во время работы;
- возможность плавной регулировки светового потока.
Отмечаемый многими, единственный минус электронных систем это их цена. Но она оправдывается достоинствами.
Требования по утилизации ртутных приборов
Бездумно выбрасывать отработанные или бракованные ртутьсодержащие лампочки нельзя. Приборы с поврежденной колбой являются серьезной угрозой здоровью человека и экологии в целом, потому нуждаются в специфической утилизации.
Вопрос о порядке утилизации небезопасных отходов актуален как для владельцев предприятий, так и для обычных жителей. Переработкой ртутных ламп занимаются организации, получившие соответствующую лицензию.
Предприятие заключает с такой фирмой договор на обслуживание. По заявке представитель утилизирующей компании выезжает на объект, производит сбор и вывоз ламп для последующего обеззараживания и переработки. Ориентировочная стоимость услуги – 0,5 у.е за один осветительный прибор.
Для сбора ртутьсодержащих лампочек у населения организованы точки приема. Люди, проживающие в небольших населенных пунктах, могут сдать опасные отходы на переработку через «экомобиль»
Если выброс ртутьсодержащих ламп предприятиями как-то контролируется органами надзора, то соблюдение правил утилизации населением – личная ответственность граждан.
К сожалению, из-за низкой осведомленности далеко не каждый пользователь ртутных ламп осознает возможные последствия попадания ртутных паров в окружающую атмосферу.
Все виды энергосберегающих ламп детально описаны в следующей статье, в которой рассмотрены принципы действия, выполнено сравнение приборов, дана упрощенная экономическая оценка.
Название | Рабочее напряжение, В | Мощность, Вт | Длина, мм | Диаметр, мм | Тип цоколя | Световой поток, лм | Срок службы, часы |
ДРЛ 125 | 125 | 125 | 178 | 76 | Е 27 | 5900 | 12000 |
ДРЛ 250 | 130 | 250 | 228 | 91 | Е 40 | 13500 | 15000 |
ДРЛ 400 | 135 | 400 | 292 | 122 | Е 40 | 24000 | 18000 |
ДРЛ 700 | 140 | 700 | 357 | 152 | Е 40 | 41000 | 20000 |
ДРЛ 1000 | 145 | 1000 | 411 | 167 | Е 40 | 59000 | 18000 |
Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!
Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ. Если же вам что-то непонятно, пишите мне!
Принцип действия ЭПРА
Электронные ПРА (ЭПРА) используют потенциал современной силовой электроники и являются более сложными, но и более функциональными схемами. Такие устройства позволяют контролировать три фазы запуска и регулировать световой поток. В результате повышается срок службы лампы. Также, из-за питания лампы током более высокой частоты (20÷100 кГц) отсутствует видимое мерцание. Упрощённая схема одной из популярных топологий ЭПРА приведена на рис. 2.
Рис. 2 Упрощённая принципиальная схема ЭПРА На рис. 2 D1-D4 – выпрямитель сетевого напряжения, С – фильтрующий конденсатор, Т1-Т4 – транзисторный мостовой инвертор с трансформатором Tr. Опционально в ЭПРА могут присутствовать входной фильтр, схема коррекции коэффициента мощности, дополнительные резонансные дроссели и конденсаторы. Полная принципиальная схема одного из типовых современных ЭПРА приведена на рис 3.
Рис. 3 Схема ЭПРА BIGLUZ В схеме (рис. 3) присутствуют основные выше названные элементы: мостовой диодный выпрямитель, фильтрующий конденсатор в звене постоянного тока (С4), инвертор в виде двух транзисторов с обвязкой (Q1, R5, R1) и (Q2, R2, R3), дроссель L1, трансформатор с тремя выводами TR1, схема запуска и резонансный контур лампы. Две обмотки трансформатора служат для включения транзисторов, третья обмотка входит в состав резонансного контура ЛДС.
Преимущества и недостатки
Главным плюсом люминесцентных устройств будет высокая светоотдача и отличный уровень КПД. Они дают помещению хорошую яркость, которая не портит глаза, и исправно работают спустя долгие часы.
Различные цветовые температуры, похожие по оттенку на дневной свет, помогают выбрать необходимый светильник под разнообразные задачи и для помещений любого предназначения.
Свет от таких ламп будет рассеянным. Мягкое, приятное для глаз сияние испускается не только от нити из вольфрама, но и от всего сосуда лампочки сразу.
Это позволяет применять люминесцентное освещение не только для подсветки, но и для зонирования помещения.
Срок службы люминесцентных устройств будет в диапазоне от 10000 до 20 000 часов либо до 4 лет.
Освещение для растений
Главным большим недостатком лампочек будет высокая чувствительность к температурным скачкам. Уже при температуре −15 градусов изделие будет плохо работать. При высокой жаре лампочки перестают включаться и могут сильно перегреться.
Зажигаем сгоревшую лампу
В данной схеме при сгоревшей лампе двойные штырьки на концах замыкаются между собой.
Подбор компонентов в зависимости от мощности лампы, делайте ориентируясь на табличку ниже.
Если лампочка целая, перемычки все равно устанавливаются. При этом не требуется предварительный разогрев спиралей до 900 градусов, как в исправных моделях.
Электроны необходимые для ионизации, вырываются наружу и при комнатной температуре, даже если спираль и перегорела. Все происходит за счет умноженного напряжения.
Весь процесс выглядит следующим образом:
первоначально в колбе разряд отсутствует
затем на концы подается умноженное напряжение
свет внутри за счет этого моментально зажигается
далее загорается лампочка накаливания, которая своим сопротивлением ограничивает максимальный ток
в колбе постепенно стабилизируется рабочее напряжение и ток
лампочка накаливания немного тускнеет
Недостатки подобной сборки:
низкий уровень яркости
повышенная пульсация
А еще при питании люминесцентных ламп постоянным напряжением, вам придется очень часто менять полярность на крайних электродах колбы. Проще говоря, перед каждым новым включением переворачивать лампу.
В противном случае пары ртути будут собираться только возле одного из электродов и светильник без периодического обслуживания долго не протянет. Это явление называется катафорез или унос паров ртути в катодный конец светильника.
Там где подключен “плюс”, яркость будет меньше и этот край начнет чернеть значительно быстрее.
Особенно это заметно при монтаже светильников ЛБ в холодных помещениях – гараж, сарай, коридор, подвал. Если колба не прогрета, она может даже не запуститься.
В этом случае стоит до нее дотронуться теплой рукой и она тут же начинает гореть.
Поэтому запомните – люминесцентная лампа это источник света переменного тока. Постоянный ей противопоказан и убивает лампу. Особенно импортные дохнут очень быстро.
Еще один минус подобных диодных схем, про который мало кто говорит – итоговый ток потребления из розетки. Для 40Вт ЛБ лампочки при не идеально подобранных компонентах, ток потребления из сети 220В может доходить до 1А.
А это даже превышает нагрузку обычной лампы накаливания в 200Вт. Вот это экономия у вас получится!
Поэтому какой из способов подойдет именно вам, решайте сами, исходя из имеющихся под рукой запчастей и познаний в электронике.
Подключаем, используя электромагнитный балласт
Электромагнитный Пускорегулирующий аппарат, сокращённой аббревиатурой для него является ЭмПРА. Также часто называют дросселем. Мощность такого устройства должна быть равной той мощности, которую потребляют лампы при работе. Довольно старая схема, с помощью которой раньше подключали люминесцентные лампы.
Схема с электромагнитным балластом
Принцип работы такого устройства состоит в следующем. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются. Благодаря этому, весь ток, который появляется в цепи, замыкается между электродами и ограничивается только сопротивлением дросселя.
Таким образом, он возрастает примерно в три-четыре раза, и электроды начинают практически моментально разогреваться.
Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. После включения, напряжение в схеме будет равно примерно половине от входящего с сети.
Какими недостатками она обладает:
- Сравнивая со схемой, где применяется электронный балласт, расход электроэнергии выше на десять-пятнадцать процентов.
- В зависимости от того, сколько лампа уже проработала времени, период запуска будет увеличиваться и может дойти до трёх-четырёх секунд.
- Такая схема подключения люминесцентных ламп со временем способствует появлению гудения. Такой звук будет исходить от пластин дросселя.
- В процессе работы светильника будет довольно высокий коэффициент пульсации света. Такое явление негативно сказывается на зрении человека, а при продолжительном нахождение действие таких мерцающих лучей может стать причиной ухудшения зрения.
- Неспособны работать при низкой температуре. Таким образом, отпадает возможность использовать такие лампы на улице или в неотапливаемых помещениях.
Подключение ЭПРА
Подсоединение ЭПРА (электронного пускового механизма)
Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.
В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.
Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:
- источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
- с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня
Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:
- Разобрать старую схему, удалив из нее дроссель, стартер, а также конденсаты. Внутри должны остаться лишь источник света и провода
- Прикрепляем подобранный по мощности ЭПРА к корпусу саморезами. Если ламп две, то мощность электронного механизма должна быть выше в 2 раза
- Соединяем его проводами с гнездами ламп
- Если сборка произведена правильно, оба источника света должны засветиться одновременно, ровным ярким светом. Гудения, естественно, быть уже не должно.
Достоинства и недостатки люминесцентных источников света
Использование ламп для тепличного выращивания растений
ПЛЮСЫ:
- Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
- Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.
МИНУСЫ:
- Необходимость подключения дополнительных устройств (стартеров и дросселей)
- Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
- Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
- На силу света в таких источниках способна влиять температура окружающей среды
- Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
- значительная пульсация света, что может сказаться отрицательно на зрении
- Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных
Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.
Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.
Сравнение параметров разных источников освещения
Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.
Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.
Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:
Особенности люминесцентных светильников
Какая должна быть электропроводка в частном доме, укладка своими руками, инструкция для новичков
Устройство люминесцентной лампы
Чтобы понять, каким образом осуществляется подключение люминесцентных ламп, требуется понять принцип их работы. Внешне они выглядят как стеклянные цилиндры, воздух в которых полностью заменен инертным газом, находящимся под небольшим давлением. Здесь же находится небольшое количество паров ртути, способных ускорять ионизацию – движение электронов.
С двух сторон цилиндра расположены электроды. Между ними находится вольфрамовая спираль, покрытая оксидами веществ, способных при пропускании тока и нагреве легко перемещаться на довольно большие расстояния, создавая ультрафиолетовое излучение (УФ).
Соединение проводов в распределительной коробке: типы соединений и их применение
Электромагнитный ПРА
Но, так как этот вид излучения невидим, его преобразуют с помощью люминофора (особого состава на основе галофосфата кальция, которым покрыты стенки цилиндра), способного поглощать УФ, взамен выделяя видимые лучи света. Именно от вида люминофора зависит цвет освещения.
После включения устройства и перехода в рабочее состояние сила тока в нем может возрастать за счет падения сопротивления газов. Если не ограничить этот процесс, оно может быстро сгореть.
Для снижения силы тока используют дроссели (ограничители) – винтоспиральные катушки индуктивности, дающие дополнительную нагрузку и способные сдвигать фазу переменного тока и поддерживать желаемую мощность на весь период включения. Ограничительные устройства имеют и иное название: балласты или ПРА (пускорегулирующие аппараты).
Двухтрубная система отопления частного дома: устройство, типы систем, схемы, компоновка, разводка, монтаж и запуск системы (Фото & Видео) +Отзывы
Электронный пускорегулирующий аппарат
Более совершенными видами балласта являются электронные механизмы (ЭПРА), принцип работы которых будет описан в следующей главе. Для запуска разряда используется пусковое устройство, называемоестартером.
Электромагнитный дроссель или ЭПРА следует подбирать в зависимости от количества ламп и их мощности. Подсоединять предназначенное для двух ламп устройство к одной запрещено. Во избежание выхода прибора из строя подключать ЭПРА без нагрузки, то есть лампы, также не следует.
back to menu
Советы по подключению ламп дневного света
Люминесцентные потолочные светильники используются в производственных помещениях, офисах, жилых домах. Они бывают одно-, двух- и четырехламповые, встроенные и накладные.
Конструкция 4 лампового светильника – это два двухламповых, соединенных параллельно, попарное соединение последовательное. Одна из лампочек оснащается фазосдвигающим конденсатором, предотвращающим мерцание. При необходимости дроссель можно заменить ЭПРА. Порядок соединения указан на корпусе блока.
Для компактных моделей не нужны ни дроссели, ни стартеры, так как они встроены в цоколь. По удобству использования они такие же, как лампочки накаливания.
Если используется дроссель, его мощность должна быть такая же, как у лампы. Для самостоятельного подключения лучше приобрести ЭПРА. Думать о том, как подключить люминесцентную лампу, будет не нужно. На корпусе имеется подробная схема соединения, что снижает вероятность ошибки. Дополнительное преимущество этого варианта – отсутствие мерцания.
Важно так же, что не нужно покупать что-то дополнительно. Все необходимые элементы включены в комплектацию поставки
Схема запуска
Когда подключение лампочки произведено, необходимо убедиться в ее правильности и в исправности пускорегулирующих аппаратов. Для проведения тестов нужно иметь мультиметр, при помощи которого можно проверить катодные тела накала.
Разрешенный уровень сопротивления не превышает 10 Ом. Если мультиметр указал сопротивление как бесконечное, то не нужно торопиться выбрасывать лампу. Это устройство еще сохраняет работоспособность, но применять его необходимо в системе холодного запуска. Теперь можно пробовать запустить светильник.
Внимание! В обычных условиях провода стартера разомкнуты, а его конденсатор не позволяет постоянному току проходить. Проще говоря, мультиметр должен показывать достаточно высокое сопротивление, которое может быть больше 100 Ом
В заключении нужно отметить, что схема люминесцентной лампы достаточно тяжелая, которая не под силу обычному человеку. Но существует множество вариантов, благодаря которым работа значительно упрощается
Важно помнить о том, что детей нельзя допускать к этому виду деятельности. При монтаже светильника нужно обесточить все помещение. https://www.youtube.com/embed/PPN2VXjBMbQ
Без демонтажа
Самый простой способ это без демонтажа, но придется докупить пару зажимов Wago. Выкусываете вообще все провода подходящие к патрону на расстоянии 10-15мм или более. Далее заводите их в один и тот же зажим Ваго.
Тоже самое проделываете с другой стороной светильника. Если у клеммника wago недостаточно контактов, придется использовать 2 шт.
После этого, все что остается – подать в зажим на одну сторону фазу, а на другую ноль.
Нет Ваго, просто скручиваете провода под колпачок СИЗ. При таком методе, вам не нужно разбираться с существующей схемой, с перемычками, лезть в контакты патронов и т.п.
Разновидности ДРЛ
- Стандартная дуговая ртутная люминесцентная — характеризуется слабой цветопередачей, а во время свечения выделяется большое количество тепла. Для выхода на рабочий режим требуется около пяти минут с момента включения в сеть. Крайне неустойчивы к перепадам напряжения, поэтому эксплуатация допустима в цепях с постоянным источником питания. В конструкциях, в которых используются данные лампы, обязательно должны быть термостойкие провода.
- Дуговая ртутная эритемная вольфрамовая (ДРВЭД) — лампа, функционирующая без дросселя. Подключается через активный балласт так же, как и стандартные лампочки накаливания. За счет наличия йодидов металлов повышается светопередача и уменьшается потребление электроэнергии. Для большей яркости используется увиолевое стекло. Лучше всего подходят для комнат с недостатком естественного освещения.
- ДРЛФ — усовершенствованная ДРЛ, используемая для ускорения фотосинтеза растений. Изнутри колба покрывается отражающим материалом, благодаря чему лампочка и получила свое второе название — рефлекторная. Идеально подходит для подключения к сети переменного тока. Применяется в парниках и теплицах, где требуется дополнительный источник света.
- Дуговая ртутная вольфрамовая — повышенная световая отдача, большая продолжительность эксплуатации без пускорегулирующего аппарата. Отличный вариант для освещения улиц, паркингов, открытых площадок и т. п.
Модель | Номинальное напряжение, В | Мощность, Вт | Длина, мм | Диаметр, мм | Цоколь | Световой поток, лм | Долговечность, ч |
ДРЛ-125 | 125 | 125 | 177 | 77 | E27 | 6000 | 12 000 |
ДРЛ-250 | 130 | 250 | 227 | 90 | E40 | 13 500 | 15 000 |
ДРЛ-400 | 135 | 400 | 290 | 121 | E40 | 25 000 | 18 000 |
ДРЛ-700 | 140 | 700 | 356 | 151 | E40 | 40 000 | 20 000 |
ДРЛ-1000 | 145 | 1000 | 412 | 168 | E40 | 60 000 | 18 000 |
Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!
Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Если же вам что-то непонятно, пишите мне!
Устройство лампы
Люминесцентный источник счета – это осветительный прибор, в котором ультрафиолетовое излучение преобразуется в видимый свет определенного спектра. Свечение достигается благодаря электрическому разряду, который появляется при подаче электричества в газовой среде. Образуется ультрафиолет, который воздействует на люминофор. В результате лампочка загорается и начинает светить.
Большая часть люминесцентных ламп изготавливается в форме цилиндрических трубок. Могут встречаться более сложные геометрические формы колбы. По краям трубки располагаются вольфрамовые электроды, которые припаяны к наружным штырькам. Именно к ним подается напряжение.
Стандартная схема лампочки состоит из стартера и дросселя. Дополнительно могут использоваться различные управляющие механизмы. Основной задачей дросселя является образование импульса необходимой величины, которое сможет включить лампу. Стартер представляет собой тлеющий разряд, у которого электроды находятся в инертной среде из газов. Обязательное условие – один электрод должен быть биметаллической пластиной. Если лампа выключена, электроды разомкнуты. При подаче напряжения они замыкаются.
Классификация проводится по разным критериям. Основной из них – свет. Он может быть дневным или белым с разной цветовой температурой. Разделение производится и по ширине трубки. Чем она больше, тем выше мощность лампы и площадь освещаемого участка. Люминесцентные лампы делятся по числу контактов, рабочему напряжению, наличию стартера, форме.
Срок службы дросселя
В среднем качественный элемент должен выдерживать более 6 циклов включения и выключения лампы. В идеальных условиях рабочий диапазон данной электроники находится в температурном режиме от 5 °С до 55 °С. При минусовых температурах ограничитель может работать неисправно. При нормальных условиях эксплуатации срок службы дросселя составит 3 года. Но это касается только качественных моделей от известных производителей.
Ограничитель выполняет важную роль в электрической схеме, в которую подключен световой элемент. Он не дает ей взорваться или перегореть, поэтому в любую электрическую цепь, в которой есть люминесцентный освещавший прибор, нужно подключать дроссель.
Пара ламп и один дроссель
Схема с одним дросселем
Стартеров здесь понадобится два, а вот дорогостоящий ПРА вполне можно использовать один. Схема подключения в этом случае будет чуть сложней:
Подсоединяем провод от держателя стартера к одному из разъемов источника света Второй провод (он будет подлиней) должен проходить от второго держателя стартера к другому концу источника света (лампе)
Обратите внимание, что гнезд у него с обеих сторон два. Оба провода должны попасть в параллельные (одинаковые) гнезда, расположенные с одной стороны Берем провод и вставляем его вначале в свободное гнездо первой, а затем второй лампы Во второе гнездо первой подсоединяем провод с подключенной к нему розеткой Раздвоенный второй конец этого провода подключаем к дросселю Осталось подключить к следующему стартеру второй источник света
Подсоединяем провод в свободное отверстие гнезда второй лампы Последним проводом соединяем противоположную сторону второго источника света к дросселю
Баклажаны: описание и характеристика 53 популярных и необычных сортов для открытого грунта и теплицы (Фото & Видео) +Отзывы
Преимущества балластов разных типов
Прежде чем выбрать и, тем более, купить балласт того или иного типа, имеет смысл разобраться в их отличиях друг от друга. К преимуществам ЭмПРА можно отнести:
- умеренную стоимость;
- высокую надежность;
- возможность подключения двух ламп половинной мощности.
Электронные балласты появились много позже своих дроссельных собратьев, а значит, и список преимуществ у них больше:
- небольшие габариты и вес;
- при той же светоотдаче энергопотребление на 20% ниже, чем у ЭмПРА;
- почти не нагреваются;
- работают абсолютно бесшумно (ЭмПРА нередко гудит);
- отсутствие мерцания лампы с частотой сети;
- срок службы лампы на 50% выше, чем с дросселем;
- лампа запускается мгновенно, без «мигания».
Но за все эти преимущества, естественно, придется заплатить – стоимость электронного устройства ощутимо выше, чем цена дроссельного, а надежность, увы, пока еще ниже. Кроме того, если мощность электронного балласта ниже мощности лампы, то в отличие от электромагнитного он просто сгорит.