Индуктивный датчик: принцип работы, схемы подключения, характеристики


Назначение

Индуктивный датчик предназначен для контроля перемещения рабочего органа без непосредственного контакта с ним. Основной сферой применения для него является станочное оборудование, точные медицинские приборы, системы автоматизации технологических процессов, измерения и контроля формы изделия. В соответствии с положениями п.2.1.1.1 ГОСТ Р 50030.5.2-99 это датчик, который создает электромагнитное поле в области чувствительности и обладает полупроводниковым коммутатором.

Сфера применения индуктивных датчиков во многом определяется их высокой надежностью и устойчивостью к воздействию внешних факторов. На их показания и работу не влияют многие факторы окружающей среды: влага, оседание конденсата, скопление пыли и грязи, попадание твердых частиц. Такие особенности обеспечиваются их устройством и конструктивными данными.

Сферы применения

Области использования миниатюрных устройств обширны:

  • Используют в машиностроении для сборки, тестирования, упаковки, сварки, заклепки.
  • В лабораториях применяют для контроля, измерения.
  • Автомобильной технике, в транспортной промышленности, подвижной технике. Наиболее популярен датчик нейтральной передачи для МКПП. Во многих системах управления автомобилей присутствуют датчики. Они есть в механизме рулевого управления, клапана, педали, в подкапотных системах, в системах управления зеркалами, креслами, откидными крышами.
  • Применяют их в конструкциях роботов, в научной сфере и сфере образования.
  • Медицинской технике.
  • Сельском хозяйстве и спецтехнике.
  • Деревообрабатывающей промышленности.
  • Металлообрабатывающей области, в станках металлорежущих.
  • Проволочном производстве.
  • Конструкциях прокатных станов, в станках с программным управлением.
  • Системы слежения.
  • В охранных системах.
  • Гидравлических и пневматических системах.

Устройство

Развитие сегмента радиоэлектроники привело не только к совершенствованию первоначальных механизмов, но и к возникновению принципиально новых индуктивных датчиков. В качестве примера рассмотрим один из простейших вариантов (рисунок 1):


Рис. 1. Устройство индуктивного датчика

Как видите на рисунке, в его состав входят:

  • магнитопровод или ярмо (1) – предназначен для передачи электромагнитного поля от генератора в зону чувствительности;
  • катушка индуктивности (2) – создает переменное электромагнитное поле при протекании электрического тока по виткам;
  • объект измерения (3) – металлический якорь, вводимый или перемещаемый в области чувствительности, неметаллические предметы не способные влиять на состояние электромагнитного поля, поэтому они не используются в качестве детектора;
  • зазор между объектом измерения и основным магнитопроводом (4) – обеспечивает меру взаимодействия в качестве магнитного диэлектрика, в зависимости от модели датчика и способа перемещения может оставаться неизменным или колебаться в заданном диапазоне;
  • генератор (5) — предназначен для генерации электрического напряжения заданной частоты, которое будет создавать переменное магнитное поле в заданной области.

На что обратить внимание

Перед началом процедуры по замене датчика скорости нужно отключить зажигание, поскольку наличие в цепи напряжения при подключении вольтметра может привести к замыканию и выходу из строя остальных элементов. Для того чтобы при снятии датчика скорости не столкнуться с дефектами штока, необходимо осуществить демонтаж привода спидометра. Для его снятия используется обычный гаечный ключ. Процедуру следует проводить очень аккуратно, доставая привод из корпусной части коробки передач, при этом важно не упустить шток в месте МКПП.

Принцип работы

Принцип действия индуктивного датчика заключается в способности электромагнитного поля изменять свои параметры, в зависимости от значения магнитной проводимости на пути протекания потока. В основе его работы лежит классический вариант катушки, намотанной на сердечник.


Рис. 2. Магнитное поле в состоянии покоя

При протекании электрического тока I по виткам этой катушки генерируется магнитное поле (см. рисунок 2), результирующий вектор магнитной индукции B которого определяется по правилу Правой руки. При движении магнитного поля по сердечнику, ферромагнитный материал обеспечивает максимальную пропускную способность. Но, как только линии магнитной индукции попадают в воздушное пространство, магнитная проводимость существенно ухудшается и часть поля рассеивается.


Рис. 3. Магнитное поле при введении объекта срабатывания

При внесении в область действия поля индуктивного датчика объекта срабатывания (рисунок 3), изготовленного из металла, напряженность линий индукции резко изменяется. В результате чего усиливается поток и меняется его значение, а это, в свою очередь, приводит к изменению электрической величины в цепи катушки за счет явления взаимоиндукции. На практике этот сигнал слишком мал, поэтому для расширения предела измерения индуктивного датчика в их схему включается усилитель.

Самостоятельное тестирование

Каждый владелец автомобиля должен знать, как проверить датчик скорости. Есть три возможных способа установить его исправность. Перед началом диагностики следует определить, выдает ли датчик 12 В, поскольку основной принцип работы ДВС основан на эффекте Холла, состояние контактов осуществляется исключительно при вращении. Показатели напряжения датчика в рабочем состоянии должны находиться в пределах 0,5-10 В. 1. Проверка вольтметром. ДСА нужно снять и установит, за что отвечает каждая клемма. Один контакт вольтметра следует присоединить к клемме, выводящей импульсные сигналы, а второй — подвести к проводу заземления. Датчик необходимо вращать и в это время смотреть на показатели напряжения. Чем интенсивнее вращается датчик, тем больше будут показатели. 2. Необходимо отсоединить импульсный провод, который определяется специальным контроллером, и поднять колесо для вращения домкратом, чтобы оно не касалось земли. Присоединить контрольный провод «Сигнал», если показатель «-«, тогда датчик скорости исправен. Заменить контрольку в данном способе может провод с лампочкой. 3. Чтобы определить работу датчика, не обязательно снимать его с машины, для этого можно приподнять ее, как в предыдущем способе. Далее вольтметр соединить с контактами датчика, прибор при вращении колеса покажет показатели напряжения. Если вольтметр показывает напряжение и частоту в Гц, это указывает на то, что ДС работает.

Расстояние срабатывания и объект воздействия

В зависимости от конструкции и принципа действия индуктивного датчика объект воздействия может иметь вертикальное или горизонтальное перемещение относительно самого измерителя. Однако реакция сенсора на начало движения контролируемого объекта может начинаться не сразу, что обуславливается номинальным расстоянием, при котором обеспечивается зона чувствительности датчика и техническими параметрами объекта.


Рис. 4. Область и объект срабатывания

Как видите на рисунке 4, в первом положении контролируемый объект находится на таком удалении, где электромагнитные линии не достигают его поверхности. В таком случае с индуктивного датчика сигнал сниматься не будет, так как он не фиксирует перемещения в зоне чувствительности. Во втором положении контролируемый объект уже пересек расстояние срабатывания и вошел в чувствительную зону. В результате взаимодействия с объектом на выходе датчика появится соответствующий сигнал.

Также расстояние срабатывания будет зависеть от геометрических размеров, формы и материала. Следует заметить, что в качестве объекта срабатывания индуктивного датчика применяются только металлические предметы, но от конкретного типа будет отличаться и момент перехода датчика в противоположное состояние, что изображено на диаграмме:


Рис. 5. Зависимость расстояния срабатывания от материала

Как проверить ДС?

Для начала проверяем на наличие заземления и напряжения 12 В в контактах. Такие контакт проверяются прозвонкой. А контакт импульсных сигналов проверяется при кручении.

Напряжение между выводом и «массой» рабочего датчика скоростей находится в значении от 0,5 В до 10 В.

Существуют несколько способов, как можно проверить датчик скоростей автомобиля:

  • №1 С помощью вольтметра.
  • №2 Не демонтируя датчик с автомобиля.
  • №3 С помощью лампочки или контролки.

Проверка вольтметром:

  1. Снять датчик.
  2. Подсоединить один контакт к клемме импульсных сигналов. Второй контакт подсоединяем на «массу» автомобиля.
  3. Далее крутим датчик скорости и смотрим, подаются ли сигналы при работающем цикле и измеряем выходное напряжение ДС. Чтобы вращать ось датчика своими руками, надо надеть трубочку на ось датчика и крутить со скоростью до 5 км/час. Чем быстрее вращать ось датчика, тем больше напряжение покажет вольтметр.

Не демонтируя датчик с автомобиля

  1. Ставим автомобиль на домкрат (поддомкрачиваем одно колесо).
  2. Подсоединяем вольтметр к контактам автомобильного датчика скоростей.
  3. Крутим приподнятое колесо и смотрим, появилось ли напряжение. Исправный датчик должен показывать напряжение и частоту (Герц).

С помощью лампочки или контрольки

  1. Провод передачи импульсных данных отсоединяем от датчика.
  2. Поднимаем домкратом одно колесо.
  3. Включаем зажигание и ищем контролькой «+» и «-«.
  4. Контролькой подсоединить провод «Сигнал» и крутим колесо рукой. При исправно работающем датчике контролька должна показывать сигнал «-» (минус).

Виды

На практике существует огромное разнообразие индуктивных датчиков, всех их можно разделить на две большие категории, в зависимости от рода питающего тока – переменного и постоянного. В зависимости от состояния контактов в соответствии с таблицей 1 р.3 ГОСТ Р 50030.5.2-99 индуктивные датчики бывают:

  • замыкающий – при перемещении контролируемого объекта происходит перевод во включенное положение;
  • размыкающий – в случае воздействия индуктивный датчик переводит контакты в отключенное положение;
  • переключающий – одновременно объединяет оба предыдущих варианта, за одну коммутацию переводит один вывод во включенное, второй, в отключенное положение.

По количеству измерительных цепей индуктивные датчики подразделяются на одинарные и дифференциальные. Первый из них обладает одной катушкой и одной цепью измерения. Второй тип подразумевает наличие двух сенсоров, измерительные цепи которых включаются в противофазу для сравнения показаний.


Рис. 6. Одинарый и дифференциальный датчик

По способу передачи данных индуктивные датчики подразделяются на аналоговые, электронные и цифровые. В первом случае применяются те же катушки и ферромагнитные сердечники. Электронные используют триггер Шмидта вместо ферромагнетиков для получения гистерезисной составляющей. Цифровые выполняются в формате печатных плат на микросхемах. Помимо этого виды подразделяются по количеству выводов датчика: два, три, четыре или пять.

Основные причины неисправности

Поломку датчика скорости стоит устранять своевременно, пока она не переросла в дорогостоящий ремонт. Для этого каждый автовладелец должен следить за тем, как его транспортное средство ведет себя во время движения. При малейших отклонениях от установленной нормы рекомендуется осуществить замену ДСА. Основные признаки неисправности датчика скорости:

  • повышается расход топлива;
  • неверные показатели спидометра;
  • на холостом ходу двигатель нестабильно работает;
  • мотор не развивает полную мощность.

Также признаки выхода из строя датчика скорости могут проявляться в ситуациях, когда на холостом ходу, во время выжимания сцепления или во время переключения передач двигатель перестает работать. В таком случае водитель увидит индикатор с надписью «Check engine», если есть компьютер, на дисплее высвечивается ошибка «24». В данной ситуации первым делом рекомендуется проверить состояние контактов и проводов, возможно, обнаружится обрыв в цепи. Как правило, это возникает рядом с разъемом, где находится изгиб, и провода могут перетереться. Если же контакты просто загрязнились или окислились, их необходимо зачистить. Также нужно контролировать целостность изоляции проводов в месте выпускного коллектора. Неисправность датчика может быть обусловлена выходом из строя тросика спидометра, который истерся в процессе эксплуатации.

Характеристики (параметры)

При выборе индуктивного датчика для решения конкретной задачи руководствуются параметрами цепи, в которых он будет функционировать и основной логикой схемы. Поэтому обязательно проверяется соответствие их параметров:

  • напряжение питания – определяет допустимый минимум и максимум разности потенциалов, при которой индуктивный датчик нормально работает;
  • минимальный ток срабатывания – наименьшее значение нагрузки, при котором произойдет переключение;
  • расстояние срабатывания – допустимый промежуток удаления, при котором будет происходить коммутация;
  • индуктивное и магнитное сопротивление – определяет проводимость электрического тока и линий магнитной индукции для конкретной модели;
  • поправочный коэффициент – применяется для внесения поправки, в зависимости от дополнительных факторов;
  • частота переключений – максимально возможное количество раз коммутации в течении секунды;
  • габаритные размеры и способ установки.

Датчики Холла для измерения линейных перемещений (Linear Hall Sensors)

Во многих приложениях возникает задача определения положения объекта, перемещающегося по некоторой траектории, которая совсем не обязательно должна быть прямолинейной. Контролируемым объектом может быть, например, педаль или рулевая колонка автомобиля, дроссельная заслонка топливной системы двигателя внутреннего сгорания (рисунок 11), линейный привод промышленного робота, шток измерителя уровня жидкости и многие другие приложения, содержащие движущиеся части, положение которых может принимать любое значение в некотором ограниченном пространстве.

Рис. 11. Конфигурация магнитного поля магнитного датчика для определения положения дроссельной заслонки двигателя автомобиля

Очевидно, что в подобных приложениях необходимо измерять абсолютное значение магнитного поля, зависящее как от величины индукции внешнего магнита, так и от расстояния между ним и датчиком. А это означает, что данные системы должны иметь возможность калибровки, с помощью которой можно точно учесть все специфические особенности конкретного узла. Именно поэтому большинство линейных датчиков производства компании Infineon (таблица 6) кроме измерительной части содержат узлы для обработки результатов измерений с учетом поправочных коэффициентов, хранящихся во встроенной энергонезависимой памяти (рисунок 12).

Рис. 12. Структурная схема датчиков TLE4998

Таблица 6. Технические характеристики линейных датчиков Infineon

НаименованиеЧувствительностьИндукция отсечки, мкТлНапряжение питания (расширенный диапазон), ВАвтомо- бильное исполне- ниеИнтерфейсКорпус
TLE4997±12,5…±300 мВ/мТл< ±4005 ±10% (7)+АналоговыйSSO-3-10, TDSO-8
TLE4998P±0,2…±6 %/мТл< ±4005 ±10% (16)+PWMSSO-3-10, SSO-4-1, SSO-3-9, TDSO-8
TLE4998S±8,2…±245 LSB/мТл< ±4005 ±10% (16)+SENTSSO-3-10, SSO-4-1, SSO-3-9, TDSO-8
TLE4998C±8,2…±245 LSB/мТл< ±4005 ±10% (16)+SPCSSO-3-10, SSO-4-1, SSO-3-9, TDSO-8

Двухпроводных датчиков индуктивности


Рис. 7. Схема подключения двухпроводного датчика
Как видите на схеме выше, двухпроводные индуктивные датчики применяются исключительно для непосредственной коммутации нагрузки: контакторов, пускателей, катушек реле в качестве электронного выключателя. Это наиболее простая схема и модель, но работа конкретной модели сильно зависит от параметров подключаемой нагрузки.

Как проверить индукционный ДС?

Напряжение такого датчика меняется от частоты вращения колеса, как и на датчике угла поворота. От вращения колес сигнал начинает передаваться, поэтому этот принцип работы схож с колебаниями волнового импульса.

Все современные автомобили оснащаются датчиком скорости. Его задача – замер скорости и передача полученной информации на электронный блок управления. Благодаря полученным с датчика сигналам корректируются параметры, влияющие на работу двигателя (количество подаваемого воздуха, обороты холостого хода и др.) Чем выше скорость движения – тем больше частота сигналов.

Трехпроводных датчиков индуктивности


Рис. 8. Схема подключения трехпроводного датчика индуктивности
В трехпроводной схеме присутствует два вывода на питание самого индуктивного датчика, а третий, предназначен для подключения нагрузки к нему. По способу коммутации их подразделяют на PNP и NPN, первый вид коммутирует положительный вывод, откуда и происходит название, второй тип коммутирует отрицательный вывод.

Транзисторные пары в схемах управления электродвигателями

Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.

H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.

Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.

Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.

Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.

Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.

Четырехпроводных датчиков индуктивности


Рис. 9. Схема подключения четырехпроводного датчика индуктивности
По аналогии с предыдущим датчиком, четырехпроводный также использует два вывода 1 и 3 для получения питания. А вот 2 и 4 вывод используется для подключения нагрузки с той разницей, что коммутация для обеих нагрузок будет противоположной.

Маркировка при подключении

На принципиальных схемах индуктивные датчики принято обозначать в виде ромба или квадрата с двумя вертикальными линиями внутри. Нередко в них также указывается тип выхода (нормально открытый или закрытый), соответствующий одной из разновидностей полупроводниковых транзисторов. В большинстве вариантов схем указывается нормально закрытая группа или оба типа в одном корпусе.

Цветовая маркировка выводов


Перед установкой датчика необходимо сверить данные с инструкцией
На практике применяется стандартная система маркировки выводов датчиков индуктивности, которой придерживаются все без исключения производители чувствительных приборов. Тем не менее, перед их монтажом рекомендуется внимательно следить за полярностью подключения и обязательно сверяться с прилагаемой к изделиям инструкцией.

На корпусах всех датчиков имеется рисунок с цветной маркировкой проводов, если это позволяют его размеры.

Стандартный порядок обозначения:

  • синий (Blue) всегда означает минусовую шину питания;
  • коричневым цветом (Brown) обозначается плюсовой проводник;
  • черный (Black) соответствует выходу датчика;
  • белый (White) – это дополнительный выход или вход.

Для уточнения последнего маркировочного обозначения его следует сверить с данными инструкции, прилагаемой к конкретному прибору.

Пятипроводных датчиков индуктивности


Рис. 10. Схема подключения пятипроводного датчика индуктивности
В пятипроводном индуктивном датчике два вывода применяются для подачи напряжения на чувствительный элемент датчика, в рассматриваемом примере это 1 и 3. Два вывода 2 и 4 подают питание на разные нагрузки, а управляющий вывод 5 позволяет выбирать различные режимы работы и менять логику переключений.

Погрешности

Погрешности в процессе преобразования диагностических значений оказывают влияние на способности индукционных датчиков выдавать достоверную информацию. К основным из них можно отнести следующие.

Электромагнитная

Данную погрешность принято учитывать только в качестве случайной величины. Как правило, она возникает в ходе индуцирования ЭДС в индукционной катушке в результате внешнего воздействия сторонними магнитными полями. Это происходит в процессе производства из-за силовых электроустройств. Они образуют магнитные поля, что впоследствии и формирует электромагнитную погрешность.

От температуры

Эта погрешность тоже выступает в качестве случайного значения, поскольку работа большого числа элементов индукционного датчика напрямую зависит от температурных показателей, поэтому это ключевая величина, которая даже учитывается в процессе проектировки подобного оборудования.

Магнитной упругости

Обычно такая погрешность может проявляться как следствие нестабильности деформации магнитопровода устройства в процессе сборки самого датчика, а также при деформационных изменениях во время работы. Кроме того, оказываемое нестабильным электронапряжением воздействие на магнитопровод оборудования вызывает снижение качества передаваемого сигнала на выходе.

Деформация элементов

Данная погрешность, как правило, проявляется в результате воздействия измеряющей силы на значение деформации частей индукционного датчика, а также под влиянием усилий, оказываемых на нестабильные деформирующие процессы. Кроме того, не меньшее влияние на нее могут оказывать люфты и зазоры, образовавшиеся в подвижных элементах конструкции устройства.

Кабеля

Такая погрешность обычно проявляется от непостоянного значения сопротивления, в случае деформации самого провода и под влиянием температуры. Также подобным образом может сказаться наводка внешними полями ЭДС в кабеле.

Старение

Данная погрешность может проявляться при износе движущихся элементов самого устройства, а также в случае постоянно изменяющихся магнитных свойств используемого магнитопровода. Ее принято считать, строго говоря, случайным значением. В процессе определения данной погрешности учитывают кинематику конструкции индукционного датчика, а во время проектирования подобного оборудования максимальный эксплуатационный срок рекомендуется определять только при работе в обычном режиме, чтобы при этом износ не успел превысить установленного значения.

Преимущества и недостатки

В сравнении с другими типами сенсорных устройств индуктивные датчики продолжают занимать весомую нишу, наращивая темпы внедрения в различные сферы промышленности и отрасли народного хозяйства. Такое частое применение объясняется рядом весомых преимуществ:

  • высокая надежность за счет простой конструкции и отсутствия подвижных контактов;
  • может функционировать как от бытовой сети, так и от специальных генераторов, преобразователей и прочих источников питания;
  • способны обеспечивать значительную мощность на выходе — порядка нескольких десятков Ватт;
  • характеризуются высокой чувствительностью в зоне измерения.

Но, вместе с тем, существуют и недостатки индуктивных датчиков, которые не позволяют использовать их повсеместно. Среди наиболее существенных минусов являются громоздкие размеры, не позволяющие монтировать их в любых устройствах. Также к недостаткам относится зависимость параметров работы от температурных и других факторов, вносящих поправку на точность.

Мониторинг аварийных ситуаций с помощью тахометра

Для подсчёта и индикации количества действий в единицу времени, а также для выдачи управляющего сигнала при достижении заданной установки частоты предлагаем использовать тахометр ТХ1 РЗЩ.

Помимо постоянного мониторинга аварийных ситуаций (в системах контроля частоты вращения механизмов) Вы получаете:

  • Универсальность/взаимозаменяемость входных портов;
  • Функция «Слежение», управляющая выходным реле;
  • Непрерывная и динамичная индикация;
  • Программируемый коэффициент деления частоты входного сигнала;
  • Детектирование направления вращения при использовании двух сигналов;
  • Встроенный источник питания.

Гарантия на прибор — 24 месяца

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]