Как начать разбираться в электрике: самоучитель с нуля для начинающих электромонтеров

Перед вами — настоящая энциклопедия как для мастера-электрика, так и для новичка, где вы найдете ответы на все основные вопросы, касающиеся электрификации квартиры и частного дома: все о проводке, розетках, лампочках, необходимых для работы инструментах, приборах и защитных устройствах. Простое пошаговое руководство для составления бытовых электрических схем и понимания, как рассчитать потребляемые мощности. Специалисты с опытом работы больше 20-лет дают практические советы, которые помогут вам максимально точно, аккуратно и с минимальными затратами смонтировать электрические схемы и помогут разрешить затруднения, возникающие во время установки и монтажа элементов электрообеспечения вашего жилья.

Что изучает электрика

Наука начала стремительно развиваться в XIX в. В то время были открыты первые законы, позволившие понять, что такое электричество. Теоретические основы проверялись на практике. Стали появляться первые электрические приборы, улучшаться средства передачи электроэнергии от источников к потребителям.

Наука электрика основывалась на открытиях в области математики, физики, химии. Она изучала природу, свойства тока, электромагнитных полей.

Современная наука помогает узнавать все о приборах, работающих с использованием электричества. Благодаря исследованиям создаются более совершенные устройства. Электротехника — наука, ставшая основным двигателем прогресса.

Способы подвода напряжения к потребителям в квартире

Электрический ток от каждого работающего бытового прибора суммируется в квартирном щитке и учитывается счетчиком, через который проходит общая нагрузка. Поэтому токоведущие магистрали квартирного щитка выполняются кабелями с толстым сечением, исключающими тепловую перегрузку и старение изоляции.

От квартирного щитка к потребителям прокладывают провода с меньшим сечением, так как мощность запитываемых ими устройств ниже. Материал и сечение жилы этих проводов подбирают по справочникам или таблицам с учетом эксплуатационных характеристик и мощности.

Возможны три способа реализации схемы:

• шлейфом (шинами), когда общая магистраль проводки создается через распределительные коробки, а от них идут ответвления на электрические точки (розетки, выключатели, светильники);

• радиальным методом, заключающимся в том, что напряжение подводится к каждой розетке отдельным кабелем, идущим напрямую без разрывов и подключений от квартирного щитка;

• комбинированным способом, сочетающим в себе элементы первых двух вариантов.

С чего начать обучение

Пособия по электрике «для чайников» присутствуют на информационных порталах. Дефицита таких материалов не наблюдается, поэтому каждый желающий может начать изучать дисциплину с нуля. Однако если человек планирует получить профессию электрика, ему придется поступать на соответствующий факультет высшего или средне-специального учебного заведения.

Вуз, техникум, колледж

Многие учебные учреждения предлагают получить профессиональное образование электрика. Стоит рассмотреть особенности обучения в каждом из них:

  1. Полный курс в ВУЗе длится 4-5 лет. Здесь дается минимальная практическая база. Однако ВУЗы готовят специалистов с хорошими теоретическими знаниями. Учебные заведения принимают выпускников 11-х классов или ССУЗов.
  2. Техникумы дают равное количество теоретических и практических навыков. Обучение направлено на получение рабочей специальности. Поэтому теория изучается менее детально, чем в ВУЗе. Техникумы принимают выпускников 9-х или 11-х классов школы. Обучение длится 4 или 3 года соответственно.
  3. Училище или колледж. Такие заведения подготавливают рабочих, поэтому теоретическая часть сведена к минимуму. Профессию электрика в училище можно получить за 1-3 года.

Курсы

Такие программы помогают освоить базовые навыки за 2-8 недель. Уроки проходят как в стандартном, так и в онлайн-режиме. Недостатком курсов считается малый объем получаемых знаний. Начинающий электрик изучает азы электротехники, осваивает некоторые навыки. Практические занятия обучающийся проводит самостоятельно.

Все курсы ведутся на платной основе, проходить их можно, не оставляя другой работы.

Самообучение

Если описанные способы обучения не подходят, человек может осваивать электротехнику самостоятельно с помощью специальной литературы. Выполнять сложные задачи в таком случае электрик не сможет, однако смонтировать проводку в квартире ему будет под силу. Чтобы стать опытным специалистом с помощью самоучителей, необходимо проходить практику помощником электрика. Ученик должен внимательно следить за действиями наставника, выполнять несложные задания.

Введение

Современная цивилизация невозможна без электричества. Разнообразные приборы и устройства окружают нас со всех сторон. Они вытесняют с дорог автомобили с двигателем внутреннего сгорания! Зачастую люди даже не замечают вездесущих «вольтамперных тружеников» — до тех пор, пока не возникает нештатная ситуация: исчезает освещение, не поступает вода, нет связи, в том числе сотовой, нет интернета. И вот тогда «катастрофа». До 80-х годов прошлого века перечень электробытовых приборов был короче некуда — телевизор, пылесос, утюг, радиола (музыкальный центр), холодильник, стиральная машина (не у всех), лампочки и у некоторых что-то из кухонных приспособлений. Следовательно, потребляемые мощности были довольно скромными, одной-двух розеток и одной точки освещения вполне хватало для одной комнаты. За каких-то тридцать лет тандем инженерии и коммерции, двигателей научно-технического прогресса, расширил вышеприведенный скромный список практически до бесконечности. Миниатюризация, цифровые и энергосберегающие технологии позволили значительно снизить соответствующий лавинообразный рост энергопотребления, тем не менее требования к бытовым (квартирным и внутридомовым) электросетям возросли в разы. Суммарная мощность, общее количество и рассредоточенное расположение точек потребления электроэнергии требуют тщательного и точного просчета схем электроснабжения, а также качества соответствующих устройств коммуникации (розетки, выключатели), защиты (безопасности) и прочих расходных материалов. Основная цель данной книги — помочь читателю сориентироваться в современном разнообразии устройств, приборов, проводников и схем. А краткий теоретический обзор основ электротехники поможет даже непрофессионалу правильно рассчитать необходимую максимальную мощность для корректного подбора проводников и устройств безопасности и защиты. Наиболее распространенные стандартные схемы электрических подключений помогут при составлении и усовершенствовании общей электрической схемы квартиры или частного домовладения. Обзор кабельно-проводниковой продукции, некоторых монтажных новинок и лампочек, а также сравнительные таблицы, приведенные в книге, пригодятся аматерам и профессионалам. Практические советы помогут с минимальными затратами преодолеть большинство проблем, возникающих во время установки и монтажа элементов электрообеспечения вашего жилья.

Современные тенденции конструкции «умного дома» вызывают много вопросов, которые ранее не возникали, например — энергосбережение, снижение потребляемой мощности, выбор способа отопления, альтернативные источники электроэнергии… Краткий обзор по этой теме, хоть и не в полной мере (ведь постоянно появляются все более совершенные устройства), предоставит ответы на некоторые вопросы и позволит определиться с выбором того или иного варианта решения задачи.

Схемы электрических соединений

Существует 2 основных вида цепей, в которых компоненты соединяются параллельно или последовательно. Начинающему электрику стоит изучить принципы их построения и работы.

Параллельное и последовательное

В первом случае электричество разветвляется на все цепи, соединенные друг с другом. Общий ток равен сумме значений в каждой ветке. На соединенные параллельно цепи поступает одинаковое напряжение.

При последовательном построении схемы ток из одной ветки переходит в другую. Через все цепи проходит заряд одинаковой силы.

Монтаж и эксплуатация электропроводки (2011)

Автор: В.И. Назарова

Книга нужна тем, кто столкнется с электромонтажными работами в ходе строительства или перепланировки коттеджа, жилого дома или дачи. Всё о том, как правильно выполнить монтаж электропроводки, розеток, выключателей, щитков и светильников. Незаменимая книга в работе профессионального электрика и домашнего умельца.

Системы автоматической защиты

Электросеть несет 2 вида угроз:

  1. Мощность бытовой проводки достаточна для возгорания материалов, используемых при отделке помещений. Замыкание в сети приводит к неконтролируемому повышению силы тока и воспламенению. Свести вероятность возникновения такой ситуации к нулю невозможно, однако ее снижают путем введения в цепь автоматического выключателя. При повышении параметров тока пластина устройства деформируется, высвобождается пружина, которая размыкает контакты. Автомат не реагирует на импульсы пускового тока.
  2. Нулевой провод связан с землей, фазовый находится под напряжением по отношению к ней. Между таким проводником и заземленными предметами возникает ток. Поражение человека электричеством, образующимся между 2 сетевыми кабелями, практически не опасно. Однако при некоторых условиях прохождения тока электротравма становится смертельной. Автоматические системы защиты следят, чтобы ток входил в один провод и уходил по другому. При появлении напряжения между фазой и заземленным предметом, например, телом человека, УЗО обесточивает сеть.

Основы электротехники для начинающего электрика

В этой главе продолжим изучение электротока, рассмотрим способы его изменения, узнаем больше о постоянном и переменном токе, а также рассмотрим несколько новых условных обозначений элементов. Как уже было сказано выше, бытовая электросеть подключена к источнику переменного тока с частотой колебаний в 50 герц. Эта частота вполне подходит для питания некоторых электроприборов – таких как лампочки, электронагревательные приборы, а также двигатели переменного тока, но подавляющему большинству электропотребителей ток требуется постоянный, причем значительно меньшего напряжения, чем подается в электросеть. Как же решается эта проблема? Сейчас мы рассмотрим этот вопрос в той последовательности, в какой это происходит в самих приборах, где напряжение сначала понижается до нужного и лишь потом преобразуется в постоянное.

Трансформаторы – устройство и принцип работы

Способов понижения напряжения существует несколько, но здесь мы рассмотрим самый простой – понижающий трансформатор (схематическое изображение показано на рисунке 13).


Рис.13 Обозначение – понижающий трансформатор

На рис.14 показан самый простой китайский трансформатор, похоже, от магнитофона, но на нем хорошо видно, что однофазный понижающий трансформатор содержит 2 обмотки, внутри которых помещен металлический сердечник. Обмотки называются первичной и вторичной. Первичная содержит большее число витков и включается непосредственно в электросеть вторичная же витков содержит меньше и с нее снимается пониженное напряжение.


Трансформатор питания

Давайте рассмотрим как это работает. Переменный ток (а трансформаторы, дроссели и катушки индуктивности допускается запитывать только переменным током – от постоянного они перегорают), проходя через первичную обмотку, генерирует электромагнитное поле той же частоты, что и подаваемое напряжение. Благодаря металлическому сердечнику, во вторичной обмотке возникает ЭДС (электродвижущая сила) и генерируется выходное напряжение. Рассчитать это напряжение можно зная примерное соотношение количества витков в обмотках. Так, если первичная обмотка содержит 1000 витков и питается от электросети напряжением 220 В, а вторичная – 100 витков, то выходное напряжение трансформатора будет около 22-х В. Эта же зависимость справедлива и в обратную сторону, то есть, если число во вторичной больше, нежели в первичной, то трансформатор будет повышающим. Теперь, зная, как понизить напряжение до необходимого значения, разберем, как преобразовать его в постоянное, ведь. как уже было сказано, большинство приборов запитывается именно постоянным током.

Диод и его выпрямляющие свойства

Для того, чтобы легче понять принцип выпрямления тока диодами, вернемся к разговору о переменном токе. Как разъяснялось ранее, сетевой переменный ток меняет свое направление 50 раз в секунду. Это пояснение дает довольно точное представление о сути переменного тока, но не позволяет понять его структуры. Получить более детальное представление о нем поможет график на рис. 15, где волны изображенные выше нуля по шкале Y являются положительным полупериодом, а те, что располагаются ниже 0 – отрицательным.


Рис.15 График переменного тока

Благодаря этому графику, мы понимаем, что фазовый провод становится то положительным, то отрицательным проводником. Видя такое свойство переменного тока, давайте вспомним о полупроводниковом диоде, который, как известно пропускает ток только в одном направлении. Сопоставив два этих знания, мы понимаем. что уже находимся на полпути к решению. И в самом деле, пропуская переменный ток через диод, на выходе мы получаем только положительный полупериод. То есть включив в цепь два диода в разном направлении, на выходе другого мы получим отрицательную полуволну, а это уже почти источник постоянного тока. Но такой ток будет пульсирующим, что непригодно для питания аппаратуры (работать-то она какое-то время будет, но очень скоро придет в негодность). Как быть? А вот тут на выручат еще 2 диода (рис. 16), добавленные в помощь двум первым. Такая схема называется диодным мостом.


Рис.16 Схема диодного моста

Правда и таким образом выпрямленный ток все равно не будет считаться окончательно выпрямленным, его амплитуда будет такой, как показано на рисунке 17.


Рис.17 Амплитуда тока

Плохо? Нормально! Выход есть и о нем мы сейчас поговорим.

Конденсатор и его свойства

Чтобы сгладить пульсацию тока, выпрямленного диодным мостом, нам потребуется конденсатор (схематическое изображение на рисунке 18).


Рис.18 Обозначение конденсаторов на схемах

Одним из его свойств является пропускать переменный ток и задерживать постоянный, чем мы и воспользуемся. Благодаря этому свойству конденсатора остаточная пульсация, проходя через него, будет просто «уходить в землю». На рисунке 19 мы видим, как всего лишь один конденсатор сгладил напряжение практически до полностью постоянного.


Рис.19 Схема, на которой конденсатор сглаживает напряжение

Как теперь будет выглядеть схема нашего источника постоянного тока показано на рисунке 20.


Рис.20 Схема источника постоянного тока

Что еще нужно знать о конденсаторе? Основным его свойством является обладание электрической емкостью, то есть способностью накапливать электрический ток (да, почти как аккумулятор, только в отличии от него, конденсатор как заряжается, так и отдает весь заряд практически мгновенно). Емкость эта измеряется в фарадах (обозначается буквой Ф, либо латинской F). Правда с такой большой емкостью столкнуться, скорее всего, никогда не придется, чаще всего приходится иметь дело с микрофарадами (1/1000000 доля фарада, обозначается буквами mkF), нанофарадами (1/1000 микрофарада, обозначается nF) и пикофарадами (1/1000 нанофарада, pF).


Рис.21 Единицы измерения емкости конденсаторов

Также конденсаторы делятся на сухие и электролитические, последние имеют полярность, на рисунке 18 изображен как раз такой. Сухие на схемах обозначаются также, только без знака “+”. Теперь когда мы знаем кое-что о катушках и многое о конденсаторах, стоит узнать и запомнить одну истину, знать которую нужно каждому электрику.

Примечание! Чем выше частота тока тем выше индуктивное сопротивление и ниже емкостное.

В переводе на нормальный русский язык это значит, что в цепи переменного тока катушка обладает высоким сопротивлением, а конденсатор низким, а при постоянном токе – наоборот. Вот почему выше писалось, что в цепь постоянного тока катушки включать нельзя – при отсутствии сопротивления сила тока возрастает во много раз и катушка попросту сгорает.

Выполнение электромонтажных работ

Создание электрических сетей состоит из нескольких этапов:

  • проектирования;
  • подготовки материалов и инструментов;
  • прокладки проводки.

Необходимые инструменты

Для работы потребуются:

  • фазоискатель;
  • плоскогубцы;
  • кусачки;
  • ножи;
  • изоляционная лента;
  • отвертки;
  • мультиметр для проверки сетей.

Удаление виниловой изоляции с проводов (зачистка)

Процедура сопряжена с некоторыми сложностями. Ее нужно проводить так, чтобы не повреждалась токопроводящая жила. Иногда каждый проводник защищается виниловой изоляцией. Набор таких шин помещается в еще одну оплетку. В таком случае нужно разрезать верхний слой, не повреждая внутренней изоляции. Для снятия оплетки используют тупой нож, для зачистки медных или алюминиевых жил — острый.

При разрезании изоляции лезвие вводят на половину толщины материала. После этого жилы разводят в стороны плоскогубцами. Внешняя изоляция рвется по линии надреза.

Изоляция

Места соединения или повреждения оплетки тщательно изолируют. При электромонтаже для этого используют специальную ленту. Для начала жилы изолируют раздельно, затем вместе. Нанесенный на изоленту клей должен обеспечивать прочную фиксацию. Материал надежно приклеивают к виниловой оплетке на ширину, препятствующую отслаиванию или сползанию.

Книга: Советы электрика

Приборы для обработки продуктов можно разделить на две большие группы. В первую входят устройства для обработки продуктов, такие как электромясорубки, электрокофемолки, электрокартофелетерки, электросоковыжималки, миксеры.

Во вторую группу входят приборы для приготовления пищи, какими являются электроплитки (электрическая плита), электрокастрюли, электросковороды, электропечи, электрокофеварки, электрогрили, электрошашлычницы, электровафельницы. тостеры, печи СВЧ.

Устройства для обработки продуктов облегчают труд на кухне, позволяют выполнять меньше тяжелой механической работы, тем самым ускоряя процесс приготовления продуктов и экономя усилия.

Обратите внимание

Для приготовления мясного или рыбного фарша предназначены электромясорубки, которые бывают шнековыми и куттерными. Шнековые электромясорубки имеют такое же устройство, что и ручная мясорубка, за тем исключением, что вращение шнека, подающего части продукта на вращающийся нож, осуществляется электродвигателем.

Куттерная мясорубка работает по тому же принципу, что и кофемолка: на дне емкости, в которую помещается продукт, имеется вращающийся нож, который измельчает продукт до состояния фарша.

Конструкция обоих типов мясорубки предельно проста и представляет собой электрический двигатель, который вращает шнек или куттерный нож осевым принципом. Для защиты мотора от перегрузки мясорубки снабжаются механическим защитным устройством.

Куттерная мясорубка имеет блокировку, делающую невозможным работу прибора без крышки. В конструкции мясорубки может быть предусмотрено реле времени, устройство для хранения приставок, устройство для намотки шнура.

В комплекте обязательно должны продаваться приставки и сменные ножи.

Электрокофемолки выпускаются двух типов. Кофемолки ударного действия представляют собой небольшой куттер, который также имеет блокировку, делающую невозможной работу без крышки. Электрический двигатель приводит в движение двухлопастной нож, располагающийся на дне емкости для помола.

Конструкция кофемолки ударного типа еще проще, чем куттерная мясорубка. В ней нет реле времени, механического защитного устройства, а также других приспособлений. На корпусе имеется только кнопка, которая замыкает сеть.

Электрокофемолка жернового типа перемалывает кофейные зерна (как, впрочем, и другие сыпучие продукты) с помощью дисков, цилиндров, конусов и других элементов, выступающих в качестве жерновов.

Наиболее распространенная конструкция этого устройства имеет два дисковых жернова – подвижный и неподвижный. Зерна засыпаются в рабочий механизм через специальную воронку.

Перемолотый продукт попадает в бункер, откуда его можно извлечь, открыв крышку.

Эта кофемолка является более удобной, так как при одной и той же мощности с ударной кофемолкой имеет регулятор степени помола, устанавливающий расстояние между жерновами, в нее помещается в четыре раза больше продукта (125 г против 30 г в ударной кофемолке), в ней также предусмотрено устройство для хранения шнура.

Электрокартофелетерка предназначена для приготовления картофельной массы. Эту операцию можно произвести на соковыжималке, однако масса в таком случае получается неоднородной.

Картофелетерка представляет собой электродвигатель, на котором закреплен терочный диск.

Важно

Картофель загружается в бункер, при этом терочный диск измельчает его, и картофельная масса, пройдя через отверстия режущих элементов, выходит в приемную посуду.

По тому же принципу работает и соковыжималка, предназначенная для получения сока из фруктов и овощей. Соковыжималка также имеет терочный диск, который измельчает продукт. После этого измельченная масса поступает в центрифугу, при вращении которой выделяется сок. Время от времени центрифуга очищается выбрасывателем.

Картофелетерки и соковыжималки имеют простую конструкцию, которая позволяет производить ремонт самостоятельно.

Как правило, неполадки с этими устройствами случаются из-за того, что увеличивается зазор между терочным диском и пластиковыми деталями корпуса вследствие их износа.

В таком случае рекомендуется разобрать устройство, заменить изношенные детали, после чего собрать и отрегулировать прибор.

К устройствам для обработки продуктов также относится миксер. Это устройство представляет собой электрический двигатель в пластиковом корпусе, вращающий две оси, на которые надеваются различные насадки. Миксер имеет ступенчатую регулировку скорости для обработки различных продуктов.

Если прибор выполнен в настольном варианте и имеет устройство для выжимания сока из цитрусовых, откидывающийся миксер, работающий в специальной емкости, а также другие дополнительные устройства, его принято называть кухонным комбайном.

Из всех устройств для приготовления пищи, электроплитка является одним из самых простых бытовых приборов для обработки продуктов. Она представляет собой металлическую подставку, на которой имеется керамическое основание с пазами, в которые укладывается спираль. Плитка иногда имеет ступенчатый регулятор нагрева.

Совет

Однако плитку с открытой спиралью можно встретить все реже и реже, так как открытая спираль все чаще заменяется тэном. Это можно объяснить тем, что в процессе приготовления пищи можно испортить спираль, пролив на нее молоко или воду. Во-вторых, так как спираль открыта, то вероятна возможность электрического удара.

Тэновые электрические плитки в этом смысле более надежны. Металлическая трубка защищает нагревающий элемент от вредных воздействий, а также защищает от удара электричеством. В остальном электрическая плитка осталась та же: на ней имеется ступенчатый регулятор мощности нагрева с соответствующими обозначениями в градусах по Цельсию.

Электроплита работает по тому же принципу, что и тэновая электроплитка, за тем исключением, что в ней имеется духовка. На передней панели располагаются позиционные преключатели мощности нагрева, переключатель подсветки духового шкафа, сигнальная лампа терморегулятора.

Тэны откидываются для очистки поддонов, в плите имеется блокировка, исключающая одновременное включение духовки и конфорок. Плита имеет закрывающуюся крышку.

Также с тэном выпускается электрокастрюля. Она имеет алюминиевый или стальной корпус, терморегулятор, позволяющий регулировать температуру воды в пределах 65—95°С, термовыключатель, отключающий прибор при выкипании воды или включении его без воды в сеть.

Аналогично устройство и у электросковороды. Под основанием она имеет трубчатый нагреватель, который позволяет разогревать рабочую поверхность до 185°С за 6 минут.

Как и в других устройствах, в которых применен тэн, сковорода имеет терморегулятор, предназначенный для регулировки нагрева рабочей поверхности в диапазоне от 100 до 275°С.

Обратите внимание

Электрокастрюли выпускаются для приготовления пищи под повышенным давлением (скороварки) и для приготовления пищи на пару (пароварки).

Электропечи предназначены для выпечки мучных изделий, для приготовления тушеных блюд из мяса, рыбы и овощей. Нагревательный элемент электрической печи передает тепло равномерно по всей рабочей поверхности. Некоторые модели имеют сверху смотровое стекло.

Выбор электрического провода

Кабели бывают одно- или многожильными. В первом случае имеется единственная токопроводящая жила. В многожильном кабеле шина состоит из сплетенных проводников. Провода различают и по количеству токопроводящих элементов. Для создания 3-фазной проводки применяют 4-жильный кабель. Состоящие из 3 проводников изделия используются при создании бытовых электросетей. Жилы изготавливают из серебра, алюминия или меди.

Первый вариант применяется в промышленных условиях, что объясняется высокой электропроводностью. В быту используют медь или алюминий.

Законы Кирхгофа

Электрика любого помещения выполняется в виде замкнутых, рабочих электрических цепей. Два главных закона, которые определяют процессы в электрических сетях, являются законы Кирхгофа. Их два. Оба из них применяются и для постоянных и для переменных токов.

Первый закон Кирхгофа утверждает:

Суммарная величина токов направленная к узлу электрической сети равна суммарной величине токов направленных от узла.

В практике на основе первого закона Кирхгофа основана работа Устройств защитного отключения (УЗО). Работа УЗО заключается в отключении электропитания сети при возникновении токов утечки. При нормальном режиме работы суммарное значение тока, втекающая в электрическую сеть равна значению тока утекающему из нее. Если равенство токов нарушается, значит, в сети есть утечка. УЗО сконструировано и подключено таким образом, что при утечке тока УЗО его обнаруживает и размыкает питание электросети.

Второй закон Кирхгофа гласит:

Любой замкнутый контур переменной электрической сети имеет равные значения комплексных напряжений и ЭДС (электродвижущих сил) на всех пассивных элементах сети.

Примечание: Комплексное напряжение это значение напряжение в сети переменного тока.

Практическое применение можно пояснить на любой квартирной группе электропитания. Для пояснения рассмотрим квартиру.

Сколько бы групп электропитания в квартире не было, на любой розетке или светильнике напряжение в сети (при рабочем режиме) будет 220 вольт.

Электротехника и электрическая механика

Эти науки являются взаимосвязанными. Электрическая механика изучает базовые схемы оборудования, потребляющего электроэнергию. Курс теории и практики помогает научиться ремонту бытовых приборов. Основные положения электрической механики позволяют понять, как работают двигатель и генератор, в чем заключаются различия между стабилизатором и трансформатором.

Электричество – собрание учебных книг СССР

Единая теория электрических машин. Арменский Е. В., Кузина И. В. — 1975 г.

Конструкции электрических машин. Видеман, Келленбергер. — 1972 г.

Электрические машины и аппараты. Андрианов В. Н. — 1971 г.

Неисправности электрических машин. Гемке Р. Г. — 1989 г.

Электрические микромашины. Арменский Е. В. — 1975 г.

Динамомашины и двигатели постоянного тока. Шенфер К. Н. — 1937 г.

Электрические машины: асинхронные машины. Радин, Брускин, Зорохович. — 1988 г.

Техника безопасности

При работе с электрическими сетями или приборами соблюдают такие правила:

  1. Перед началом эксплуатации или ремонта оборудования изучают инструкцию. В разделе безопасности прописаны недопустимые действия, приводящие к замыканию и поражению током.
  2. Устройства необходимо обесточивать. После этого оценивают состояние изоляции проводов. При выявлении повреждений оголенные места закрывают изолентой.
  3. При невозможности обесточивания электрической сети работают в диэлектрических перчатках, обуви на резиновой подошве и специальных очках.
  4. Доступ к распределительным щитам и электроустановкам начинающим специалистам запрещен.
  5. Нельзя касаться лишенных изоляции проводов руками. Для поиска фазы используют мультиметры, индикаторные отвертки и другие инструменты.

Современный справочник электрика (2016)

Автор: А.В. Суворин

Книга предназначена для инженеров и техников по специальности электроснабжение (по отраслям), для электриков и электромонтеров. В справочнике представлена огромная теоретическая база по общетехническим положениям, необходимым электрику. В книге имеются сведения по электротехнике и материалам, необходимым для работы, краткое описание осветительного оборудования, трансформаторов, машин постоянного тока. Также здесь представлена информация по работе с электронными приборами и их применению. Информация в справочнике изложена доступным языком.

Рекомендации начинающим

Электрик-новичок должен следовать таким советам:

  1. При выборе сечения кабеля учитывают простой закон: мощность равна напряжению, умноженному на силу тока. По этой формуле рассчитывают главные токовые параметры. С помощью таблиц выбирают сечение проводников и характеристики других элементов электрической сети.
  2. Провода прокладывают строго горизонтально или под прямым углом. Расстояние от потолка до кабеля должно составлять не менее 20 см. При наличии в помещении труб от них отступают не менее 40 см.
  3. Распределительные щиты устанавливают на высоте 1,2 м. Между отдельными модулями оставляют расстояние, обеспечивающее циркуляцию воздуха.
  4. Электрические цепи защищают автоматическими выключателями, срабатывающими при утечке тока.

Чтобы стать опытным электриком, нужно постоянно выполнять практические задания и совершенствовать навыки.

Справочник электрика для профи и не только… Современные технологии XXI века (2013)

Авторы: С.Л. Корякин-Черняк, М.А. Шустов, О.Н. Партала, А.В. Повный, С.Б. Шмаков, В.Я. Володин, Е.А. Мукомол

Справочник электрика нужен тем, кто ищет всю необходимую информацию в одном месте. Физические и технические характеристики, понятийный аппарат, название приборов и материалов, маркировок, обозначений – все это вы найдете здесь. Книга содержит большой объем электротехнической информации, которая организована по разделам и направлениям деятельности профессионального электрика. Справочник необходим как профессионалу, так и тому, кто только учится.

Формулы для постоянного электрического тока

Постоянный электрический ток не изменяется в величине и направлении. Он используется для расчета замкнутой, однородной цепи, мощности и прочих параметров. Поэтому важно знать формулы для него и основные законы, связанные с ним.

Закон Ома для участка однородной цепи

Чтобы электрический ток существовал, нужно поле. Для его образования, нужны потенциалы или разность их, выраженная напряжением. Ток будет направлен на снижение потенциалов, а электроны начнут свое передвижение в обратном направлении. В 1826 г. Г. Ом провел исследование и сделал заключение: чем больше показатель напряжения, тем больше ток, который проходит через участок.

К сведению! Смежные проводники при этом проводят электричество по-разному. То есть каждый элемент имеет свою проводимость, электрическое сопротивление.

В результате, согласно теореме Ома, сила тока для участка однородной цепи будет иметь прямую пропорциональность показателю напряжения на нем и обратную пропорциональность проводниковому сопротивлению.


Закон Ома

По формуле I = U / R, где I считается силой тока, U — напряжением, а R — электрическим сопротивлением, последнее значение можно найти, если p * l / S, где p является удельным проводниковым сопротивлением, l — длиной проводника, а S — площадью поперечного проводникового сечения.

Закон Ома для замкнутой цепи с источником тока

Ом сделал формулу и для замкнутой цепи. По ней ток на этом участке из токового источника, имеющего внутреннее и внешнее нагрузочное сопротивление, равен делению электродвижущей силы источника на сумму внутреннего и внешнего сопротивления. Она выглядит так: I = e / R + r, где I является токовой силой, е — ЭДС, R — сопротивлением, а r — внутренней сопротивляемостью источника напряжения.

Обратите внимание! В физическом смысле по этому закону, чем выше показатель ЭДС, тем выше источник энергии, больше скорость движения зарядов. Чем выше сопротивляемость, тем ниже величина тока.


Закон Ома для замкнутой цепи

Работа постоянного тока

Энергия, когда проходит через проводник, упорядоченно двигается в носитель. Во время движения она совершает работу. В результате работой постоянного тока называется деятельность поля, направленная на перенос электрических зарядов по проводнику. Она равна умножению I на совершаемое работой напряжение и время.

Закон Джоуля-Ленца

Когда электричество проходит через какой-то проводник с сопротивляемостью, всегда высвобождается теплота. Количество тепла, которое высвободилось за определенный промежуток времени, определяет закон Джоуля-Ленца. По формуле мощность тепла равняется умножению плотности электричества на напряжение — w =j * E = oE(2).

Обратите внимание! В практическом понимании закон имеет значение для снижения потери электроэнергии, выбора проводника для электроцепи, подбора электронагревательного прибора и использования плавкого предохранителя для защиты сети.


Закон Джоуля-Ленца

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]