Выпрямительные диоды: Параметры выпрямительных диодов

В чем разница между прямым и обратным смещением?

Прикладывание к диоду напряжения таким образом, что диод начинает пропускать ток, называется прямым смещением. Прикладывание к диоду напряжения таким образом, что диод перестает пропускать ток, называется обратным смещением.

Интересные материалы:

Как восстановить фотографии? Как восстановить функцию WhatsApp? Как восстановить галерею на андроид? Как восстановить галерею на андроиде Samsung? Как восстановить галерею на андроиде? Как восстановить галерею на самсунге? Как восстановить галерею на смартфоне? Как восстановить главную загрузочную запись MBR? Как восстановить голосовое сообщение в ватсапе? Как восстановить госуслуги если нет номера?

Что это такое

ВАХ расшифровывается как вольт-амперная характеристика диодного полупроводника. Она отражает зависимость тока, который проходит через p-n переход диода. ВАХ определяет зависимость тока от величины, а также полярности приложенного напряжения. Вольт-амперная характеристика имеет вид графика (схема). Данный график имеет следующий вид:

ВАХ для диода

Для каждого вида диода график ВАХ будет иметь свой конкретный вид. Как видим, график содержит кривую. По вертикали вверху здесь отмечены значения прямого тока (прямом включении), а внизу – в обратном. Но горизонтали схема и график отображают напряжение, аналогично в прямом и обратном направлении. Таким образом схема вольт-амперной характеристики будет состоять из двух частей:

  • верхняя и правая часть – элемент функционирует в прямом направлении. Она отражает пропускной ток. Линия в этой части идет резко вверх. Она характеризует значительный рост прямого напряжения;
  • нижняя левая часть – элемент действует в обратном направлении. Она соответствует закрытому (обратному) току через переход. Здесь линия идет практически параллельно горизонтальной оси. Она отражает медленное нарастание обратного тока.

Обратите внимание! Чем круче будет вертикальная верхняя часть графика, и ближе к горизонтальной оси нижняя линия, тем более лучше будут выпрямительные свойства полупроводника.

Стоит отметить, что ВАХ сильно зависит от температуры окружающей среды. К примеру, повышение температуры воздуха может привести резкому повышению обратного тока. Построить своими руками ВАХ можно следующим образом:

  • берем блок питания;
  • подключаем его к любому диоду (минус на катод, а плюс на анод);
  • с помощью мультиметром делаем замеры.

Из полученных данных и строится вольт-амперная характеристика для конкретного элемента. Ее схема или график могут иметь следующий вид.

Нелинейная ВАХ

На графике видна ВАХ, которая в таком исполнении называется нелинейной. Рассмотрим на примерах различных типов полупроводников. Для каждого отдельного случая данная характеристика буде иметь свой график, хотя они все будут носить единый характер лишь с небольшими изменениями.

ВАХ для шотки

Одним из наиболее распространенных диодов на сегодняшний день является шоттки. Этот полупроводник был назван в честь физика из Германии Вальтера Шоттки. Для шоттки вольт-амперная характеристика будет иметь следующий вид.

ВАХ для шоттки

Как видим, для шоттки характерно малое падение напряжения в ситуации прямого подключения. Сам график носит явный ассиметричный характер. В зоне прямых смещений наблюдается экспоненциальное увеличение тока и напряжения. При обратном и прямом смещении для данного элемента ток в барьере обусловлен электронами. В результате этого такие элементы характеризуется быстрым действием, поскольку у нет диффузных и рекомбинационных процессов. При этом несимметричность ВАХ будет типичной для структур барьерного типа. Здесь зависимость тока от напряжения определена изменением количества носителей, которые берут участие в зарядопереносных процессах.

Светодиод

Внутри устроен совсем по другому, чем диод, но имеет те же самые свойства. Только еще и светится при протекании тока в прямом направлении. Все отличие от диода в некоторых характеристиках. Самое важное – прямое падение напряжения. Оно гораздо больше, чем 0,65 В у обычного диода и зависит в основном от цвета светодиода. Начиная от красного, падение напряжения которого составляет в среднем 1,8 В, и заканчивая белым или синим светодиодом, падение у которых около 3,5 В. Впрочем, у невидимого спектра эти значения шире.


По сути падение напряжения здесь – минимальное напряжение зажигания диода. При меньшем напряжении, у источника питания, тока не будет и диод просто не загорится. У мощных осветительных светодиодов падение напряжения может составлять десятки вольт, но это значит лишь, что внутри кристалла много последовательно-параллельных сборок диодов.
Но сейчас поговорим об индикаторных светодиодах, как наиболее простых. Их выпускают в различных корпусах, наиболее часто в полуокруглых, диаметром 3, 5, 10 мм.

Любой диод светится в зависимости от протекающего тока. По сути это токовый прибор. Падение напряжения получается автоматически. Ток мы задаем сами. Современные индикаторные диоды более-менее начинают светиться при токе 1 мА, а при 10 мА уже выжигают глаза. Для мощных осветительных диодов надо смотреть документацию.

Применение светодиода

Имея лишь соответствующий резистор можно задать нужный ток через диод. Конечно, понадобится еще и блок питания постоянного напряжения, например, батарейка 4,5 В или любой другой БП.
Например, зададим ток 1мА через красный светодиод с падением напряжения 1,8 В.

На схеме показаны узловые потенциалы, т.е. напряжения относительно нуля. В каком направлении включать светодиод нам подскажет лучше всего мультиметр в режиме прозвонки, поскольку иногда попадаются напрочь китайские светодиоды с перепутанными ногами. При касании щупов мультиметра, в правильном направлении, светодиод должен слабо светиться.

Поскольку применен красный светодиод, то на резисторе упадет 4,5 — 1,8 = 2,7В. Это известно по второму закону Кирхгофа: сумма падений напряжения на последовательных участках схемы равно ЭДС батарейки, т.е. 2,7 + 1,8 = 4,5В. Чтобы ограничить ток в 1мА, резистор по закону Ома должен обладать сопротивлением R = U / I = 2,7 / 0,001 = 2700 Ом, где U и I – напряжение на резисторе и необходимый нам ток. Не забываем переводить величины в единицы СИ, в амперы и вольты. Поскольку выпускаемые номиналы сопротивлений стандартизованы выберем ближайший стандартный номинал 3,3кОм. Конечно, при этом ток изменится и его можно пересчитать по закону Ома I = U / R. Но зачастую это не принципиально.

В этом примере ток, отдаваемый батарейкой, мал, так что внутренним сопротивлением батареи можно пренебречь.

С осветительными светодиодами все тоже самое, только токи и напряжения выше. Но иногда им уже не требуется резистор, надо смотреть документацию.

Что-то еще про светодиод

По сути, светить – это основное назначение светодиода. Но есть и другое применение. Например, светодиод может выступать в качестве источника опорного напряжения. Они необходимы, например, для получения источников тока. В качестве источников опорного напряжения, как менее шумные, применяют красные светодиоды. Их включают в схему так же, как и в предыдущем примере. Поскольку напряжение батарейки относительно постоянное, ток через резистор и светодиод тоже постоянный, поэтому падение напряжения остается постоянным. От анода светодиода, где 1,8В, делается отвод и используется это опорное напряжение в других участках схемы.
Для более надежной стабилизации тока на светодиоде, при пульсирующем напряжении источника питания, вместо резистора в схему ставят источник тока. Но источники тока и источники опорного напряжения – это тема еще одной статьи. Возможно, когда-нибудь я ее напишу.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Как определить напряжение и полярность

Светодиод пропускает ток только в одном направлении

Поэтому важно подключить устройство в схему правильно. Для этого нужно определить, который из выводов корпуса является катодом, а который анодом

  • Визуально – традиционно ножка катода короткая, а анода длинная. Катод имеет знак «минус», анод – «плюс». Можно найти катод и по-другому. Внимательно посмотрев через корпус, можно увидеть кристаллик на подставке. Вывод подставки и будет катодом.
  • Подключение к источнику питания – выбирают устройство, напряжение которого не выше допустимого для светодиода напряжения. Обычно это батарейка или резистор. При правильном положении светодиод светится ярче.
  • Использование мультиметра – выставляют шкалу на приборе в режим измерения сопротивления и прикасаются щупами к выводам светодиода. Контакт очень короткий. При обратном подключении мультиметр ничего не показывает, при правильном – замеряет сопротивление в районе 1,7 кОм.

Физико-технические параметры

Основные параметры выпрямительных диодов базируются на таких значениях:

  • максимально допустимом значении разницы потенциалов при выпрямлении тока, при котором устройство не выйдет из строя;
  • наибольшем среднем выпрямленном токе;
  • наибольшем значении обратного напряжения.

Выпрямители промышленность выпускает с разными физическими характеристиками. Соответственно, устройства имеют разную форму и способ монтажа. Разделяются при этом на три группы:

  1. Выпрямительные диоды большой мощности. Характеризуются пропускной способностью тока до 400 А и являются высоковольтными. Высоковольтные выпрямительные диоды производятся в корпусах двух видов –штыревом, где корпус герметичный и стеклянный, и таблеточном, где корпус из керамики.
  2. Выпрямительные диоды средней мощности. Обладают пропускной способность от 300 мА до 10А.
  3. Выпрямительные диоды малой мощности. Максимально допустимое значение тока – до 300 мА.

Области применения диодов

Несмотря на простое устройство, полупроводниковые диоды широко используются в электронике:

  1. Для выпрямления переменного напряжения. Классика жанра – используется свойство p-n перехода проводить ток в одном направлении.
  2. Диодные детекторы. Здесь используется нелинейность ВАХ, позволяющая выделять из сигнала гармоники, нужные из которых могут быть выделены фильтрами.
  3. Два диода, включенные встречно-параллельно, служат ограничителем мощных сигналов, которые могут перегрузить последующие входные каскады чувствительных радиоприёмных устройств.
  4. Стабилитроны могут включаться в качестве искрозащитных элементов, не позволяющих высоковольтным импульсам попасть в цепи датчиков, установленных в опасных зонах.
  5. Диоды могут служить переключающими устройствами в высокочастотных схемах. Они открываются постоянным напряжением и пропускают (или не пропускают) ВЧ сигнал.
  6. Параметрические диоды служат усилителями слабых сигналов в диапазоне СВЧ за счет наличия в прямой ветви характеристики участка с отрицательным сопротивлением.
  7. На диодах собирают смесители, работающие в передающей или приёмной аппаратуре. Они смешивают сигнал гетеродина с высокочастотным (или низкочастотным) сигналом для последующей обработки. Здесь также используется нелинейность ВАХ.
  8. Нелинейная характеристика позволяет применять диоды на СВЧ в качестве умножителей частоты. При прохождении сигнала через умножительный диод, выделятся высшие гармоники. Дальше их можно выделить методом фильтрации.
  9. Диоды применяют в качестве элементов настройки резонансных цепей. При этом используется наличие управляемой емкости у p-n перехода.
  10. Некоторые виды диодов применяют в качестве генераторов в диапазоне СВЧ. В основном это туннельные диоды и приборы с эффектом Ганна.

Это только краткое описание возможностей полупроводниковых приборов с двумя выводами. При глубоком изучении свойств и характеристик с помощью диодов можно решать многие задачи, поставленные перед разработчиками электронной аппаратуры.


Watch this video on YouTube

Принцип работы и основные характеристики стабилитрона

Что такое диодный мост, принцип его работы и схема подключения

Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007

Что такое тиристор, как он работает, виды тиристоров и описание основных характеристик

Что такое светодиод, его принцип работы, виды и основные характеристики

Что такое варистор, основные технические параметры, для чего используется

Кремниевый диод и его ВАХ

Кроме шоттки, большой популярностью на данный момент пользуются кремниевые полупроводники. Для кремниевого типа диода вольт-амперная характеристика выгляди следующим образом.

ВАХ кремниевого и германиевого диода

Для таких полупроводников данная характеристика начинается примерно со значения 0,5-0,7 Вольт. Очень часто кремниевые полупроводники сравнивают с германиевыми. Если температуры окружающей среды равны, то оба устройства будут демонстрировать ширину запрещённой зоны. При этом кремниевый элемент будут иметь меньший прямой ток, чем из германия. Это же правило касается и обратного тока. Поэтому у германиевых полупроводников обычно сразу наступает тепловой пробой, если имеются обратное большое напряжение. В итоге, при наличии одинаковой температуры и прямого напряжения, потенциальный барьер у кремниевых полупроводников будет выше, а ток инжекции ниже.

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]