МОП-транзистор с индуцированным каналом n-типа, страница 3


Часть 2. Полевой транзистор с изолированным затвором MOSFET

Полевой транзистор с изолированным затвором – это транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 1017 Ом).
Принцип работы этого типа полевого транзистора, как и полевого транзистора с управляющим PN-переходом, основан на влиянии внешнего электрического поля на проводимость прибора.

В соответствии со своей физической структурой, полевой транзистор с изолированным затвором носит название МОП-транзистор (Металл-Оксид-Полупроводник), или МДП-транзистор (Металл-Диэлектрик-Полупроводник). Международное название прибора – MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

МДП-транзисторы делятся на два типа – со встроенным каналом и с индуцированным каналом. В каждом из типов есть транзисторы с N–каналом и P-каналом.

Схема устройства

Транзисторы состоят из следующей схемы. Это прежде всего гнездо носителей заряда или по-другому исток. Он является своеобразным эмиттером транзистора биполярного типа.

Далее идет гнездо для приема носителей заряда или сток. Он аналогичен коллекторному типу биполярного оборудования.

Еще одна важная деталь транзистора называется затвором. Он управляет электродами и чем-то напоминает базу биполярного устройства.

Нельзя не отметить затвор, которых в устройстве может быть несколько. Без них никак не удастся построить цепочку микросхем или закрепить ячейки программируемой памяти.

При этом полупроводниковые приборы могут работать в следующем состоянии:

  • с генерирующим колебанием;
  • с отрицательным потенциалом;
  • в закрытом виде (устройство будет выделять максимальное напряжение прямого типа).

Устройство МДП-транзистора (MOSFET) с индуцированным каналом.

На основании (подложке) полупроводника с электропроводностью P-типа (для транзистора с N-каналом) созданы две зоны с повышенной электропроводностью N+-типа. Все это покрывается тонким слоем диэлектрика, обычно диоксида кремния SiO2. Сквозь диэлектрический слой проходят металлические выводы от областей N+-типа, называемые стоком и истоком. Над диэлектриком находится металлический слой затвора. Иногда от подложки также идет вывод, который закорачивают с истоком

Заряд затвора

Хотя значение входной емкости — довольно полезная величина, даже зная ее, довольно сложно сравнить ключевые характеристики двух MOSFET различных производителей. Эффекты, связанные с различными размерами устройств, а также крутизна характеристики делают такое сопоставление весьма непростым. Более точные результаты можно получить, используя при рассмотрении не входную емкость, а полный заряд, который необходимо подать/извлечь из затвора для изменения состояния транзистора. Большинство производителей указывают в инструкции и емкость, и полный заряд. Рис. 13 демонстрирует схему измерения полного заряда затвора.

Рис. 13. а) Схема измерения полного заряда затвора; б) и взаимные процессы на затворе и стоке при открытии транзистора

Преимущество использования полного заряда затвора как характеристики транзистора состоит в том, что разработчик может достаточно просто рассчитать примерный ток затвора, необходимый для переключения транзистора за определенное время, по формуле I

=
Q

t
. Например, прибор с зарядом затвора 20 нКл может быть включен/выключен за 20 мкс током затвора 1 мА или за 20 нс током затвора 1 А.

Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.

Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет, поскольку между зонами N+ находиться область P, не пропускающая электроны. Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле. Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным напряжением на затворе.

Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок. Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси. Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока. Такой режим работы полевого транзистора называется режимом обогащения.

Принцип работы МДП-транзистора с каналом P–типа такой же, только на затвор нужно подавать отрицательное напряжение относительно истока.

Динамические характеристики

При использовании транзистора MOSFET в качестве силового ключа его основной функцией является включение/выключение тока стока по сигналу на затворе. Рис. 11а иллюстрирует характеристику

(
Uзи
), а рис. 11(б) — эквивалентную схему, часто используемую при анализе ключевых свойств MOSFET.

Рис. 11. а) Крутизна как характеристика транзистора; б) эквивалентная схема с указанием элементов, наиболее сильно влияющих на переключение

Ключевые свойства определяются временем, необходимым для установления определенных напряжений на паразитных емкостях. Распределенное сопротивление затвора Rg

приблизительно обратно пропорционально площади ячейки. Индуктивности выводов истока Ls и стока Ld имеют порядок десятков нГн. Типичные значения входной (
Сiss
) и выходной (
Coss
) емкостей, а также емкости обратной связи
Crss
приведены в описаниях транзисторов и используются разработчиками для определения номиналов компонентов, входящих в схему. Эти емкости определяются через емкости эквивалентной схемы следующим образом:

Емкость затвор-сток CGD

является нелинейной функцией напряжения и представляет собой наиболее важный параметр, так как образует петлю обратной связи между входом и выходом транзистора. Она также именуется емкостью Миллера, поскольку приводит к эффекту увеличения входной емкости в динамическом режиме, когда она уже не равна простой сумме емкостей. На рис. 12 приведена типичная схема измерения времени переключения, а также показаны промежутки нарастания и спада
UЗИ
и
UСИ
.

Рис. 12. а) Схема измерения скорости переключения; б) взаимное поведение напряжений затвор-исток и сток-исток

Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.

ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения Uси. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.

Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.

Крутизна

Крутизна gFS

является мерой чувствительности тока стока к изменениям управляющего напряжения
UЗИ
. Этот параметр обычно определяется в области значений напряжения
UЗИ
, дающего половину максимального тока стока, и для области значений
UСИ
, в которых ток стока постоянен по
UСИ
(область насыщения). На крутизну влияет ширина затвора, которая увеличивается по отношению к активной области ячейки с увеличением плотности ячеек. Указанная плотность в исторической перспективе возросла от примерной цифры 80 тыс. ячеек на квадратный сантиметр в 1980 г. до значений в 1,2 млн (для планарных транзисторов) и 1,9 млн (для траншейных) в настоящее время. Ограничивающим фактором для дальнейшего роста являются сложности управления фотолитографическим процессом и сложности создания надежного контакта с металлизацией истока в центре ячейки.

На значение крутизны также оказывают влияние длина канала и толщина оксидного слоя затвора. Для роста крутизны и уменьшения сопротивления включенного транзистора нужно уменьшать длину канала, сдерживается же эта тенденция описанным выше явлением сквозного прокола.

Работа МДП-транзистора (MOSFET) со встроенным каналом N-типа.

Подключим к транзистору напряжение между стоком и истоком Uси любой полярности. Оставим затвор отключенным (Uзи = 0). В результате через канал пойдет ток Iси, представляющий собой поток электронов.

Далее, подключим к затвору отрицательное напряжение относительно истока. В канале возникнет поперечное электрическое поле, которое начнет выталкивать электроны из зоны канала в сторону подложки. Количество электронов в канале уменьшиться, его сопротивление увеличится, и ток Iси уменьшиться. При повышении отрицательного напряжения на затворе, уменьшается сила тока. Такое состояние работы транзистора называется режимом обеднения.

Если подключить к затвору положительное напряжение, возникшее электрическое поле будет притягивать электроны из областей стока, истока и подложки. Канал расшириться, его проводимость повыситься, и ток Iси увеличиться. Транзистор войдет в режим обогащения.

Как мы видим, МДП-транзистор со встроенным каналом способен работать в двух режимах — в режиме обеднения и в режиме обогащения.

Падение напряжения на внутреннем диоде

Внутренний p-n

-переход закрыт при нормальной работе транзистора (при нормальной полярности напряжения сток-исток). Открывается этот переход при обратной полярности приложенного напряжения. Являясь паразитным элементом, он, вместе с тем, может быть схемотехнически использован как защитное устройство. Прямое падение на открытом внутреннем диоде определяется параметром
VF
.
VF
указывает на гарантированное максимальное значение этой характеристики при определенном значении тока истока. На рис. 10 показаны типичные ВАХ внутреннего диода при двух температурах. Ввиду большего сопротивления контакта металлизации и кремния
p
-типа
р
-канальные приборы имеют более высокое напряжение
VF
, чем
n
-типа. Нормальными значениями
VF
являются 1,6 В для высоковольтных приборов (>100 В) и 1,0 В для низковольтных (<100 В).

Рис. 10. Вольт-амперная характеристика открытого внутреннего диода

Преимущества и недостатки полевых транзисторов перед биполярными.

Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)

Главные преимущества полевых транзисторов

  • Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
  • Усиление по току у полевых транзисторов намного выше, чем у биполярных.
  • Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
  • У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.

Главные недостатки полевых транзисторов

  • У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
  • Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
  • Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».
  • При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).

    Однако, при быстром скачке напряжения между стоком и истоком полевого транзистора, паразитный транзистор может случайно открыться, в результате чего, вся схема может выйти из строя.

  • Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.

    Поэтому внешние корпуса полевых транзисторов стараются создавать таким образом, чтоб минимизировать возможность возникновения нежелательного напряжения между электродами прибора. Одним из таких методов является закорачивание истока с подложкой и их заземление. Также в некоторых моделях используют специально встроенный диод между стоком и истоком. При работе с интегральными схемами (чипами), состоящими преимущественно из полевых транзисторов, желательно использовать заземленные антистатические браслеты. При транспортировке интегральных схем используют вакуумные антистатические упаковки

Для чего нужен

ПТ нужны для того, чтобы управлять выходным током с помощью создаваемого электрического поля и изменять его важнейшие параметры. Структуры, созданные на основе полевого транзистора, часто используются в интегральных схемах цифрового и аналогового вида.


n- и p-канальные электротранзисторы

Именно за счет полевого управления, эти транзисторы воздействуют на величину приложенного к их затвору напряжения. Это отличает их от биполярных транзисторов, которые управляются током, который протекает через их базу. ПТ потребляют значительно меньшее количество электроэнергии, что и определило их популярность при использовании в ждущих и следящих устройствах, а также интегральных схемах малого потребления ( при организации спящего режима).

Вам это будет интересно Особенности ШДУП У4

Важно! Одними из наиболее известных устройств, основанных на действии полевых транзисторов, являются пульты управления от телевизора, наручные часы электронного типа. Эти устройства за счет своего строения и применения ПТ могут годами работать от одного крошечного источника питания в виде батарейки.


Схематический вид электротранзистора полевого типа

Применение запирающего слоя в JFET транзисторах

Но где же можно применить свойство «изменение толщины диэлектрика под воздействием напряженности электрического поля»? А давайте рассмотрим небольшой пример. Может быть вам потом станет ясно, где можно применить это свойство ;-)

Итак, провинциальный городок X. Обычный будний день. Поток людей спешит по своим делам. Около тротуара стоит лавка с хот-догами. Пока что она еще не открылась, так как продавец сладко спит, поэтому все проходят мимо этой лавки:

Но вот она открывается, и первые зеваки начинают «тусить» возле нее, чтобы отведать позавчерашних холодных протухших хот-догов)).

Продавец видит, что дела идут в гору и начинает еще быстрее обслуживать клиентов. То есть он вкладывает всю свою энергию, чтобы выдержать темп. Он начинает работать напряженнее. Чем напряженнее он обслуживает клиентов, тем их становиться больше. Зевакам ведь интересно, что за тусовка там намечается. А раз все покупают, то и они тоже хотят. Народу становится чуток больше.

Народ тихонько подваливает и продавец, чтобы не упустить выгоду, начинает работать изо всех сил. Наш бедный продавец работает, как белка в колесе. Тут уже не расслабишься, иначе народ уйдет к продавцу пончиков. На лбу у него выступил пот, напряжен так, что вот-вот уже лопнет от усталости! Но гляньте на тротуар… Движение ПЕРЕКРЫЛИ зеваки, которые жить не быть хотят купить эти протухшие хот-доги.

Мораль сей басни такова:

Коль хочешь жрать, готовь с утра).

Теперь давайте представим, что тротуар — это проводник. Люди — это электроны. Продавец — это какой-либо заряд, который если захочет, может работать либо напряженнее, либо вообще закрыть лавку.

Итак, что у нас тогда получается. Пока лавка закрыта, толпа зевак спокойно идет по своим делам в одном направлении. Продавца нет на месте. То есть заряд ноль. Это значит, что в данном направлении у нас спокойно течет электрический ток, так как упорядоченное движение заряженных частиц — это и есть электрический ток

Как только продавец открыл лавку и стал работать, некоторые зеваки стали толпиться у лавки. Но эта кучка зевак теперь мешается на тротуаре людям, которые действительно куда-то спешат по делам. То есть эта кучка зевает оказывает сопротивление потоку людей, спешащим по делам. Уже интереснее. Раз мешаются, значит меньше людей сможет пройти ниже толпы зевак за какое-то время. А что у нас значит этот параметр? Не силу тока ли случайно? Вот именно! Сила тока стала меньше!

Итак, теперь главный вопрос: от чего зависит поток людей? Да от продавца, мать его за ногу!

Как только он начинает орать: «Свежие хот-доги, бери, налетай, теще покупай!», народу стает больше. То есть как только он начинает работать напряженнее, так и толпа зевак начинает больше заграждать тротуар. И все может закончится тем, что движение на тротуаре встанет колом. И да, кстати. Стоящая толпа зевак — это уже не электроны. Это обедненный слой, диэлектрик)

И вот ученые инженеры, которые поняли, что можно менять силу тока, управляя напряженностью электрического поля, создали радиоэлемент, который назвали в честь электрического поля, и имя его полевой транзистор.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]