1.1.8 Движение тела по окружности. Угловая и линейная скорости точки. Центростремительное ускорение точки

Равномерное движение по окружности характеризуют периодом и частотой обращения.

Период обращения

— это время, за которое совершается один оборот.

Если, например, за время t = 4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой Т и определяется по формуле:

Итак,
чтобы найти период обращения, надо время, за которое совершено п оборотов, разделить на число оборотов
.

Другой характеристикой равномерного движения по окружности является частота обращения.

Частота обращения

— это число оборотов, совершаемых за 1 с. Если, например, за время t = 2 с тело совершило n = 10 оборотов, то легко сообразить, что за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой
V
(читается: ню) и определяется по формуле:
Итак, чтобы найти частоту обращения, надо число оборотов разделить на время, в течение которого они произошли.
За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с -1 (читается: секунда в минус первой степени). Раньше эту единицу называли «оборот в секунду», но теперь это название считается устаревшим.

Сравнивая формулы (6.1) и (6.2), можно заметить, что период и частота — величины взаимно обратные. Поэтому

Формулы (6.1) и (6.3) позволяют найти период обращения Т, если известны число n и время оборотов t или частота обращения
V
. Однако его можно найти и в том случае, когда ни одна из этих величин неизвестна. Вместо них достаточно знать скорость тела
V
и радиус окружности r, по которой оно движется.

Для вывода новой формулы вспомним, что период обращения — это время, за которое тело совершает один оборот, т. е. проходит путь, равный длине окружности (l

окр = 2
П
r, где
П
≈3,14- число «пи», известное из курса математики). Но мы знаем, что при равномерном движении время находится делением пройденного пути на скорость движения. Таким образом,
Итак, чтобы найти период обращения тела, надо длину окружности, по которой оно движется, разделить на скорость его движения.
. 1. Что такое период обращения? 2. Как можно найти период обращения, зная время и число оборотов? 3. Что такое частота обращения? 4. Как обозначается единица частоты? 5. Как можно найти частоту обращения, зная время и число оборотов? 6. Как связаны между собой период и частота обращения? 7. Как можно найти период обращения, зная радиус окружности и скорость движения тела?

Отослано читателями из интернет-сайтов

Сборник конспектов уроков по физике, рефераты на тему из школьной программы. Календарно тематическое планирование. физика 8 класс онлайн, книги и учебники по физике. Школьнику подготовиться к уроку.

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Номинальная скорость вращения

Прежде, чем дать определение этому понятию, необходимо определиться, что такое номинальный режим работы какого-либо устройства. Это такой порядок работы устройства, при котором достигаются наибольшая эффективность и надёжность процесса на продолжении длительного времени. Исходя из этого, номинальная скорость вращения – количество оборотов в минуту при работе в номинальном режиме. Время, необходимое для одного оборота, составляет 1/v секунд. Оно называется периодом вращения T. Значит, связь между периодом обращения и частотой имеет вид:

К сведению. Частота вращения вала асинхронного двигателя – 3000 об./мин., это номинальная скорость вращения выходного хвостовика вала при номинальном режиме работы электродвигателя.

Как найти или узнать частоты вращений различных механизмов? Для этого применяется прибор, который называется тахометр.

Рамка с током

Физиками было установлено, что если взять рамку и пропустить по ней ток, магнитное поле окажет влияние на электроны. В результате происходит их обращение. Вращательное действие силы характеризуется моментом энергии. Именно он и описывает действие материи.

Пусть в магнитном поле расположена прямоугольная рамка. По ней циркулирует ток против часовой стрелки. Вектор индукции направлен вверх. За направление магнитных линий принимается положительная нормаль. По правилу буравчика, если направление поступательного движения винта будет совпадать с направлением тока в проводнике, то вращение винта укажет расположение вектора магнитной индукции поля, создаваемого движением частиц.

Угол между нормалью и вектором обозначают буквой альфа. Естественно, что рамка стремится развернуться так, чтобы быть перпендикулярно полю. Но если она не совпадает с ним по направлению, на неё действует момент силы. Чтобы провести расчёты, необходимо выбрать ось относительно рамки.

Пусть она будет проходить параллельно длинным линиям прямоугольника. Для удобства длина её будет равняться a, а ширина b.

На такую установку будет действовать сила Ампера. Её определение звучит так: модуль вектора равен произведению магнитной индукции на силу тока в проводнике, его длине и синусу угла между направлением поля и заряженными частицами: F = B * I * L * sin (j). Она действует на все стороны рамки. При этом отличается только по направлению.

На рамку оказываются следующие воздействия:

  1. На дальнюю длинную сторону действует сила равная F1. Значит, на параллельную ей боковую грань воздействие будет противоположно по направлению -F2, поэтому силы принимаются по модулю. Так как значение тока везде одинаковое, можно записать: F = |F1| = |F2|.
  2. На короткие грани действуют силы, перпендикулярные проводнику. Они будут не поворачивать, а растягивать рамку. Соответственно, их можно обозначить как F3 и F4.

F1 и F2 создают нулевой момент. Они параллельны и направлены в противоположную сторону, образуют пару силы действующих в магнитном поле. Вычисляется она по формуле: M = F * d, где d — расстояние между воздействующими линиями энергии. Таким образом, момент силы в рамке будет определяться так: M = B * a * b * sin (j).

Если принять, что на прямоугольнике намотан провод с числом витков n, а произведение a * b — это площадь, формула примет окончательный вид: M = B * S * n * sin (j).

Угловая скорость

Когда тело движется по окружности, то не все его точки движутся с одинаковой скоростью относительно оси вращения. Если взять лопасти обычного бытового вентилятора, которые вращаются вокруг вала, то точка расположенная ближе к валу имеет скорость вращения больше, чем отмеченная точка на краю лопасти. Это значит, у них разная линейная скорость вращения. В то же время угловая скорость у всех точек одинаковая.

Угловая скорость представляет собой изменение угла в единицу времени, а не расстояния. Обозначается буквой греческого алфавита – ω и имеет единицу измерения радиан в секунду (рад/с). Иными словами, угловая скорость – это вектор, привязанный к оси обращения предмета.

Формула для вычисления отношения между углом поворота и временным интервалом выглядит так:

где:

  • ω – угловая скорость (рад./с);
  • ∆ϕ – изменение угла отклонения при повороте (рад.);
  • ∆t – время, затраченное на отклонение ©.

Обозначение угловой скорости употребляется при изучении законов вращения. Оно употребляется при описании движения всех вращающихся тел.

Угловая скорость в конкретных случаях

На практике редко работают с величинами угловой скорости. Она нужна при конструкторских разработках вращающихся механизмов: редукторов, коробок передач и прочего.

Вычислить её, применяя формулу, можно. Для этого используют связь угловой скорости и частоты вращения.

Общие сведения

Ещё в III—II тысячелетии на острове Магнезия были обнаружены камни, обладающие странными свойствами. Они имели способность притягивать к себе железные предметы. Эти вещества в честь острова получили название магниты. Так как их свойства сохраняются в течение длительного времени, их считают постоянными. Было установлено, что если такой камень разместить на поплавке и положить на него магнит, при его развороте он вернётся в начальное положение. Другими словами, он всегда стремится ориентироваться определённым образом.

Если взять 2 магнита, то, в зависимости от их расположения, они могут притягиваться друг к другу или отталкиваться. Этот эффект объясняется наличием у намагниченных веществ двух полюсов. В 1820 году Христиан Эрстед читал лекцию о тепловом действии тока. Он через проволоку пропускал электричество, демонстрируя, как она разогревается.

Во время эксперимента один из студентов обнаружил, что когда замыкалась цепь, стрелка у рядом находящегося компаса отклонялась. Это вращение и позволило обнаружить связь между электричеством и магнетизмом.

Учёный начал экспериментально изучать эффект. Он предположил, что, так как электрический ток — направленное движение в проводнике заряженных частиц, существует какая-то сила, возникающая вокруг проводящего тела. Обнаружить её можно с помощью компаса. Эту особую пространственную материю назвали магнитным полем. Воображаемые направления, вдоль которых бы расположились стрелки компасов, назвали силовыми линиями.

Опытным путём были установлены характеристики, описывающие движение заряженной частицы в магнитном поле.

К основным из них относят:

  1. Индукцию. Это плотность магнитных линий. С их помощью вещества разделяют на однородные и неоднородные. В первых магнитная индукция в каждой точке материи имеет одинаковое значение. Определяют её как отношение потока к площади поперечного сечения проводника.
  2. Проницаемость. Описывает способность среды создавать магнитные силы. Величиной, характеризующей это свойство, является абсолютное значение.
  3. Напряжённость. Изменяется в зависимости от силы тока в проводнике и его формы.

Описать магнитную материю можно численно и направлением. За её ориентацию принимается северная сторона, на которую указывает стрелка компаса.

Либо за неё можно принять расположение положительной нормали с током в рамке. Определяют её по правилу буравчика.

Угол поворота и период обращения

Рассмотрим точку А на предмете, вращающимся вокруг своей оси. При обращении за какой-то период времени она изменит своё положение на линии окружности на определённый угол. Это угол поворота. Он измеряется в радианах, потому что за единицу берётся отрезок окружности, равный радиусу. Ещё одна величина измерения угла поворота – градус.

Когда в результате поворота точка А вернётся на своё прежнее место, значит, она совершила полный оборот. Если её движение повторится n-раз, то говорят о некотором количестве оборотов. Исходя из этого, можно рассматривать ½, ¼ оборота и так далее. Яркий практический пример этому – путь, который проделывает фреза при фрезеровании детали, закреплённой в центре шпинделя станка.

Внимание! Угол поворота имеет направление. Оно отрицательное, когда вращение происходит по часовой стрелке и положительное при вращении против движения стрелки.

Если тело равномерно продвигается по окружности, можно говорить о постоянной угловой скорости при перемещении, ω = const.

В этом случае находят применения такие характеристики, как:

  • период обращения – T, это время, необходимое для полного оборота точки при круговом движении;
  • частота обращения – ν, это полное количество оборотов, которое совершает точка по круговой траектории за единичный временной интервал.

Интересно. По известным данным, Юпитер обращается вокруг Солнца за 12 лет. Когда Земля за это время делает вокруг Солнца почти 12 оборотов. Точное значение периода обращения круглого гиганта – 11,86 земных лет.

Частота вращения (обращения)

Частота вращения (обращения) — это физическая величина, равная количеству оборотов, которые тело совершает за единицу времени (1 секунду).

Чтобы найти частоту вращения надо количество оборотов разделить на время совершения этих оборотов:

Частота вращения – величина, обратная периоду вращения:

Частота вращения показывает, сколько оборотов совершается за 1 с.

За единицу частоты вращения в СИ принимают частоту вращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: [1/с] или [с -1 ] (читается: секунда в минус первой степени). Единица частоты в СИ называется Герц [Гц].

T — период обращения

ν — частота обращения

N — число оборотов

t — время, за которое тело совершило N оборотов по окружности

Что касается обозначений, — ЗАПОМНИТЕ пожалуйста — НЕ СУЩЕСТВУЕТ жёстких правил обозначений, в принципе — обозначайте как хотите, хоть буквами «щ» и «ъ»

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]