Одним из видов подъемных механизмов являются различные виды лифтов. Они предназначены для транспортировки людей или грузов, путем подъема или спуска. Для перемещения кабины используются неподвижные жесткие направляющие, установленные в шахте в вертикальном положении. Нормальная работа всех систем обеспечивается с помощью специального электрооборудования. Поэтому, для таких устройств разработана общая принципиальная электрическая схема лифта, обеспечивающая их надежное функционирование.
Схемы управления электроприводами лифтов
- тихоходные лифты имеют двигатели с короткозамкнутым или с фазным ротором и кнопочное или рычажное управление,
- быстроходные лифты — двух или односкоростные двигатели, управляемые магнитными станциями или тиристорными станциями управления (ТСУ-Р) с кнопочными командоаппаратами,
- скоростные и высокоскоростные лифты — двигатели постоянного тока, управляемые по системе «генератор — двигатель» с различными схемами возбуждения или по системе «тиристорный преобразователь — двигатель» с кнопочными командоаппаратами,
- могут использоваться также схемы асинхронно-вентильных каскадов (АВК), применение которых позволяет увеличить к.п.д. установки.
Пассажирские лифты в зависимости от пассажиропотока, высоты подъема и количества лифтов, обслуживающих пассажиров, разделяются на одиночные и с групповым управлением.
К одиночным относятся:
а) лифты, работающие по единичным приказам и вызовам без попутных остановок при спуске и подъеме пассажиров,
б) лифты с собиранием пассажиров при спуске, но с запрещением вызовов при подъеме,
в) то же, но с регистрацией вызовов на спуске с последующим их исполнением.
К лифтам с групповым управлением относятся:
а) лифты с одной вызывной кнопкой на посадочных площадках независимо от количества установленных лифтов (чаще используется парное управление) и с собиранием пассажиров при спуске,
б) то же, но с полным собиранием пассажиров на промежуточных этажах на подъем и спуск (обычно устанавливаются в административных, учебных и других зданиях).
Кроме того, очень часто используется диспетчеризация лифтов ряда домов и целых районов, когда с одного диспетчерского пульта осуществляется контроль состояния схем и производится управление несколькими лифтами.
Независимо от быстроходности лифтов, одиночного или группового управления ими необходимыми элементами большинства их схем являются следующие:
- кнопки с самовозвратом, залипающие или западающие кнопки для вызова кабин и подачи приказа из кабины,
- различные датчики селекции и точной остановки — позиционно согласующие устройства для регистрации места нахождения кабины и состояния электрических цепей,
- датчики и блокировки состояния подъемных канатов, состояния дверей шахты и кабины (открыты или закрыты),
- конечные выключатели ограничения скорости и степени загрузки кабины,
- указатели направления движения кабины и в некоторых лифтах наличия груза в кабине.
Из названных элементов более подробно остановимся на позиционно-согласующих устройствах (ПСУ), которые определяют место, где должна остановиться кабина в шахте при появлении вызова или приказа, и движение ее вверх или вниз. Остальные же элементы обычно представляют собой различные модификации конечных выключателей, известных из других курсов.
Конструктивно позиционно-согласующие устройства выполняют в виде набора трехпозиционных электромеханических или индуктивных либо магнитных (герконовых) датчиков, размещенных в шахтах, с выводом сигналов на релейный или бесконтактный селектор в машинное помещение (ПСУ иногда выполняются в виде центральных этажных аппаратов, размещаемых в машинном помещении).
Датчики, размещаемые в шахте, взаимодействуют с установленными на кабине отводками (при электромеханических) или магнитными шунтами (при индуктивных или герконовых датчиках) и выдают сигналы в центральный этажный аппарат (шаговый копираппарат или релейный селектор), установленный в машинном помещении, а последний передает и схему управления сигнал на исполнение полученной команды.
Датчики сигналов о движении кабины вверх или вниз целесообразнее размещать на кабине (требуется меньше проводов), а магнитные шунты устанавливать в шахтах в требуемых точках. В этом случае при цифровом управлении число столбцов устанавливаемых шунтов по шахте равно числу разрядов передаваемого номера этажа в двоичном или ином коде.
Трехпозиционные электромеханические переключатели фигурной отводкой переводятся в одно из положений, соответствующее движению кабины вверх или вниз, либо ее остановке. В этом случае при движении кабины контакты переключателей пройденных этажей включаются в одно из крайних положений, подготавливая к действию цепи вызовов и приказов, а при остановке кабины переключатель переводится в среднее положение, отключая цепь управления от контакторов направления и исключая тем самым уход кабины с этажа при ошибочном нажатии кнопки приказа или вызова.
Для обеспечения относительно точной остановки кабины лифта в схемах управления ими в последнее время стали применять бесконтактные индуктивные или контактные герметизированные магнитоуправляемые (герконовые) датчики. Эти датчики устанавливают как в шахте, так и на кабине: в шахте — датчики селекции (замедления), а на кабине — датчик точной остановки. Для взаимодействия с датчиками на кабине размещают ферромагнитный шунт селекции, а в шахте (на каждом этаже) — ферромагнитные шунты точной остановки.
Индуктивные датчики состоят из разомкнутого П-образного магнитопровода с катушкой, заключенной в кожух. Последовательно с ней включается катушка исполнительного реле, и на них подается напряжение переменного тока (U).
При разомкнутом магнитопроводе магнитный поток, пересекающий катушку, мал. Поэтому э.д.с. и ток самоиндукции в проводниках катушки, а также обусловленное им индуктивное сопротивление (X) практически отсутствуют, так что сопротивление катушки носит активный характер (R). Ток в последовательно включенных катушках относительно большой, он как бы имитирует замыкание контактов в контактной системе (реле включается).
При замыкании шунтом П-образного магнитопровода магнитный поток, пересекающий его катушку, возрастает, в связи с чем увеличиваются э.д.с. самоиндукции, а также обусловленное им индуктивное сопротивление катушки. Вследствие этого ток в последовательно включенные катушках уменьшается, имитируя размыкание цепи в контактной системе (исполнительное реле отключается).
Герконовый датчик представляет собой П-образный корпус, в котором размещены с одной стороны от паза две герметизированные стеклянные колбы с вакуумом внутри и укрепленными на пружинящих пластинах контактами, подключенными к соответствующим цепям управления лифтом. С другой стороны от паза находится постоянный магнит. Рабочим элементом таких датчиков является ферромагнитный шунт, который проходит через П-образный разрез при движении кабины лифта.
Принцип работы этих датчиков следующий: пружинящие силы пластин контактов герконов направлены так, что если на них поле постоянного магнита не действует, то нормально разомкнутые контакты разомкнуты, а нормально замкнутые — замкнуты, т. е. цепи, к которым подключены эти контакты, будут разомкнуты или замкнуты.
Такое состояние геркона будет тогда, когда ферромагнитный шунт находится в пазе П-образного корпуса, поскольку магнитные силовые линии постоянного магнита замыкаются через шунт. После того как шунт выйдет из паза, магнитные силовые линии замыкаются через пластины, преодолевая их пружинящее действие, и контакты геркона, а следовательно, цепи к которым они подключены, переходят в противоположное состояние.
В качестве примера, отражающего основные особенности схем управления лифтами, рассмотрим схему управления одиночным лифтом без попутных остановок, показанную на рис. 1. Лифт обслуживает четыре этажа, в качестве исполнительного двигателя здесь использован двухскоростной асинхронный двигатель М.
Включение на малую (Мл) или большую (Б) частоту вращения двигателя производится соответствующими контакторами Мл и Б. Направление вращения двигателя определяется контакторами В и Н, замедление — дополнительным резистором Р, торможение — электромагнитным тормозом ЭТ.
В качестве этажных переключателей использованы бесконтактные индуктивные датчики (ДТС, ДТОВ и ДТОН), включенные последовательно с катушками реле (РИС, РИТОВ, РИТОН). Датчики ДТС служат для включения привода лифта на высокую частоту вращения и подачи импульса на его замедление, а датчики ДТОВ и ДТОН предусмотрены для точной остановки лиф га на уровне пола соответствующего этажа и размещены на кабине, магнитные шунты для них устанавливаются в стволе шахты.
Рис. 1. Принципиальная схема управления одиночным лифтом
Назначение остальных элементов схемы и ее работу рассмотрим на примере перемещения кабины с пассажиром с 1-го на 3-й этаж, полагая при этом, что автомат А, разъединитель Р и конечные выключатели KB, ограничивающие ход кабины вверх и вниз в аварийных режимах, замкнуты, а кабина находится на первом этаже. В этом случае катушки реле РИС, кроме реле первого этажа, обтекаются номинальным током.
При нажатии кнопки «3-й этаж» образуется следующая электрическая цепь: фаза сети — полюс разъединителя Р — предохранитель Пр — конечный включатель KB — кнопка «Стоп» — блокировки дверей шахты Дв1 — Дв4 — контакты натяжения каната КК — конечный выключатель ловителя КЛ — дверные выключатели кабины ДК — контакты кнопки «Стоп» — размыкающий блок-контакт Н — катушка реле РУВ — замыкающие контакты реле РИС4 и РИСЗ (катушки этих реле обтекаются током) — катушка этажного реле ЭРЗ — кнопка «3-й этаж» — размыкающие блок-контакты контакторов У, В, Н — конечный выключатель KB — предохранитель Пр — полюс разъединителя Р — фаза сети.
После срабатывания реле РУВ и ЭР3 включаются контактор движения вперед В, контактор быстрого движения Б (по цепи катушки Б — блок-контакт Мл — выключатель большой частоты вращения ВБ — контакты реле РИСЗ и ЭР3). При замыкании контактов В и Б двигатель подключается к сети, включаются контактор Т, растормаживающий канатоведущий шкив, и контактор отводки КО, включающий электромагнит отводки МО и подготавливающий к включению цепь катушки контактора малой частоты вращения Мл. Огводка втягивается, освобождая рычаг замка, и кабина приходит в движение.
При подходе кабины к третьему этажу ферромагнитный шунт замыкает катушку датчика ДТСЗ, ее сопротивление увеличивается и реле РИСЗ отпадает, отключая реле ЭР3 и РУВ. В результате этого контактор Б отпадает, замыкая свой контакт, включает контактор малой частоты вращения Мл, а контактор В остается включенным, так как при движении кабины еще не замкнута магнитная цепь датчика точной остановки вверх, поэтому и контакт РИТОВ еще не разомкнут. Двигатель тормозится до малой частоты вращения, работая в генераторном режиме с введенным в одну фазу статора резистором R. Выдержка времени торможения задается маятниковым реле РМ, работающим при включении контактора Мл.
Как только пол кабины выравняется с полом этажного перекрытия, магнитный шунт замыкает магнитную цепь катушки датчика точной остановки ДТОВ, реле РИТОВ отпадает и происходит отключение контакторов В, затем КО и, наконец, Мл. В результате двигатель и тормозной электромагнит отключаются от сети, накладывается механический тормоз и кабина останавливается.
Для того чтобы подучить собирательную схему управления лифтом с попутными остановками только при опускании кабины или полностью собирательную схему, т. е. при попутных остановках во время движения кабины вверх и вниз, необходимо в схему, подобную рассмотренной на рис. 1, ввести некоторые дополнения. Например, в схеме, с двухскоростными двигателем индуктивные датчики ИД, реле РИС и кнопки вызова и приказа на каждом этаже включаются так, как показано на рис. 2.
Рис. 2. Фрагменты дополнений к собирательным схемам управления лифтом (дли одного этажа)
В схеме с попутными остановками при опускании кабины (рис, 2, а) вызовы и приказы подаются раздельными залипающими кнопками и поэтому могут регистрироваться в любое время, а передаваться в схему сразу же, кроме периоде движения кабины с пассажирами вверх, когда шина питания контактов передачи вызовов в исполнительную схему отключается избирательными контактами от плюсовой шины.
В полной избирательней схеме управления (рис. 2, б) дополнительно имеются вызывные цепи для подъема (ШДВв) и опускания (ШДВн) кабины, контакты блокировочных реле направления РБВ и РБН соединены с контактами избирательной секционированной цепочки исполнительной схемы.
В схемах, изображенных на рис. 1 и 2, при отсутствии кабины на этаже катушки индуктивного датчика ИД и реле РИС возбуждены. Поэтому при нажатии кнопки приказа КП или вызова КВ (они удерживаются во включенном состоянии удерживающими магнитами УМ до тех пор, пока их не зашунтируют контакты дверей шахты данного этажа ДШ) образуется цепь (на рисунках не показана), включающая в себя реле управления вверх РУВ, если этаж назначения выше этажа стоянки кабины, или реле управления вниз РУН, если этаж назначения ниже стоянки кабины.
После прибытия кабины на этаж вызова обесточивается индуктивный датчик ИД, отключается реле РИС, размыкая свои контакты, которые отключают реле РУВ или РУН и лампу ЛС (кабина останавливается), а замыканием контакта РИС4 подготавливается цепь для выполнения приказа, поступающего из кабины.
В полной собирательной схеме секционированная контактами РИС1 н РИС2 цепочка на этаже стоянки кабины разрывается не только этими контактами, но еще и контактами реле блокировки вверх РБВ или вниз РБН (катушки их на схеме не показаны), а вызывные цепи подъема, спуска и цепи приказов отделяются друг от друга разделительными диодами Д1 — Д4.
Перед нажатием кнопки вызова или приказа, если направление движения кабины еще не выбрано, все контакты в цепочке выбора направления замкнуты, кроме контактов РИС4 на этаже стоянки кабины. Поэтому при нажатии одного из этих кнопок сигналы вызовов с этажей, расположенных выше этажа стоянки кабины, подключаются к катушке реле РУН, а сигналы вызовов с этажей ниже стоянки кабины включают реле РУВ. После выбора направления одновременно с реле РУВ или РУН включается одно из реле блокировки противоположного направления РБВ или РБН, разрывающее своими контактами выход через секционную цепочку сигналов вызова непопутного направления.
В схеме, показанной па рис. 2, а, для опускания пассажиров кабина без остановок проходит до наиболее высокого этажа вызова и затем опускается с попутными остановками, а в схеме, изображенной на рис. 2, б, при необходимости подъема пассажиров кабина проходит до наиболее низкого этажа вызова, после чего поднимается с попутными остановками.
В рассмотренных схемах селекторы выполнены на релейных элементах. Наряду с этим применяются и другие селекторы: кулачковые, фотоэлектрические, щеточные непрерывного слежения, шаговые, на статических элементах и т. д.
При больших пассажиропотоках в одном холле устанавливают несколько лифтов, которые для повышения комфортабельности и улучшения электроэнергетических показателей имеют объединенное парное или групповое управление. Количество лифтов, соединенных в группы, обычно не превышает четырех, а чаще трех, хотя известны системы, содержащие в группе до восьми лифтов.
При групповом управлении обычно различают три основных режима работы лифтов: пик подъема, пик спуска и уравновешенное движение в обоих направлениях. Включение лифтов на тот или иной режим осуществляется диспетчером или автоматически посредством программирующих часов, устанавливаемых на каждую группу лифтов.
В высотных зданиях каждая группа лифтов закрепляется для обслуживания определенной зоны этажей, другие этажи ею не обслуживаются. При наличии нескольких лифтов в группе, обслуживающих одну зону или невысокое здание, в целях повышения средней скорости движения путем сокращения числа остановок отдельные лифты могут выделяться для обслуживания четных и нечетных этажей.
Для осуществления парного или группового управления лифтами схемы управления ими должны быть собирательными, а вызовы каждого этажа в обоих направлениях должны регистрироваться раздельно в каждом направлении соответствующими запоминающими устройствами, содержащими реле, транзисторы и т. д.
В качестве примера, отражающего специфику работы при парном управлении лифтами с дополнительными реле стоянки первого лифта 1PC и второго лифта 2РС, рассмотрим фрагмент принципиальной схемы, показанный на рис. 3.
Рис. 3. Фрагмент принципиальной схемы парного управления лифтами: ЭР — этажное реле, РПК — реле переключения каналов, РВП реле автоматического пуска
В этом случае кабина, опустившаяся с пассажирами на первый этаж, не отвечает на вызовы с других этажей и ожидает пассажиров. Если же кабины на первом этаже нет, то поднявшаяся по приказу и освободившаяся кабина автоматически направляется на первый этаж, а при спуске другой кабины или ее стоянке последняя остается на этаже окончания рейса либо направляется к центру нагрузки и используется для работы по вызовам в основном в направлении опускания.
Реле стоянки кабины на первом этаже 1РС1 или 2РС1 включается после прибытия кабины на первый этаж от конечного выключателя 1КВН или 2КВН (устанавливаются в шахтах на копираппарате). Эти реле взаимно сблокированы. Поэтому включение одного из них указывает на то, что данная кабина прибыла на первый этаж раньше другой. В этом случае реле 1РС1 или 2РС1 своим замыкающим контактом включает сигнальную лампу ЛС, а размыкающим — разрывает вызывную цепь своего лифта, отключая вызов на время стоянки кабины на первом этаже.
При уходе кабины с первого этажа ее сигнальная лампа ЛС гаснет, питание вызываемых цепей этого лифта после освобождения кабины сразу же восстанавливается, а после прихода кабины другого лифта на первый этаж включается ее реле PC. Эта кабина остается стоять на первом этаже в ожидании пассажиров (о чем сигнализирует зажиганием ее сигнальная лампа ЛС). При освобождении поднявшейся по приказу кабины и отсутствии вызовов в схему подается сигнал, включающий размыкающими контактами конечного выключателя 1КВН или 2КВН реле 1РУН или 2РУВ катушки реле 1РУН или 2РУВ, и кабина направляется на первый этаж и т. д.
Аппаратура управления двигателями типовых лифтов при одиночном, парном и групповом управлениях обычно располагается на типовых панелях, станциях или блоках управления, устанавливаемых в машинных помещениях.
Источник
История
Первые лифты приводились в движение паровой машиной, их работой управлял оператор. В 1924 году компания Otis представила первый автоматический лифт, управляемый логическими реле. Это позволило увеличить скорость передвижения кабины. Через 13 лет, Otis показала систему помогающую планировать работу лифта в периоды высокой нагрузки. Так выглядели первые автоматические лифты:
В 1948 году Otis начал производить автоматические лифты, которые уже умели изменять скорость, адаптировать своё расписание к периодам нагрузки, не останавливаться при полной загрузке кабины. В них появилась функция автоматического закрытия двери после определенного времени простоя.
Управление с помощью реле использовалось до 1980 годов, когда их начали вытеснять микропроцессоры. Микропроцессоры потребляли меньше энергии и занимали гораздо меньше места.
Так выглядела управляющая система реле лифта Otis. Картинка с сайта
Значение подъемных машин
В целом, лифт в большинстве случаев не воспринимается людьми как сложное и важное устройство. Однако на самом деле это изобретение играет огромную роль в нашей ежедневной жизни и представляет собой достаточно сложное и продуманное до мелочей устройство. Что касается роли подъемника, то ее трудно переоценить – каждый день лифты мира перемещают около трети населения планеты, при этом данный вид транспорта остается на сегодняшний день самым безопасным. Что же касается недооценки устройства лифта, то здесь отдельная история. Многие думают, что лифт является чрезвычайно простым устройством, которое представляет собой кабину и трос, но это далеко не так.
Первые в истории лифты действительно были весьма примитивными, однако, не смотря на простоту идеи подъемника, сегодня он представляет собой целую систему механизмов и устройств, необходимую не просто для подъема, а качественной, точной, быстрой и безопасной работы.
Характеристики лифтового хозяйства
Основными техническими параметрами, которые характеризуют эксплуатацию лифта, являются:
- скорость вертикального перемещения кабины;
- грузоподъемность;
- число этажей, определяющее количество остановок лифта;
- предельная высота подъема.
Нормативными документами, которые регламентируют требования к характеристикам лифтового оборудования, являются ПУБЭЛ (Правила устройства и безопасной эксплуатации лифтов) и профильные ГОСТы. Они же регламентируют требования по обслуживанию лифтового хозяйства.
К числу ключевых характеристик относятся скорость и грузоподъемность лифта. Скорость бывает нескольких видов.
Номинальное значение скорости производитель указывает в инструкции к подъемному оборудованию. Она предусматривается в оптимальных эксплуатационных условиях для конкретной модели лифта. Обычно ее значение составляет от 0,18 до 4 м/с. Для оснащения высотных зданий используются скоростные лифты со значением номинальной скорости 9,5 м/с и выше. При значительном числе этажей, например, в небоскребах и высотных башнях, часто применяют экспрессную систему. Она предусматривает, что скоростные лифты при подъеме начинаются останавливаться только с определенного этажа, например, с 10-го. Ниже этого уровня работают обычные лифты со стандартным номинальным значением скорости.
Рабочей считают такую скорость, с которой по факту двигается кабина в существующих условиях на конкретном объекте. Значение зависит от фактической нагрузки, уровня сетевого напряжения, состояния механических узлов, действующего в них трения и других критериев. Таким образом, на рабочую скорость влияет состояние конструкции лифта, соблюдение требований по его эксплуатации и обслуживанию. Положениями ПУБЛЭЛ предусматривается, что рабочая скорость не должна отличаться от номинальной больше чем на 15%.
Предельной называют скорость кабины, при которой предусматривается срабатывание стопорящих устройств системы безопасности — ловителей или парашютов, останавливающих кабину. Устройства безопасности лифта не должны допускать разгон кабины выше предельного значения.
Перед подачей на заданный пассажиром этаж кабина должна двигаться с остановочной скоростью. Ее значение уменьшено по сравнению с рабочей, чтобы исключить резкую остановку, представляющую для пассажиров опасность или дискомфорт. В лифтах старого образца задается два значения скорости. Основную часть маршрута лифт проходит с рабочим значением скорости, а перед остановкой переключается на остановочную. Современные модели используют плавную регулировку с помощью частотных электронных регуляторов. Они плавно наращивают обороты двигателя при старте и плавно снижают их перед остановкой кабины. Такой режим более комфортен для пассажиров. Кроме этого, уменьшается износ, и увеличивается срок службы двигателя.
Грузоподъемность — предельная допустимая по паспорту масса перевозимого в лифте груза. Эта величина указывается без учета собственной массы самой кабины и ее дополнительного оборудования. Грузоподъемность стандартных пассажирских моделей обычно составляет 400 кг. Для комплектации новых жилых комплексов широко используются пассажирские модели лифтов увеличенной грузоподъемности. Так, популярны модели, которые могут работать с загруженностью до 630 кг. Грузопассажирские лифты обычно адаптированы на нагрузку до 1 тонны, а грузовые — до 5 тонн.