Как читать электрические схемы – графические, буквенные и цифровые обозначения

При изучении электроники возникает вопрос, как читать электрические схемы. Естественным желанием начинающего электронщика или радиолюбителя является спаять какое-то интересное электронное устройство. Однако на начальном пути достаточных теоретических знаний и практических навыков как всегда не хватает. Поэтому устройство собирают вслепую. И часто бывает, что спаянное устройство, на


которое было затрачено много времени, сил и терпения, – не работает, что вызывает только разочарование и отбивает желание у начинающего радиолюбителя заниматься электроникой, так и не ощутив все прелести данной науки. Хотя, как оказывается, схема не заработала из-за допущения сущего пустяковой ошибки. На исправление такой ошибки у более опытного радиолюбителя ушло бы меньше минуты.

В данной статье приведены полезные рекомендации, которые позволят свести к минимуму количество ошибок. Помогут начинающему радиолюбителю собирать различные электронные устройства, которые заработают с первого раза.

Как научиться читать электрические схемы

Любая радиоэлектронная аппаратура состоит из отдельных радиодеталей, спаянных (соединенных) между собой определенным образом. Все радиодетали, их соединения и дополнительные обозначения отображаются на специальном чертеже. Такой чертеж называется электрической схемой. Каждая радиодеталь имеет свое обозначение, которое правильно называется условное графическое обозначение, сокращенно – УГО. К УГО мы вернемся дальше в этой статье.


Принципиально можно выделить два этапа совершенствования чтения электрических схем. Первый этап характерен для монтажников радиоэлектронной аппаратуры. Они просто собирают (паяют) устройства не углубляясь в назначение и принцип работы основных его узлов. По сути дела – это скучная работа, хотя, хорошо паять, нужно еще поучиться. Лично мне гораздо интересней паять то, что я полностью понимаю, как оно работает. Появляются множества вариантов для маневров. Понимаешь какой номинал, например резистора или конденсатора критичный в данной случае, а каким можно пренебречь и заменить другим. Какой транзистор можно заменить аналогом, а где следует использовать транзистор только указанной серии. Поэтому лично мне ближе второй этап.

Второй этап присущ разработчикам радиоэлектронной аппаратуры. Такой этап является самый интересный и творческий, поскольку совершенствоваться в разработке электронных схем можно бесконечно.

По этому направлению написаны целые тома книг, наиболее известной из которых является «Искусство схемотехники». Именно к этому этапу мы будем стремиться подойти. Однако здесь уже потребуются и глубокие теоретические знания, но все оно того стоит.

Учиться читать электрические схемы мы будем из самых простых примеров и постепенно продвигаться дальше.

Обозначение источников питания

Любое радиоэлектронное устройство способно выполнять свои функции только при наличии электроэнергии. Принципиально выделяют два типа источников электроэнергии: постоянного и переменного тока. В данной статье рассматриваются исключительно источниках постоянного тока. К ним относятся батарейки или гальванические элементы, аккумуляторные батареи, различного рода блоки питания и т.п.

В мире насчитывается тысячи тысяч разных аккумуляторов, гальванических элементов и т.п., которые отличаются как внешним видом, так и конструкцией. Однако всех их объединяет общее функциональное назначение – снабжать постоянным током электронную аппаратуру. Поэтому на чертежах электрических схем источники они обозначаются единообразно, но все же с некоторыми небольшими отличиями.

Электрические схемы принято рисовать слева на право, то есть так, как и писать текст. Однако такого правила далеко не всегда придерживаются, особенно радиолюбители. Но, тем не менее, такое правило следует взять на вооружение и применять в дальнейшем.


Гальванический элемент или одна батарейка, неважно “пальчиковая”, “мизинчиковая” или таблеточного типа, обозначается следующим образом: две параллельные черточки разной длины. Черточка большей длины обозначает положительный полюс – плюс «+», а короткая – минус «-».

Также для большей наглядности могут проставляться знаки полярности батарейки. Гальванический элемент или батарейка имеет стандартное буквенное обозначение G.

Однако радиолюбители не всегда придерживаются такой шифровки и часто вместо G пишут букву E, которая обозначает, что данный гальванический элемент является источником электродвижущей силы (ЭДС). Также рядом может указываться величина ЭДС, например 1,5 В.

Иногда вместо изображения источника питания показывают только его клеммы.

Группа гальванических элементов, которые могут повторно перезаряжаться, аккумуляторной батареей. На чертежах электрических схем они обозначается аналогично. Только между параллельными черточками находится пунктирная линия и применяется буквенное обозначение GB. Вторая буква как раз и обозначает «батарея».

Особенности чтения схем

В принципиальных схемах проводники (или дорожки) обозначаются линиями.

Так обозначаются проводники, которые пересекаются, но они не имеют общего соединения и электрически друг с другом не связаны.

А вот так они выглядят, если между ними есть соединение. Черная точка — это узел в схеме. Узел — это соединение нескольких проводников или деталей вместе. Они электрически друг с другом связаны.

Общая точка

Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?


Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:


Общая точка с однополярным питанием визуально лучше и компактнее выглядит, чем если просто сделать единую линию между ними.

Еще общей точкой ее называют потому, что относительно нее можно измерять любые остальные точки на схемах. Например, ставите щуп мультиметра на общую точку, а вторым щупом можете проверить любую часть цепи на схеме.

Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.

Двуполярное питание и общая точка

В двуполярном питании общая точка — это средний контакт между плюсом и минусом.

Заземление

Примером заземления может послужить фильтр в компьютерных блоках питания. С конденсаторного фильтра помехи идут на корпус блока питания. Это и есть заземление. А с блока питания они должны уходить в розетку, если у вас есть заземление, иначе сам корпус блока питания может быть под напряжением. Токи там не большие, они не опасны для жизни. Это делается с целью уменьшения импульсных помех в блоке питания и безопасности.

Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.

А вообще, на схемах есть разные заземления. Например, в цифровой технике разделяют аналоговую землю и цифровую. чтобы не нарушать режимы работы схемы. Импульсные помехи могут повлиять на аналоговую часть схемы.

Обозначение проводов и их соединений на схемах

Электрические провода выполняют функцию объединения всех электронных элементов в единую цепь. Они выполняют роль «трубопровода» – снабжают электронные компонент электронами. Провода характеризуются множеством параметров: сечением, материалом, изоляцией и т.п. Мы же будем иметь дело с монтажными гибкими проводами.

На печатных платах проводами служат токопроводящие дорожки. Вне зависимости от вида проводника (проволока или дорожка) на чертежах электрических схем они обозначаются единым образом – прямой линией.

Например, для того, что бы засветить лампу накаливания необходимо напряжение от аккумуляторной батареи подвести с помощью соединительных проводов к лампочке. Тогда цепь будет замкнута и в ней начнет протекать ток, который вызовет нагрев нити лампы накаливания до свечения.

Проводник принять обозначать прямой линией: горизонтальной или вертикальной. Согласно стандарту, провода или токоведущие дорожки могут изображаться под углом 90 или 135 градусов.

В разветвленных цепях проводники часто пересекаются. Если при этом не образуется электрическая связь, то точка в месте пересечения не ставится.

Если в месте пересечения проводников образуется электрическая связь, то это место обозначается точкой, называемой электрическим узлом. В узле могут пересекаться одновременно несколько проводников. Здесь я советую познакомиться с первым законом Кирхгофа.

Обозначение общего провода

В сложных электрических цепях с целью улучшения читаемости схемы часто проводники, соединенные с отрицательной клеммой источника питания, не изображают. А вместо них применяют знаки, обозначающие отрицательных провод, который еще называют общий или масса или шасси или земля.

Рядом со знаком заземления часто, особенно в англоязычных схемах, делается надпись GND, сокращенно от GRAUND – земля.

Однако следует знать, что общий провод не обязательно должен быть отрицательным, он также может быть и положительным. Особенно часто за положительный общий провод принимался в старых советских схемах, в которых преимущественно использовались транзисторы p–n–p структуры.

Поэтому, когда говорят, что потенциал в какой-то точке схемы равен какому-то напряжению, то это означает, что напряжение между указанной точкой и «минусом» блока питания равен соответствующему значению.

Например, если напряжение в точке 1 равно 8 В, а в точке 2 оно имеет величину 4 В, то нужно положительный щуп вольтметра установить в соответствующую точку, а отрицательный – к общему проводу или отрицательной клемме.

Таким подходом довольно часто пользуются, поскольку это очень удобно с практической точки зрения, так как достаточно указать только одну точку.

Особенно часто это применяется при настройке или регулировке радиоэлектронной аппаратуре. Поэтому учиться читать электрические схемы гораздо проще, пользуясь потенциалами в конкретных точках.

Программы для рисования схем

Список программ для бесплатного пользования:

  • Freeware — программа не ограничена по работоспособности и может применяться в личных целях без покупки полного пакета;
  • Опен Сорс — приложение с «открытым доступом», в котором разрешается добавлять изменения подстраивая программное обеспечение под собственные цели. Есть как платная, так и бесплатная версия;


Составление чертежа в программе

  • GNU GPL — программа полностью бесплатна и удобна в использовании;
  • Паблик домен — практически похожа с предыдущим приложением, можно скачать бесплатную лицензию в интернете;
  • Ad-supported — программа полностью функциональна, но иногда в ней есть реклама, чтобы ее убрать, нужно заплатить;
  • Donationware — приложение используется бесплатно, однако автор сервиса предлагает вносить добровольные пожертвования.

Вам это будет интересно Подключение рн 113


ЭС полуавтомата сварочного

Условное графическое обозначение радиодеталей

Основу любого электронного устройства составляют радиодетали. К ним относятся резисторы, светодиоды, транзисторы, конденсаторы, различные микросхемы и т. д. Чтобы научиться читать электрические схемы нужно хорошо знать условные графические обозначения всех радиодеталей.

Для примера рассмотрим следующий чертеж. Он состоит из батареи гальванических элементов GB1, резистора R1 и светодиода VD1. Условное графическое обозначение (УГО) резистора имеет вид прямоугольника с двумя выводами. На чертежах он обозначается буквой R, после которой ставится его порядковый номер, например R1, R2, R5 и т. д.

Поскольку важным параметром резистора помимо сопротивления является мощность рассеивания, то ее значение также указывается в обозначении.

УГО светодиода имеет вид треугольника с риской у его вершины; и двумя стрелочками, острия которых направлены от треугольника. Один вывод светодиода называется анодом, а второй – катодом.

Светодиод, как и «обычный» диод, пропускает ток только в одном направлении – от анода к катоду. Данный полупроводниковый прибор обозначается VD, а его тип указывается в спецификации или в описании к схеме. Характеристики конкретного типа светодиода приводятся в справочниках или «даташитах».

Возможные ошибки

Основные проблемы, которые могут возникнуть при составлении ЭС:

  • неверное рисование элемента, портящее электрическую цепь либо связь между компонентами в СЭП;
  • расположение контактов компонента «вне электрической цепи» в системе электронных паспортов;
  • неверный вид стрелки, показывающий ориентацию прохождения сигнала в электроцепи;
  • неверное направление линий электросвязи под произвольными углами.

Таким образом, составлять электрические планы самостоятельно, без опыта, довольно сложно. Для этого необходимо выбрать самую простую в управлении программу, а также более подробно изучить все основы работы. Например, как в схеме обозначается обращение или методы составления диаграммы.

Как читать электрические схемы реально

Давайте вернемся к простейшей схеме, состоящей из батареи гальванических элементов GB1, резистора R1 и светодиода VD1.

Как мы видим – цепь замкнута. Поэтому в ней протекает электрический ток I, который имеет одинаковое значение, поскольку все элементы соединены последовательно. Направление электрического тока I от положительной клеммы GB1 через резистор R1, светодиод VD1 к отрицательной клемме.

Назначение всех элементов вполне понятно. Конечной целью является свечение светодиода. Однако, чтобы он не перегрелся и не вышел из строя резистор ограничивает величину тока.

Величина напряжения, согласно второму закона Кирхгофа, на всех элементах может отличаться и зависит от сопротивления резистора R1 и светодиод VD1.

Если измерить вольтметром напряжение на R1 и VD1, а затем полученные значения сложить, то их сумма будет равна напряжению на GB1: V1 = V2 + V3.

Соберем по данному чертежу реальное устройство.

Как читать электрические схемы с минимальным набором радиодеталей мы разобрались. Теперь можем перейти к более сложному варианту.

Добавляем радиодетали

Рассмотрим следующую схему, состоящую из четырех параллельных ветвей. Первая представляет собой лишь аккумуляторную батарею GB1, напряжением 4,5 В. Во второй ветви последовательно соединены нормально замкнутые контакты K1.1 электромагнитного реле K1, резистора R1 и светодиода VD1. Далее по чертежу находится кнопка SB1.

Третья параллельная ветвь состоит из электромагнитного реле K1, шунтированного в обратном направлении диодом VD2.

В четвертой ветви имеются нормально разомкнутые контакты K1.2 и бузер BA1.

Здесь присутствуют элементы, ранее нами не рассмотрены в данной статье: SB1 – это кнопка без фиксации положения. Пока она нажата ее, контакты замкнуты. Но как только мы перестанем нажимать и уберем палец с кнопки, контакты разомкнутся. Такие кнопки еще называют тактовыми.

Следующий элемент– это электромагнитное реле K1. Принцип работы его заключается в следующем. Когда на катушку подано напряжение, замыкаются его разомкнутые контакты и размыкаются замкнутые контакты.

Все контакты, которые соответствуют реле K1, обозначаются K1.1, K1.2 и т. д. Первая цифра означает принадлежность их соответствующему реле.

Бузер

Следующий элемент, ранее не знакомый нам, – это бузер. Бузер в какой-то степени можно сравнить с маленьким динамиком. При подаче переменного напряжения на его выводы раздается звук соответствующей частоты. Однако в нашей схеме отсутствует переменное напряжение. Поэтому мы будем применять активный бузер, который имеет встроенный генератор переменного тока.

Пассивный бузер – для переменного тока.

Активный бузер – для постоянного тока.

Активный бузер имеет полярность, поэтому следует ее придерживаться.

Теперь мы уже можем рассмотреть, как читать электрическую схему в целом.

В исходном состоянии контакты K1.1 находятся в замкнутом положении. Поэтому ток протекает по цепи от GB1 через K1.1, R1, VD1 и возвращается снова к GB1.

При нажатии кнопки SB1 ее контакты замыкаются, и создается путь для протекания тока через катушку K1. Когда реле получило питание ее нормально замкнутые контакты K1.1 размыкаются, а нормально замкнутые контакты K1.2 замыкаются. В результате гаснет светодиод VD1 и раздается звук бузера BA1.

Теперь вернемся к параметрам электромагнитного реле K1. В спецификации или на чертеже обязательно указывается серия применяемого реле, например HLS‑4078‑DC5V. Такое реле рассчитано на номинальное рабочее напряжение 5 В. Однако GB1 = 4,5 В, но реле имеет некоторый допустимы диапазон срабатывания, поэтому оно будет хорошо работать и при напряжении 4,5 В.

Для выбора бузера часто достаточно знать лишь его напряжение, однако иногда нужно знать и ток. Также следует не забывать и о его типе – пассивный или активный.

Диод VD2 серии 1N4148 предназначен для защиты элементов, которые производят размыкание цепи, от перенапряжения. В данном случае можно обойтись и без него, поскольку цепь размыкает кнопка SB1. Но если ее размыкает транзистор или тиристор, то VD2 нужно обязательно устанавливать.

CS-CS.Net: Лаборатория Электрошамана

Пример плохой схемы электрощита

Хех! Называется, «вы давно ждали этого и наконец-то дождались». Как вы знаете, я могу не только собрать для вас щит, но иногда проверить вашу схему щита. И иногда делаю это бесплатно, если схема простая и верная. Много ли надо, чтобы отписать: «Всё верно, только вот тут не забудь про двойные наконечники, а тут тебе скорее всего понадобится поставить кросс-блок»?

Но вы, мои милые заказчики, обожаете превращать ПРОСТЫЕ и ЯСНЫЕ задачи в сложные. Как, например, мы уже выяснили, люди отупели совсем и перестали читать. Им проще спросить одно и то же 50 раз, чем прочитать подпись под фоткой. Надо вернуть фразочку «Двести сорок обезьян в жопу сунули банан» под правилами заказа щитов и консультаций и общаться только с теми, кто до неё дочитает, хех.

В общем, дорогие мои камрады. Я вас люблю, но вы меня замучили вашими рисунками! И сегодня я покажу несколько мутных схем, чтобы показать ошибки их отрисовки. А так как самое главное правило порки — это не просто поругать и сказать, что всё это херня, а ещё и показать то, как делать правильно, то я решил немного рассказать про Visio, в котором удобно чертить всё подряд в несколько кликов мышкой и гораздо удобнее, чем в тяжёлом Автокаде.

Основные косяки отрисовки схем. Монтажная, Принципиальная и Блок-схемы.

Начнём с правильного. Вот все любят заумные слова, такие как: «Схема щита», «Проект щита», «Чертёж щита» и прочие красивые. Читаешь мыло: «…проверьте мою схему щита», а там — нафотошопленные картинки, как на заглавной фотке поста.

Так вот оказывается, что схем может быть несколько (точнее много). И если уж вы говорите про схему — то не забывайте уточнять, про какую именно.

Вот это — электрическая принципиальная схема (взято из поста про подключение импульсных реле):

Схема щитка с импульсными реле на три группы света

Такие схемы нужны больше для электроники, где есть много разных и сложных соединений. На такой схеме вы обязаны показать КАЖДЫЙ провод и все его соединения. Нам такие схемы почти не нужны, потому что в наших щитах в большинстве случаев питание идёт одной кучей: все три фазы прошли через ввод, пошли на какой-то кросс-модуль и через дифавтомат ушли в нагрузку.

Поэтому для наших щитов более удобными будут блок-схемы, в которых основные узлы щита показаны квадратиками. Это похоже на блок-схемы алгоритмов программирования: точные строки кода не пишутся, а показывается общая логика работы.

Например, вот блок-схема от какого-то техзадания на два неприоритета. От вводного рубильника питание пошло на индикаторную лампочку и ограничитель мощности ОМ-310, откуда через два контактора ушло на два неприоритета:

Пример работы в Visio: блок-схема распределения питания

Нужно ли здесь показывать все четыре контакта лампочки, как на принципиальной схеме? Нет: и так ясно, что их надо подключить на 3L+N. Нужно ли показывать обвязку OM-310 и двух контакторов, если она точно совпадает со схемой подключения из инструкции? Для данной схемы я думаю что нет.

Вообще, чисто для электрики существуют однолинейки. Но в них больший упор делается на отрисовку схем по ГОСТам, а не на детализацию. Попробуйте изобразить однолинейкой и вы умрёте, обливаясь кровью. А в блок-схеме это просто и понятно.

Если вы хотите показать то, куда питание идёт по щиту — то используйте блок-схему. Рисуйте квадратики и соединяйте их стрелками так, как вы описали бы это словами: «Питание от вводного рубильника проходит через три ВАРа, три УЗМки и идёт на стабилизаторы. После них идёт на кросс-модуль. От кросс-модуля идёт на три УЗО. На первом УЗО …».

А третья схема, если её так можно назвать — монтажная. На ней не показывается каждый отдельный провод, зато показывается расположение всех элементов щита (или чего-то ещё). Так что ещё её можно обозвать более абстрактно: «сборочный чертёж». Здесь нам не надо знать, куда пойдёт каждый провод отдельно. Мы можем просто начертить жирную линию и сказать: «вот это вот — жгут проводов, он идёт здесь между автоматами, а тут — за ними».

Вот я когда-то без 1Ски рисовал схему монтажа щитка для квартиры, который переделывал в 2009:

Схема расположения автоматов в щитке

Поэтому первая основная ошибка всех, кто пытается нарисовать «схему щита» — это то, что они совмещают блок-схему и монтажную схему щита в одной куче. Вот так:

Ошибка — монтажная и электрическая схема совмещены в одну

Мне эта схема напоминает расходящиеся трубопроводы от реактора РБМК. Вот (фотка утащена из журнала Lana-Sator и сохранена копией на хостинге; спасибо, Лана!):

Отходящие трубопроводы от реактора РБМК (фото Lana Sator)

Можно ли тут что-то понять? Ну, можно при большом желании и времени. Особенно круто следить за каждой линией и её изгибами. А ведь если превратить её в две отдельных схемы — то было бы гораздо понятнее, что это обычный трёхфазный щит по схеме «Ввод — измериловка — защита — кросс-модуль — дифавтоматы». А потом, когда это станет понятно, обсудить только компоновку щита. Например, кросс-модуль взять единый 4х11 и воткнуть его в пустое место между рубильником, а ВАРы и УЗМки отнести на вторую половину рейки.

А вот это вот — обратный пример. Прислал мне один товарищ такое вот творение:

Ошибка — показано расположение элементов щита, но нет их соединений

Изначально вопросов по нему нет: человек расставил всё по рейкам, и монтажная схема щита у него сошлась — реек хватило для всей модульки. Но ведь он просит меня проверить схему щита. Я бы мог ответить «Да, всё ОКей — в щит встанет, собрать можно». Но я же ж понимаю, что речь идёт о том, что проверить надо то, куда ток идёт и все ли компоненты верно расставлены логически и верно ли выбраны их номиналы…

Поэтому я пишу ему: «Мне нужна блок-схема, мне надо понимать то, откуда и куда что подаётся и течёт». И он присылает ВОТ ЭТО:

Ошибка — ничего не понятно

Догадайся, Электрошаман, сам.

Отматерил. Заставил нарисовать блок-схему на листке бумаги. И — вуаля — смотрите, как сразу всё стало понятно! Тут ошибка только в части ввода до УЗОшек — напутано с переключением сеть-генератор и защитой ввода.

Заказчик перерисовал нормальную блок-схему щита

На всю переписку ушло около недели. Только из-за того, что каждый пытается изобрести всё с нуля вместо того, чтобы почитать. Ну, хех, вот теперь будет то, чего можно почитать!

А вот пример хорошей схемы. Смотрите, как просто и лаконично. И сразу всё-всё ясно и понятно. Без проблем. Вот таким-то ребятам и сваливаются простые ответы: «Свет хорошо бы тоже под УЗО; УЗОшек на 32 и 50А нет, бери на 40 и 63А; не забудь подсчитать шинки».

Блок-схема щита, сделанная от руки — всё понятно

Поэтому не обижайтесь, ребята, когда я ругаюсь на ваши схемы. Если я вижу месива, как показывал — я буду ругаться. Хотите консультацию (особенно если ещё и за просто так)? Ну, блин, нарисуйте блок-схему на куске бумажки, если не умеете рисовать. Это будет проще и понятнее, чем все эти рисовальные развраты.

Microsoft Visio. Общие концепты и мысли.

Для тех, кто хочет начертить план дома, блок-схему, какие-то простые чертежи и прочие мелочи, есть классная программа — Visio. Я работаю с версией ‘2007, где файлы были в формате vsd, а не vsdx: эта программа лёгкая и не перегружена мутным интерфейсом с ленточным меню. Про неё я и буду рассказывать.

Вот самые важные достоинства этой программы:

  • Она умеет выводить нарисованное на печать в масштабе 1:1. Если вы начертили хреновину в 1,27 миллиметра — то на печати это будет иметь тот же размер, если вы верно настроили масштаб.
  • Она векторная: каждый нарисованный объект можно двигать, раскидывать по слоям (тут есть слои, как в AutoCAD) и переносить на разные позиции по глубине (вперёд-назад), меняя то, как нарисованные вещи накладываются друг на друга.
  • В стандартных библиотеках есть куча разных удобных символов и заготовок. Можно легко и быстро отрисовать план помещения, не выдумывая условные обозначения для конструкций дома. Некоторые элементы в Visio имеют настраиваемые функции. Например, можно кликнуть правой кнопкой на двери и поменять её расположение (внутрь-наружу, влево-вправо).
  • Visio умеет работать с данными: к каждой фигуре можно привязать пары «Свойство = Значение» или подвязать к базе данных. Можно сделать свёртку: подсчитать нарисованные фигуры, чтобы получить некий итог «всего: этого — три, этого пять».
  • Есть много функций, характерных для AutoCAD: привязка к разным местам объектов (края, центр, пересечение), осевые линии.
  • Умеет сразу из коробки работать с блок-схемами и разными диаграммами. Можно задать режим размещения фигур на листе — и Visio сам будет пытаться соединять их линиями. Можно отрисовать диаграмму времени, диаграмму Ганта — и они будут рисоваться пропорционально указанному времени или другим параметрам.
  • Есть встроенный OLE и VBA. Всё, чего нет — можно напрограммировать. У меня моя CS CRM рисует в Visio надписи автоматов в автоматическом режиме. Про это упоминалось вот тут.

Если взять общий концепт — то вы создаёте документ в Visio, настраиваете его масштаб и единицы измерения — и рисуете. Рисовать можно двумя методами: или перетаскивать готовые фигуры из библиотеки шаблонов или рисовать свои штучки с нуля. Здесь очень полезной является возможность группировки фигур: вы можете выделить мышкой несколько фигур (или линий/кружочков/квадратов) и сгруппировать их в единую фигню, которая дальше перетаскивается и меняет размеры как одно целое. Так можно создать свой объект (например, хитрый светильник), а потом накопировать его много раз.

Для каждого объекта можно настроить цвет и толщину линий краёв, заливку, шрифт и формат текста. То есть, если хочется — то в Visio можно заниматься простой вёрсткой: накидал прямоугольников в тех местах, где должны быть тексты, и вписал в них нужное. Я таким образом делал табличку внутри этажного щитка вот в этом посте на заглавной фотке.

В общем, это очень удачная чертилка на ВСЕ руки. Практически все схемы и чертежи у меня в постах на блоге сделаны в ней. Как-то я даже использовал Visio для того, чтобы очень точно разметить отверстия (вот в этом посте): я схематически изобразил разъём с его выступающим выводом, чтобы можно было учесть положение этого вывода, а потом накидал этих разъёмов так, чтобы их выводы не мешали друг другу. Затем распечатал всё в масштабе 1:1 и накернил дырки по распечатке.

Главное окно Visio с созданным документом выглядит вот так:

Программа Visio — удобный инструмент для черчения

Слева окна — область выбора фигур, а справа — страница документа. Фигуры собраны в некоторые логические группы (наборы), отделённые полосками. Если нажать на эту полоску — то открывается группа, которая под ней спрятана. Если открыто дофига групп фигур, то можно закрыть некоторые из них, если кликнуть на полоске правой кнопкой мыши.

Документ можно начинать с пустого листа, но тогда никакие наборы фигур не будут добавлены к документы. Поэтому удобне начинать документ из шаблонов, которые сам же Visio и предлагает. Они находятся в выпадающем меню под кнопкой создания документа. В этом случае у вас сразу же будет заготовка с наиболее подходящими наборами фигур.

К любому созданному документу можно добавить другие наборы фигур. Все они лежат в меню «Файл — Фигуры». Там их ДОФИГА! Реально ДОФИГА! А в инете можно найти и дополнительные наборы, которые подцепляются к Visio. Сам Visio устроен так, что все фигуры из наборов он копирует в наш документ. Поэтому даже если вы цепляли фигуры из внешнего файла, а потом этот файл переместили или убрали — то эти фигуры из документа никуда не денутся. Это очень удобно.

Как я уже говорил, для каждой фигуры можно задать цвета, тип и толщину линий, заливку или шрифт. Вы просто выбираете её и пользуетесь кнопками на панели инструментов. Или же по правой кнопке можно вызвать окно свойств фигуры, где есть тьма настроек. Чуть позже я наделаю скриншотов этого окна.

Документ в Visio может состоять из нескольких страниц. Их число особо не ограничено. Я этого не проверял, но думаю что создать документ в сотню страниц можно будет легко. Параметры печати и всякие настройки расположения делаются для каждой страницы отдельно. Это очень удобно, потому что можно будет печатать разные документы из одного файла, если захочется держать весь проект рядом.

Новые страницы можно добавить правым кликом на ярлычке страницы снизу документа. Там же можно её переименовать или настроить параметры страницы.

Добавление новой страницы в Visio

Настройка параметров страницы и масштаба документа.

В Visio есть несколько важных моментов, если намутить с которыми — то можно получить распечатку в виде маленького квадратика в углу листа А4. Один из них — это масштаб страницы и масштаб документа. И вот про них мы сейчас и поговорим.

Какова логика работы в простых чертилках? Выбираешь рабочее поле, чертишь на нём что нравится, а потом чертилка пытается уместить это на одной странице принтера. Но я не зря говорил, что Visio умеет отлично работать с масштабами! Здесь не только «можно», а как раз-таки и «нужно» настраивать масштаб документа и страницы! И Visio имеет кучу средств для того, чтобы внутри программы сделать чертёж на формате A0, а потом распечатать его на формате А4 так, чтобы всё влезло и ничего не потерялось!

А если хочется — то можно наоборот, привести обычный лист А4 к размерам 300х800 метров и чертить на нём какой-нибудь план футбольного стадиона или чего-то огромного. При этом все размеры будут показываться в реальных числах (скажем 152,4 метра), а печататься всё будет на А4.

Для того, чтобы в этом поковыряться, надо зайти в меню настройки параметров страницы. Оно доступно или при правом щелчке на ярлыке страницы, или же из меню «Файл»:

Вызов настроек страницы Visio

Важно: в Visio отдельно настраивается физический размер листа бумаги, на котором будет печататься документ и отдельно настраивается размер рабочего поля самого документа (где будем чертить) и его масштаб. Они не связаны между собой.

Первая вкладка окна параметров страницы — это «Настройка печати»:

Настройка размеров страницы в Visio

Здесь можно выбрать то, как ФИЗИЧЕСКИ будет напечатан документ: на каком принтере (Visio будет учитывать его реальные параметры и тот отступ от краёв листа, который принтер сможет сделать) и на какой бумаге. Размер бумаги ставьте именно тот, который будет заправлен в ваш принтер!

Позже, если вам захочется уменьшить или увеличить документ Visio, вы можете легко это сделать при помощи группы настроек «Масштаб». Вот посмотрите: здесь я заставлю Visio распечатать тот же документ формата А4 на 16 таких же листах. То есть увеличить его в 4 раза! =) После этого листы можно будет склеить между собой и получить огромный чертёж.

Выставили другой режим печати страницы в Visio (одна на нескольких листах)

Эти же настройки можно будет покрутить наоборот: если кто-то дал мне план в формате А0, то я могу заставить Visio распечатать его на листе А4 без потерь.

Мне попадалось несколько планов, в которых была выбрана бумага большого формата (А2, А1), а чертёж находился в левом верхнем углу этого огромного листа и имел мелкие размеры. Это — ошибка. Visio при печати честно пытался множить этот большой лист на несколько страниц А4 (подстраиваясь под принтер). Вот люди и делали такой чертёж, чтобы он занимал ровно один лист А4 из, скажем, 16ти.

Такие документы исправить не получится: если сказать Visio «напечатай всё на А4», то он, конечно же, уложит весь крупный лист в один листик А4. И мы получим то, что видим: листк А4, в углу которого будет маааленький чертёжик — тот, который раньше при печати 1:1 влезал на целый лист, хе хе. Не делайте так!

Но как быть, если нам попался такой побитый кривыми руками документ? Растянуть все объекты до размеров побольше? А это не всегда получится: некоторые фигуры сразу ставятся размерами кратно текущему масштабу документа и потом эти размеры нельзя поменять.

Тогда стоит поиграться размерами самой страницы Visio! Для этого нам нужна вторая вкладка окна:

Настройка масштабов страницы в Visio

Ещё раз обращаю внимание: «Размер страницы» — это не размер листа бумаги в том принтере, на котором мы будем печатать документ! Здесь речь идёт о размере рабочего поля в Visio, на котором мы будем чертить! Если вы специально хотите уложить документ в тот же формат бумаги, на котором будете печатать — выбирайте «Как в принтере» и наи о чём не парьтесь.

А если вы хотите заточиться под какой-то другой формат (например, выбрать А3 и потом печатать его как два листа А4) — то выбирайте нужный вам размер или впишите его сами. И для исправлений тех случаев, о которых я писал, есть вариант «Изменять размеры по содержимому»: рабочее поле подстроится под то, что там уже нарисовали, а мы потом сможем подогнать настройки печати так, чтобы сказать Visio: «А вот всё, что есть, умести на одном листе А4».

Идём дальше! Я говорил вам о том, что в Visio можно сделать так, чтобы оперировать реальными размерами на листе А4. Да, можно. Для этого надо настроить масштаб документа:

Вставили другой масштаб страницы, чтобы чертить план в реальных размерах

Эта вкладка настраивает именно единицы измерения документа. Если нам надо начертить что-то для накернивания (как я делал) — ставим масштаб 1:1. А если футбольное поле или дачный участок — то играемся так, как хотим. На моём примере я сделал масштаб «1:100», и размеры моего «листа» стали 21х29,7 метров — это лист А4, но измеренный (не увеличенный!) в метрах вместо сантиметров. В этих единицах я и стану в нём чертить в будущем, раз уже мне так надо.

Ну и на последней значимой для нас вкладке можно настроить название страницы и выбрать её тип (передняя или подложка — про это будет позже) и задать единицы измерения.

Изменение единиц измерения страницы и её типа в Visio

Эти единицы не влияют на масштаб (мы его уже выбрали), а влияют на отображение. Скажем, если вы рисуете план участка, то вам удобнее выставить себе метры. А если рисуете план дома — то миллиметры, как это принято в строительстве. В этих единицах Visio будет показывать вам все размеры.

А теперь смотрите, как это выглядит в реальности. Я выставил все параметры так, как показывал на скриншоте: документ у меня будет печататься на А4, рабочее поле будет как лист А4, но в размераз 21х29,7 метров. А все размеры я хочу видеть в миллиметрах.

Получили реальные размеры объекта (в метрах) на листе А4

Вот Visio и показал мне сетку документа в миллиметрах, как я просил. А размеры нарисованного прямоугольника у меня кратны моему масштабу: 8х2 метра! Они показываются снизу и по ним удобно подгонять размеры под реальные.

То есть, если вы выставите нужный масштаб и подгоните размеры фигур под реальные — вы легко сможете нарисовать всё, что вам надо в настоящем масштабе. Это может сгодиться, чтобы подсчитать какие-то расстояния или проверить, влезет ли диван шириной в 1,97 метра между шкафом шириной в 0,8 метра и столом шириной в 1,58 метра. При этом весь чертёж вы сможете распечатать на листе А4 =)

Настройка свойств фигуры (заливка, шрифт, линии).

Вот прямо в середине этого поста я вдруг понял, что надо сделать этот раздел и обязательно показать группировку фигур и всякие их настройки. Наделал ещё скриншотов. Настало время поиграться с фигурами!

Для начала покажу интересное. Как я писал выше, некоторые фигуры имеют вшитые в них настройки отрисовки. Это относится к элементам из стандартных наборов Visio. Например, я взял фигуру «Двухпозиционный контакт» и нарисовал аж три варианта её отображения и положения:

Настройка интерактивных свойств фигуры в Visio

При помощи правой кнопки можно открыть окно настроек фигуры (оно написано специально для неё в наборе фигур) и побаловаться параметрами:

Настройка интерактивных свойств фигуры в Visio

Такие настройки есть для катушек реле, резисторов (можно показать его зигзагом, как на импортных схемах или прямоугольником как на наших) и прочих элементов (дверей, к примеру). Очень удобно! Пока я не знал этого — я пририсовывал контактам то, что мне надо, двери вертел на плане при помощи меню «Повернуть/Отразить» до нужного положения.

Кстати, что это за точечка и квадратики вокруг фигуры?

Перемещение и изменение размеров фигуры в Visio

А это для того, чтобы менять размер фигуры или поворачивать её. Если тащить фигуру за квадратики по краям, то её размер будет меняться пропорционально. Если тащить за боковые — то только эта сторона фигуры будет менять размер. А если зажать мышкой кружочек — то фигуру можно будет вращать.

Точный угол вращения будет показан в строке состояния внизу Visio. Если не отводить курсор мыши от фигуры далеко — то вращение будет идти кратно 5 градусам. А если оттащить мышь подальше — то крутить можно будет на любой угол.

Дополнительно при этих операциях (или при таскании фигур) можно зажимать клавишу «Shift»: тогда движение будет идти только углами 90 или 45 градусов. Это очень удобно, если нам надо повернуть что-то на 45 градусов или сдвинуть строго по горизонтали.

У каждой фигуры есть тьма настроек, которые можно разделить на три группы: текст, линии, заливка. Пройдёмся по ним. Все эти настройки тыкаются или кнопками на панели инструментов, или через контекстное меню по правой кнопке:

Меню настроек фигуры

Можно выписать вот так:

  • Текст — отвечает за параметры шрифта, которым на фигуре что-то пишется. Форматирование похоже на Word: Visio умеет разделять абзацы, делать там отступы и выравнивание.
  • Линия — отвечает за параметры линии, которой обведена фигура (границы фигуры). Если мы рисуем прямоугольник — то линией будет считаться его внешняя граница. Её (линию) можно отключить и получить только внутренний фон без видимых границ.
  • Заливка — отвечает за внутренности фигуры (то, что лежит внутри границ-линий). Эту часть можно закрасить или наоборот, убрать заливку и сделать пустой (прозрачной для других фигур).

То есть, прямоугольник с включенной линией и заливкой будет выглядеть как закрашенный (белым) объект, обведённый линией (чёрной). А прямоугольник с линией, но без заливки будет выглядеть как «пустой» внутри.

Окно настроек текста относится к тому тексту, который написан в фигуре. В Visio в каждую фигуру можно вписать некий текст. Даже на линии можно нажать кнопку «F2» и редактировать её текст. Замкнутые фигуры (круг, прямоугольник) представляют собой удобное поле для набора многострочного текста. А вот текст на линии расположится посередине её названия и его нельзя будет подвигать. В этом случае лучше взять блок текста и поставить его там, где вам надо.

На первой вкладке окна («Шрифт») настраивается шрифт и его параметры. Самые простые настройки шрифта (шрифт, размер, жирный, курсив, подчёркнутый) доступны прямо с панели инструментов Visio, так что ради этого в это окно можно не лазить.

Параметры настройки шрифта в Visio (для фигуры)

Обратите внимание на настройку прозрачности. Здесь она отвечает именно за прозрачность самого текста, написанного этим шрифтом. То есть, если вам хочется воткнуть свой копирайт поверх чертежа — сделайте прозрачным его текст.

На вкладке «Абзац» настраивается положение текста в горизонтальном положении. Можно поменять выравнивание текста, задать всякие отступы абзацев и прочие штуки. Прямо как в Word!

Параметры настройки абзаца в Visio (для фигуры)

А вот на вкладке «Блок текста» параметры влияют уже на всю область, в которой мы правим текст. Выравнивание тут отвечает за положение текста по вертикали в блоке.

Параметры настройки блока текста в Visio (для фигуры)

Если нам нужен некий прямоугольник, в котором текст будет строго посрередине — то надо будет выключить выравнивание по центру на обоих вкладках. Прозрачность тут тоже влияет на прозрачность самого текстового блока, а не шрифта. Также есть настройки полей. По умолчанию они стоят в 4 пункта, а я ставлю их всегда в 1 пункт: так в тот же текстовый блок можно вписать побольше текста, а на мелкой схеме или квадратике-реле вписать текст очень компактно.

Настройки линии тут тоже очнеь обширны. Можно выбрать тип и толщину линии. Причём толщину можно выбирать из предустановленных или вписать её руками.

Параметры настроек типа линии в Visio

Также можно включить отрисовку стрелок в начале или конце линии. А если вы рисовали линию единым куском (это когда в режиме отрисовки линии продолжаешь её рисовать от конца предыдущей), то можно ещё и настроить параметры скругления углов. Эти же параметры позволят скруглить углы у прямоугольника или многоугольника, если это будет надо.

Ну и напоследок — заливка. Любую замкнутую фигуру можно заливать разными способами: цветом или узором.

Параметры настроек заливки фигуры в Visio

Шаблоны узоров содержат в себе и всякие штриховки и градиенты. Я поиздевался над прямоугольником как мог: выставил цвет линии в красный, градиентную заливку и полупрозрачную тень, которая заливается клетачтым узором. Во как! И это всё — штатные средства Visio.

То есть, большинство штуковин в Visio можно нарисовать при помощи круга, линии и квадрата, используя всякие заливки и свойства линий. Я даже линзы рисовал: цеплял изгонутую линию к прямой и выбирал объединение фигур.

Группировка фигур и их положение на чертеже по «глубине».

В меню «Фигуры — Операции» есть очень полезные команды, которые похожи на AutoCAD’овские trim, explode, break, join: фигуры можно склеить между собой, обрезать одну по другой, разобрать на примитивы и проделать прочие штуки. К примеру, можно наложить круг на квадрат, объединить их и получить фигуру со сложной формой.

А мы пока поговорим про группировку фигур. Это способ, при помощи которого Visio видит несколько фигур как одно целое и квадратики для изменения размеров и поворота появляются одни на общую фигуру. Это нужно, когда мы хотим отрисовать сложный объект. Ну, например, упрощённый электрощиток (прямоугольник с заливкой, кружочки-лампочки и кружочки-кнопки, а прямоугольник с голубой заливкой — дисплей).

Один раз такое отрисовать — не проблема. А вот если их надо будет нарисовать десяток и ещё и таскать по чертежу — то рано или поздно мы забудем выделить какие-то кружки-лампы/кнопки и они куда-то уедут. Вот для этого и нужна группировка фигур.

Мне тут вспомнилась цифровая техника и то, как обозначаются её выходы и выходы на схемах. Рисуется линия-вывод, квадратик с условным обозначением и прямоугольник с поясняющим текстом. Вот как-то так:

Составляем фигуру из отдельных частей

На одну такую штуку у нас ушло аж три фигуры: линия и два прямоугольника.

Представим, что мы таскаем это всё. Потащили, забыли — и оказалось, что один из прямоугольников куда-то уехал нахрен:

Перемещаем фигуру без группировки: часть элементов уехала

Такое нас не устраивает! Мы хотим комфорта и удобства! Что ж: выберем все три фигуры и ткнём правую кнопку мыши. Выберем пункт «группировать».

Меню группировки фигуры в Visio

После этого Visio видит нашу фигуру как одну, а не кучку разных. Теперь, если мы будем её таскать, она будет перемещаться вся целиком.

Перемещаем сгруппированную фигуру: теперь ничего не потеряется

А как получить доступ к тексту отдельных прямоугольников внутри такой фигуры? Неужели надо назад разгруппировывать и потом снова группировать? Нет! Всё ещё проще: потыкайте на такую фигуру мышкой несколько раз. Сначала выберется вся фигура целиком. А потом выберется её внутренний элемент, который находится под курсором мышки.

Теперь можно будет редактировать его параметры, не разгруппировывая фигуру. Его можно даже подвинуть внутри сгруппированной фигуры, если это потребуется!

Накопируем наших штуковин два раза по 4 штуки. Копировать можно, если начать перетаскивать фигуру при зажатой клавише «Ctrl»: тогда она перемещается и сразу копируется. Это удобно: можно сразу же выравнивать фигуры по сетке.

Теперь побалуемся командами поворота и отражения. Выберем наши правые фигуры и отразим их слева направо (вокруг вертикальной оси):

Параметры режима отражения фигур в Visio

Теперь у нас часть наших заготовок стали как будто входами, а часть — выходами:

Сделали две копии блоков фигуры — вход и выход УГО

Давайте нарисуем «корпус» нашего блока. Возьмём прямоугольник и обрисуем место вокруг наших выводов. Ой, а чего это он нам всё закрывает?

Рисуем прямоугольник (поверх фигур)

Тут есть два варианта: можно выставить у этого прямоугольника заливку в положение «Нет заливки». Тогда от него останется только линия. Мне этот вариант не нравится, потому что для глаза кажется, что этот наш логический блок — не блок, а что-то пустое внутри =)

Поэтому давайте оставим наш прямоугольник как есть, но переместим его по оси Z назад, выбрав из контекстного меню (по правой кнопке мыши на фигуре) команду «Фигура — На задний план»:

Помещаем прямоугольник на заднюю часть рисунка

Фигуры в Visio могут сортироваться по оси Z (ближе к глазу и дальше от глаза) в нужном нам порядке. Обычно каждая новая фигура накладывается поверх уже нарисованных. Если нас это не устраивает — мы можем переставить её так, чтобы она перекрывала другие или же, наоборот, остальные были на её фоне.

Такие положения фигур по оси Z действуют в пределах документа и сгруппированных фигур. То есть, вы можете расположить фигуры по глубине так, как вам надо и сгруппировать их. И этот сгруппированный объект снова располагать по глубине так, как вам нравится.

Вот что мы получили в итоге. Чтобы картинка была полной, я ещё и вписал в прямоугольник фона символ суммы (Вставка — Символ), выставив параметры шрифта так, чтобы горизонтальное выравнивание абзаца было по центру, а текстового блока — по верхнему краю. И так как наша фигура симметрична, то символ автоматически встал там, где мне хотелось:

Нарисовали некий логический блок (сумматор)

Вот такие вот приёмы работы с фигурами есть в Visio. Можно сказать, что они сравнительно простые. Я чаще всего пользуюсь группировкой фигур — без неё просто невозможно жить!

Режим подложки в Visio. Отрисовка разных планов помещений.

Когда я писал про настройку параметров страницы (размеры листа, масштаб), то я упомянул там о некоей подложке. Так вот настало время рассказать о ней подробнее, хотя чуть примера простая до смеха. Некоторые страницы документа можно делать фоном для других! Конечно же, это надо для отрисовки всяких планов помещений!

Берём страницу и рисуем на ней план помещения начисто. Я тут ещё и названия комнат вписал (а план относится к посту про ремонт у родственников на Выхино). В свойствах страницы выставляем её тип как подложку.

Устанавливаем страницу как подложку для других в Visio

Все такие страницы автоматически располагаются в конце документа, чтобы не путать тех, кто с ними работает и не выносить мозги.

Теперь нам можно создать новую страницу и в том же окне выбрать из списка «Подложка» нашу фоновую страницу. Visio автоматически пририсует нам фон, но менять его будет нельзя: на то он и подложка. Здесь я нарисовал элементы электропроводки:

Подложка та же, а отрисован план точек

А здесь нарисовал трассы кабелей электропроводки, не меняя фона. Страница другая, а подложка — та же.

Подложка та же, а отрисован план трасс

Подложки могут быть вложенными друг в друга, если это надо.

Разные примеры отрисовки в Visio и то, как это было сделано.

На этом мы заканчиваем. Теперь можно показать то, как я Visio применяю.

Самое простое — это фигачить в нём блок-схемы. Вот блок-схема питания одного офиса, с которым не срослось. Зато схема прикольная!

Пример работы в Visio: блок-схема распределения питания для двух вводов

Тут ничего сложного нет: взяли прямоугольники, выставили им толщину линий, заливку и пишем в них нужный текст, а потом соединяем между собой линиями разной толщины. В качестве толстых шин я тоже нарисовал прямоугольники, потому что линия большой толщины будет иметь закруглённые края, а мне это не надо.

Развлекаловка чуть посложнее. Сверстаем этикетки для баночек с бытовой химией. Возьмём прямоугольники, выставим масштаб 1:1 и начертим этикетки такого размера, который нам будет удобен. Дальше залезем в свойства линии и выставим скруглённые края:

Пример работы в Visio: этикетки для баночек

Осталось распечатать на цветной бумаге и наклелить. За счёт обводной линии и разного размера шрифта наши этикетки получились очень стильными. И всё это — Visio! Без фотошопа или Corel Draw!

Пример работы в Visio: наклеенные этикетки на баночки

Мясо чуть посложнее. Захотелось мне разрисовать IO для своего первого проекта на Logo:

Пример работы в Visio: чертёж распиновки модулей контроллера Siemens Logo

Я взял фотки модулей Logo из Сети. Visio позволяет вставить изображение и не только поменять его размеры, а ещё и откадрировать его так, как надо. Я аккуратно подрезал фотки модулей Logo так, чтобы края объекта точно совпадали с краями рисунка модулей.

Дальше оставалось напихать прямоугольников с нужными надписями и сгруппировать всё это в большие блоки: главный и модули расширения. И надписать нужные тексты! По названиям сигналов понятно, что это за проект. Когда-нить настанет его время!

А вот мясо из проекта по переборке дачной проводки на проволочные лотки (для родственников подруги):

Пример работы в Visio: чертёж трасс лотков

Ща обсмеётесь, потому что лоток тут показан в виде прямугольников с заливкой в виде сетки! Крепление для лотка сделано из прямоугольника и трёх кружочков (один по центру залит — это типа шпилька крепления). Они все сгруппированы и эти крепления таскаются как единая фигурка. А для выносок использован объект Visio. Он так и называется — «Выноска» и тоже лежит в штатных наборах фигур.

А это — зверство с проектом стапеля для сборки щитов (на него ушло около часа — это большое время по меркам Visio):

Пример работы в Visio: чертёж узлов стапеля для сборки щитов

Рисунок сделан из кучи сгруппированных блоков:крепления, одна панель щита с двумя несущими профилями. Я их вымерил и потом расставлял на чертеже в масштабе, чтобы проверить центровку креплений. Сошлось! =)

Ну что? До сих пор хочется мучить AutoCAD/Фотошоп/Corel для простых схемок или распечаток? Мне уже нет, чего и вам желаю!

Учимся читать схемы с транзисторами

На данном чертеже мы видим транзистор VT1 и двигатель M1. Для определенности будем применять транзистор типа 2N2222, который работает в режиме электронного ключа.

Чтобы транзистор открылся, нужно на его базу подать положительный потенциал относительно эмиттера – для n–p–n типа; для p–n–p типа нужно подавать отрицательный потенциал относительно эмиттера.

Кнопка SA1 с фиксацией, то есть он сохраняет свое положение после нажатия. Двигатель M1 постоянного тока.

В исходном состоянии цепь разомкнута контактами SA1. При нажатии кнопки SA1 создается несколько путей протеканию тока. Первый путь – «+» GB1 – контакты SA1 – резистор R1 – переход база-эмиттер транзистора VT1 – «-» GB1. Под действием протекающего тока через переход база-эмиттер транзистор открывается и образуется второй путь току – «+»GB1 – SA1 – катушка реле K1 – коллектор-эмиттер VT1 – «-» GB1.

Получив питание, реле K1 замыкает свои разомкнутые контакты K1.1 в цепи двигателя M1. Таким образом, создается третий путь: «+» GB1 – SA1 – K1.1 – M1 – «-» GB1.

Теперь давайте все подытожим. Для того чтобы научиться читать электрические схемы, на первых порах достаточно лишь четко понимать законы Кирхгофа, Ома, электромагнитной индукции; способы соединения резисторов, конденсаторов; также следует знать назначение всех элементом. Также поначалу следует собирать те устройства, на которые имеются максимально подробные описания назначения отдельных компонентов и узлов.

Разобраться в общем подходе к разработке электронных устройств по чертежам, с множеством практических и наглядных примеров поможет мой очень полезный для начинающих курс Как читать электрические схемы и создавать электронные устройства. Пройдя данный курс, Вы сразу почувствуете, что перешли от новичка на новый уровень.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]